东湖区第四高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东湖区第四高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.已知函数f(x)=是R上的增函数,则a的取值范围是()
A.﹣3≤a<0 B.﹣3≤a≤﹣2 C.a≤﹣2 D.a<0
2.甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
乙校:
则x,y
A、12,7
B、10,7
C、10,8
D、11,9
3.已知,则f{f[f(﹣2)]}的值为()
A.0 B.2 C.4 D.8
4.已知α是△ABC的一个内角,tanα=,则cos(α+)等于()
A. B.C.D.
5.在△ABC中,a=1,b=4,C=60°,则边长c=()
A .13
B .
C .
D .21
6. 执行如图所示的程序框图,若输入的
分别为0,1,则输出的
( )
A .4
B .16
C .27
D .36
7. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( ) A .7049 B .7052 C .14098 D .14101
8. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,
N ,P 的关系( )
A .M P N =⊆
B .N P M =⊆
C .M N P =⊆
D .M P N == 9. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )
A .4π
B .12π
C .16π
D .48π
10.集合{}1,2,3的真子集共有( )
A .个
B .个
C .个
D .个 11.复数满足2+2z
1-i =i z ,则z 等于( )
A .1+i
B .-1+i
C .1-i
D .-1-i
12.若f (x )=sin (2x+θ),则“f (x )的图象关于
x=对称”是“θ=
﹣”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
二、填空题
13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)
①tanA •tanB •tanC=tanA+tanB+tanC ②tanA+tanB+tanC 的最小值为
3
③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45° ⑤

tanB ﹣
1=
时,则sin 2
C ≥sinA •sinB .
14.【南通中学2018届高三10月月考】已知函数()3
2f x x x =-,若曲线()f x 在点()()
1,1f 处的切线经
过圆()2
2
:2C x y a +-=的圆心,则实数a 的值为__________.
15.若复数34
sin (cos )i 55
z αα=-
+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.
16.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .
17.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 .
18.设,y x 满足约束条件2110y x x y y ≤⎧⎪
+≤⎨⎪+≥⎩
,则3z x y =+的最大值是____________.
三、解答题
19.已知函数()()x
f x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.
(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤∀∈⎢⎥⎣⎦
及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.
20.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.
21.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获
胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于
体力原因,第7场获胜的概率为.
(Ⅰ)求甲队分别以4:2,4:3获胜的概率;
(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.
22.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线.(1)求证:AD=1
2+2c2-a2;
22b
(2)若A=120°,AD=19
2,sin B
sin C
=3
5
,求△ABC的面积.
23.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.
(I)求证:平面BCE⊥平面A1ABB1;
(II)求证:EF∥平面B1BCC1;
(III)求四棱锥B﹣A1ACC1的体积.
24.已知f(x)=log3(1+x)﹣log3(1﹣x).
(1)判断函数f(x)的奇偶性,并加以证明;
(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.
东湖区第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】解:∵函数是R上的增函数
设g(x)=﹣x2﹣ax﹣5(x≤1),h(x)=(x>1)
由分段函数的性质可知,函数g(x)=﹣x2﹣ax﹣5在(﹣∞,1]单调递增,函数h(x)=在(1,+∞)单调递增,且g(1)≤h(1)


解可得,﹣3≤a≤﹣2
故选B
2.【答案】B
=60人,
【解析】1从甲校抽取110× 1 200
1 200+1 000
=50人,故x=10,y=7.
从乙校抽取110× 1 000
1 200+1 000
3.【答案】C
【解析】解:∵﹣2<0
∴f(﹣2)=0
∴f(f(﹣2))=f(0)
∵0=0
∴f(0)=2即f(f(﹣2))=f(0)=2
∵2>0
∴f(2)=22=4
即f{f[(﹣2)]}=f(f(0))=f(2)=4
故选C.
4.【答案】B
【解析】解:由于α是△ABC的一个内角,tanα=,
则=,又sin2α+cos2α=1,
解得sinα=,cosα=(负值舍去).
则cos(α+)=cos cosα﹣sin sinα=×(﹣)=.
故选B.
【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.
5.【答案】B
【解析】解:∵a=1,b=4,C=60°,
∴由余弦定理可得:c===.
故选:B.
6.【答案】D
【解析】【知识点】算法和程序框图
【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,
则输出的36。

故答案为:D
7.【答案】B
【解析】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,
∴,可得a n+1=a n﹣1,
因此数列{a n}是周期为2的周期数列.
a1=3,∴3a2+2=2a2+2×3,解得a2=4,
∴S2015=1007(3+4)+3=7052.
【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.
8.【答案】A
【解析】
试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.
考点:两个集合相等、子集.1 9. 【答案】B
【解析】解:由三视图可知几何体是底面半径为2的圆柱,
∴几何体的侧面积为2π×2×h=12π,解得h=3,
∴几何体的体积V=π×22
×3=12π.
故选B .
【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.
10.【答案】C 【解析】
考点:真子集的概念. 11.【答案】
【解析】解析:选D.法一:由2+2z
1-i =i z 得
2+2z =i z +z , 即(1-i )z =-2,
∴z =-21-i =-2(1+i )2=-1-i.
法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,
∴⎩⎪⎨⎪⎧2+2a =a -b
2b =a +b
, ∴a =b =-1,故z =-1-i. 12.【答案】B
【解析】解:若f (x )的图象关于x=对称,
则2×
+θ=
+k π,
解得θ=﹣+k π,k ∈Z ,此时θ=﹣不一定成立,
反之成立,
即“f (x )的图象关于x=对称”是“θ=﹣”的必要不充分条件,
故选:B
【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.
二、填空题
13.【答案】 ①④⑤
【解析】解:由题意知:A ≠
,B ≠
,C ≠
,且A+B+C=π
∴tan (A+B )=tan (π﹣C )=﹣tanC ,
又∵tan (A+B )=

∴tanA+tanB=tan (A+B )(1﹣tanAtanB )=﹣tanC (1﹣tanAtanB )=﹣tanC+tanAtanBtanC , 即tanA+tanB+tanC=tanAtanBtanC ,故①正确;
当A=
,B=C=
时,tanA+tanB+tanC=
<3
,故②错误;
若tanA ,tanB ,tanC 中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;
由①,若tanA :tanB :tanC=1:2:3,则6tan 3
A=6tanA ,则tanA=1,故A=45°,故④正确;
当tanB ﹣1=
时, tanA •tanB=tanA+tanB+tanC ,即tanC=,C=60°,
此时sin 2
C=

sinA •sinB=sinA •sin (120°﹣A )=sinA •(cosA+sinA )=sinAcosA+
sin 2A=
sin2A+﹣
cos2A=
sin (2A ﹣30°)


则sin 2
C ≥sinA •sinB .故⑤正确;
故答案为:①④⑤
【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.
14.【答案】2-
【解析】结合函数的解析式可得:()3
11211f =-⨯=-,
对函数求导可得:()2
'32f x x =-,故切线的斜率为()2
'13121k f ==⨯-=,
则切线方程为:()111y x +=⨯-,即2y x =-,
圆C :()2
2
2x y a +-=的圆心为()0,a ,则:022a =-=-.
15.【答案】34
-
【解析】由题意知3sin 05α-
=,且4cos 05α-≠,所以4cos 5α=-,则3tan 4
α=-. 16.【答案】 [0,2] .
【解析】解:命题p :||x ﹣a|<3,解得a ﹣3<x <a+3,即p=(a ﹣3,a+3);
命题q :x 2
﹣2x ﹣3<0,解得﹣1<x <3,即q=(﹣1,3).
∵q 是p 的充分不必要条件,
∴q ⊊p ,


解得0≤a ≤2, 则实数a 的取值范围是[0,2].
故答案为:[0,2].
【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题
17.【答案】

【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a 和b ,基本事件的总个数是6×6=36,即(a ,b )的情况有36种, 事件“a+b 为偶数”包含基本事件:
(1,1),(1,3),(1,5),(2,2),(2,4),(2,6), (3,1),(3,3),(3,5),(4,2),(4,4),(4,6)
(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个, “在a+b 为偶数的条件下,|a ﹣b|>2”包含基本事件: (1,5),(2,6),(5,1),(6,2)共4个,
故在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是P==
故答案为:
【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.
18.【答案】73
【解析】
试题分析:画出可行域如下图所示,由图可知目标函数在点12,
33A ⎛⎫
⎪⎝⎭
处取得最大值为73.
考点:线性规划.
三、解答题
19.【答案】(1)()f x 的单调递增区间为(1,)k -+∞,单调递减区间为(,1)k -∞-,
1()(1)k f x f k e -=-=-极小值,无极大值;(2)2k ≤时()(1)(1)f x f k e ==-最小值,23k <<时
1()(1)k f x f k e -=-=-最小值,3k ≥时,2()(2)(2)f x f k e ==-最小值;(3)2e λ≤-.
【解析】
(2)当11k -≤,即2k ≤时,()f x 在[]1,2上递增,∴()(1)(1)f x f k e ==-最小值; 当12k -≥,即3k ≥时,()f x 在[]1,2上递减,∴2()(2)(2)f x f k e ==-最小值; 当112k <-<,即23k <<时,()f x 在[]1,1k -上递减,在[]1,2k -上递增, ∴1()(1)k f x f k e -=-=-最小值.
(3)()(221)x g x x k e =-+,∴'()(223)x g x x k e =-+, 由'()0g x =,得32
x k =-, 当3
2x k <-
时,'()0g x <; 当3
2
x k >-时,'()0g x >,
∴()g x 在3(,)2k -∞-上递减,在3
(,)2
k -+∞递增,
故323
()()22
k g x g k e -=-=-最小值,
又∵35,22k ⎡⎤
∈⎢⎥⎣⎦
,∴[]30,12k -∈,∴当[]0,1x ∈时,323()()22k g x g k e -=-=-最小值,
∴()g x λ≥对[]0,1x ∀∈恒成立等价于32
()2k g x e λ-
=-≥最小值;
又32
()2k g x e λ-
=-≥最小值对35,22k ⎡⎤
∀∈⎢⎥⎣⎦
恒成立.
∴3
2
min (2)k e
k --≥,故2e λ≤-.1
考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用. 【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想
之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的.
20.【答案】
【解析】解:依题意,由M=得|M|=1,故M﹣1=
从而由=得═=
故A(2,﹣3)为所求.
【点评】此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,考查学生的计算能力,比较基础.
21.【答案】
【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A,B,
∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,
∴,,
∴甲队以4:2,4:3获胜的概率分别为和.
(Ⅱ)随机变量X的可能取值为5,6,7,
∴,P(X=6)=,P(X=7)=,
∴随机变量X的分布列为
X 5 6 7
p
【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.
22.【答案】
【解析】解:
(1)证明:∵D是BC的中点,
∴BD =DC =a
2
.
法一:在△ABD 与△ACD 中分别由余弦定理得c 2
=AD 2
+a 2
4
-2AD ·
a
2
cos ∠ADB ,① b 2=AD 2+a 2
4-2AD ·a 2
·cos ∠ADC ,②
①+②得c 2+b 2=2AD 2+a 2
2

即4AD 2=2b 2+2c 2-a 2,
∴AD =1
2
2b 2+2c 2-a 2.
法二:在△ABD 中,由余弦定理得
AD 2=c 2
+a 24-2c ·a 2
cos B
=c 2+a
24-ac ·a 2+c 2-b 22ac
=2b 2+2c 2-a 2
4,
∴AD =1
2
2b 2+2c 2-a 2.
(2)∵A =120°,AD =1219,sin B sin C =3
5,
由余弦定理和正弦定理与(1)可得 a 2=b 2+c 2+bc ,① 2b 2+2c 2-a 2=19,②
b c =3
5
,③ 联立①②③解得b =3,c =5,a =7,
∴△ABC 的面积为S =12bc sin A =12×3×5×sin 120°=153
4.
即△ABC 的面积为15
4 3.
23.【答案】
【解析】(I )证明:在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥底面ABC ,
所以,BB 1⊥BC .
又因为AB ⊥BC 且AB ∩BB 1=B , 所以,BC ⊥平面A 1ABB 1. 因为BC ⊂平面BCE ,
所以,平面BCE ⊥平面A 1ABB 1.
(II)证明:取BC的中点D,连接C1D,FD.
因为E,F分别是A1C1,AB的中点,
所以,FD∥AC且.
因为AC∥A1C1且AC=A1C1,
所以,FD∥EC1且FD=EC1.
所以,四边形FDC1E是平行四边形.
所以,EF∥C1D.
又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,
所以,EF∥平面B1BCC1.
(III)解:因为,AB⊥BC
所以,.
过点B作BG⊥AC于点G,则.
因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1
所以,平面A1ACC1⊥底面ABC.
所以,BG⊥平面A1ACC1.
所以,四棱锥B﹣A1ACC1的体积.
【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.
24.【答案】
【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.
理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)
又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),
则f(x)是奇函数.
(2)g(x)=log=2log3,(5分)
又﹣1<x<1,k>0,(6分)
由f(x)≥g(x)得log3≥log3,
即≥,(8分)
即k2≥1﹣x2,(9分)
x∈[,]时,1﹣x2最小值为,(10分)
则k2≥,(11分)
又k>0,则k≥,
即k的取值范围是(﹣∞,].
【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.。

相关文档
最新文档