概率真题汇编含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率真题汇编含答案解析
一、选择题
1.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()
A.3
4
B.
1
3
C.
1
2
D.
1
4
【答案】C
【解析】
【分析】
算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】
解:设小正方形的边长为1,则其面积为1.
Q圆的直径正好是大正方形边长,
∴22,∴2,
222
=,则小球停在小正方形内部(阴影)区域的概率为1
2

故选:C.
【点睛】
概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.
2.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()
A.1
36
B.
1
6
C.
1
12
D.
1
3
【答案】A
【解析】
【分析】
本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.
【详解】
P(a,b,c正好是直角三角形三边长)=
61 21636
=
故选:A
【点睛】
本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.
3.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()
A.抛一枚硬币,出现正面朝上
B.掷一个正六面体的骰子,掷出的点数是5
C.任意写一个整数,它能被2整除
D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球
【答案】D
【解析】
【分析】
根据频率折线图可知频率在0.33附近,进而得出答案.
【详解】
A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;
B、掷一个正六面体的骰子、掷出的点数是5的可能性为1
6
,故此选项错误;
C、任意写一个能被2整除的整数的可能性为1
2
,故此选项错误;
D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是1
3
,符合题意,
故选:D.
【点睛】
此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.
4.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6
y
x
=图象的概率是()
A.1
2
B.
1
3
C.
1
4
D.
1
8
【答案】B
【解析】
【分析】
根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,
根据表格中mn=6所占比例即可得出结论.
【详解】
Q点(),m n在函数6
y
x
=的图象上,
6
mn
∴=.
列表如下:
m﹣1﹣1﹣1222333﹣6﹣6﹣6 n23﹣6﹣13﹣6﹣12﹣6﹣123 mn﹣2﹣36﹣26﹣12﹣36﹣186﹣12﹣18
mn的值为6的概率是
41 123
=.
故选:B.
【点睛】
本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表
找出mn=6的概率是解题的关键.
5.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )
A.1
2
B.
1
3
C.
2
3
D.
1
6
【答案】A
【解析】
【分析】
用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】
解:画树状图如下:
则总共有12种情况,其中有6种情况是两个球颜色相同的,
故其概率为
61 122
=.
故答案为A.
【点睛】
本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.
6.如图,在菱形ABCD中,AC与BD相交于点O.将菱形沿EF折叠,使点C与点O重合.若在菱形ABCD内任取一点,则此点取自阴影部分的概率为()
A.2
3
B.
3
5
C.
3
4
D.
5
8
【答案】C
【解析】
【分析】
根据菱形的表示出菱形ABCD的面积,由折叠可知EF是△BCD的中位线,从而可表示出菱形CEOF的面积,然后根据概率公式计算即可.
【详解】
菱形ABCD的面积=1
2
AC BD
⋅,
∵将菱形沿EF折叠,使点C与点O重合,∴EF是△BCD的中位线,
∴EF=1
2
BD ,
∴菱形CEOF的面积=11
28
OC EF AC BD
⋅=⋅,
∴阴影部分的面积=113
288
AC BD AC BD AC BD ⋅-⋅=⋅,
∴此点取自阴影部分的概率为: 3
3 8
14 2
AC BD
AC BD

=

.
故选C..
【点睛】
本题考查了几何概率的计算方法:用整个几何图形的面积n表示所有等可能的结果数,用
某个事件所占有的面积m表示这个事件发生的结果数,然后利用概率的概念计算出这个事
件的概率为:
m P
n .
7.下列说法正确的是()
A.检测某批次灯泡的使用寿命,适宜用全面调查
B.“367人中有2人同月同日生”为必然事件
C.可能性是1%的事件在一次试验中一定不会犮生
D.数据3,5,4,1,﹣2的中位数是4
【答案】B
【解析】
【分析】
根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断.
【详解】
检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;
一年有366天所以367个人中必然有2人同月同日生,B对;
可能性是1%的事件在一次试验中有可能发生,故C错;
3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.
故选B.
【点睛】
区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.
8.下表显示的是某种大豆在相同条件下的发芽试验结果:
下面有三个推断:
①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是
0.955;
②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;
③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒.
其中推断合理的是()
A.①②③B.①②C.①③D.②③
【答案】D
【解析】
【分析】
利用频率估计概率,大量反复试验下频率稳定值即为概率可解题.
【详解】
解:①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955,此推断错误,
②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95,此结论正确,
③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒,此结论正确,
故选D.
【点睛】
本题考查了利用频率估计概率, 大量反复试验下频率稳定值即为概率,属于简单题,熟悉概念是解题关键.
9.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()
A.1
2
B.
1
3
C.
1
6
D.
1
9
【答案】B
【解析】
【分析】
先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】
画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)
共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,
所以小斌和小宇两名同学选到同一课程的概率=31 93 ,
故选B.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
10.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持
人,则选出的恰为一男一女的概率是()
A.4
5
B.
3
5
C.
2
5
D.
1
5
【答案】B
【解析】
试题解析:列表如下:
∴共有20种等可能的结果,P(一男一女)=123
= 205

故选B.
11.下列事件中,属于不可能事件的是()
A.某个数的绝对值大于0 B.某个数的相反数等于它本身
C.任意一个五边形的外角和等于540° D.长分别为3,4,6的三条线段能围成一个三角形
【答案】C
【解析】
【分析】
直接利用随机事件以及确定事件的定义分析得出答案.
【详解】
A、某个数的绝对值大于0,是随机事件,故此选项错误;
B、某个数的相反数等于它本身,是随机事件,故此选项错误;
C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;
D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.
故答案选C.
【点睛】
本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.
12.在10盒红色的笔芯中混放了若干支黑色的笔芯,每盒20支笔芯,每盒中混放入的黑色笔芯数如下表:
下列结论:
①黑色笔芯一共有16支;
②从中随机取一盒,盒中红色笔芯数不低于14是必然事件;
③从中随机取一盒,盒中黑色笔芯数不超过4的概率为0.7;
④将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是0.12.
其中正确的结论有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
根据表格的信息分别验证算出黑色笔芯的数量,由每盒黑色笔芯的数量可以算出每盒红色笔芯的数量,即可验证①②的正确性,再算出盒中黑色笔芯数不超过4的概率,即可判断③,用黑色的数量除以总的笔数,可验证④.
【详解】
解:① 根据表格的信息,得到
⨯+⨯+⨯+⨯+⨯=,
黑色笔芯数=021*********
故①错误;
② 每盒笔芯的数量为20支,
∵每盒黑色笔芯的数量都≤6,
∴每盒红色笔芯≥14,
因此从中任取一盒,盒中红色笔芯数不低于14是必然事件,
故②正确;
③ 根据图表信息,得到黑色笔芯不超过4的一共有7盒,因此
从中随机取一盒,盒中黑色笔芯数不超过4的概率为7÷10=0.7
故③正确
④ 10盒笔芯一共有10×20=200(支),
由详解①知黑色笔芯共有24支,
将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是24÷200=0.12,
故④正确;
综上有三个正确结论,
故答案为C.
【点睛】
本题主要考查了与概率有关的知识点. 在本题中求出黑色笔芯的数量是关键,求某事件的概率时,主要求该事件的数量与总数量的比值;还需要掌握必然事件的概念,即必然事件是一定会发生的事件.
13.下列事件中,属于确定事件的是()
A.抛掷一枚质地均匀的骰子,正面向上的点数是6
B.抛掷一枚质地均匀的骰子,正面向上的点数大于6
C.抛掷一枚质地均匀的骰子,正面向上的点数小于6
D.抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次
【答案】B
【解析】
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
A、抛掷一枚质地均匀的骰子,正面向上的点数是6是随机事件;
B、抛掷一枚质地均匀的骰子,正面向上的点数大于6是不可能事件;
C、抛一枚质地均匀的骰子,正面向上的点数小于6是随机事件;
D、抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次是随机事件;
故选:B.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
14.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是()
A.3
4
B.
3
8
C.
9
16
D.
2
3
【答案】C
【解析】
【分析】
利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出.
【详解】
由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.
设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:
如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称
图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率
9
16
P=,
故选C.
【点睛】
本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.
15.下列说法:
①“明天降雨的概率是50%”表示明天有半天都在降雨;
②无理数是开方开不尽的数;
③若a为实数,则0
a<是不可能事件;
④16的平方根是4±164
=±;
其中正确的个数有()
A.1个B.2个C.3个D.4个
【答案】A
【解析】
【分析】
①根据概率的定义即可判断;
②根据无理数的概念即可判断;
③根据不可能事件的概念即可判断;
④根据平方根的表示方法即可判断.
【详解】
①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;
②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;
③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;
④16的平方根是4±,用式子表示是4±,故错误;
综上,正确的只有③,
故选:A .
【点睛】
本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.
16.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是( )
A .红球比白球多
B .白球比红球多
C .红球,白球一样多
D .无法估计 【答案】A
【解析】
根据题意可得5位同学摸到红球的频率为
85976357505010
++++==,由此可得盒子里的红球比白球多.故选A .
17.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球( )
A .12个
B .16个
C .20个
D .25个 【答案】B
【解析】
【分析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.
【详解】
解:设盒子中有红球x 个,由题意可得:
44
x +=0.2, 解得:x=16,
故选:B .

【点睛】
此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系
18.下列说法正确的是( )
A .打开电视机,正在播放“张家界新闻”是必然事件
B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨
C.两组数据平均数相同,则方差大的更稳定
D.数据5,6,7,7,8的中位数与众数均为7
【答案】D
【解析】
【分析】
根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】
A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;
B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;
C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;
D,数据5,6,7,7,8的中位数与众数均为7,正确,
故选D.
【点睛】
本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.
19.下列说法正确的是()
A.对角线相等的四边形一定是矩形
B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
C.如果有一组数据为5,3,6,4,2,那么它的中位数是6
D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D
【解析】
【分析】
根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.
【详解】
A.对角线相等的平行四边形是矩形,故该项错误;
B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;
C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;
D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,
故选:D.
【点睛】
此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.
20.下列事件中是确定事件的为( )
A.两条线段可以组成一个三角形 B.打开电视机正在播放动画片
C.车辆随机经过一个路口,遇到绿灯 D.掷一枚均匀的骰子,掷出的点数是奇数
【答案】A
【解析】A. 两条线段可以组成一个三角形是不可能事件,也是确定事件,故本选项正确;
B. 打开电视机正在播放动画片是随机事件,故本选项错误;
C. 车辆随机经过一个路口,遇到绿灯是随机事件,故本选项错误;
D. 掷一枚均匀的骰子,掷出的点数是奇数是随机事件,故本选项错误。

故选A.。

相关文档
最新文档