和林格尔县实验中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
和林格尔县实验中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
x=-,则输出的结果为()
1.执行下面的程序框图,若输入2016
A.2015 B.2016 C.2116 D.2048
2.已知复数z满足:zi=1+i(i是虚数单位),则z的虚部为()
A.﹣i B.i C.1 D.﹣1
3.已知f(x)是定义在R上周期为2的奇函数,当x∈(0,1)时,f(x)=3x﹣1,则f(log35)=()
A.B.﹣C.4 D.
4.已知函数f(x)=,则的值为()
A.B.C.﹣2 D.3
5.S n是等差数列{a n}的前n项和,若3a8-2a7=4,则下列结论正确的是()
A.S18=72 B.S19=76
C.S20=80 D.S21=84
从该地区调查了500位老年人,结果如6.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法
........
下:
由2()
()()()()
n ad bc
K
a b c d a c b d
-
=
++++
算得
2
2
500(4027030160)
9.967
20030070430
K
⨯⨯-⨯
==
⨯⨯⨯
附表:
参照附表,则下列结论正确的是()
①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”;
②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”;
③采用系统抽样方法比采用简单随机抽样方法更好;
④采用分层抽样方法比采用简单随机抽样方法更好;
A.①③B.①④C.②③D.②④
7.已知函数f(x)=a x(a>0且a≠1)在(0,2)内的值域是(1,a2),则函数y=f(x)的图象大致是()A.B.C.D.
8.已知函数f(x)=31+|x|﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.B.C.(﹣,) D.
9.已知2-
>
a,若圆
1
O:0
15
8
2
2
2
2=
-
-
-
+
+a
ay
x
y
x,圆
2
O:0
4
4
2
22
2
2=
-
-
+
-
+
+a
a
ay
ax
y
x
恒有公共点,则a的取值范围为().
A.)
,3[
]1
,2
(+∞
-
- B.)
,3(
)1
,
3
5
(+∞
-
- C.)
,3[
]1
,
3
5
[+∞
-
- D.)
,3(
)1
,2
(+∞
-
-
10.定义在R上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f(7)=6,则f(x)()A.在[﹣7,0]上是增函数,且最大值是6
B.在[﹣7,0]上是增函数,且最小值是6
C.在[﹣7,0]上是减函数,且最小值是6
3.841 6.635 10.828
k
2
() 0.050 0.010 0.001
P K k
≥
D .在[﹣7,0]上是减函数,且最大值是6
11.过点(2,﹣2)且与双曲线﹣y 2
=1有公共渐近线的双曲线方程是( )
A .
﹣
=1
B .
﹣
=1 C .﹣=1 D .﹣=1
12.已知角α的终边上有一点P (1,3),则的值为( )
A .﹣
B .﹣
C .﹣
D .﹣4
二、填空题
13.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程
为 .
14.函数f (x )=log
(x 2
﹣2x ﹣3)的单调递增区间为 .
15.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单 位:小时)间的关系为0e
kt
P P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了
消除27.1%的污染物,则需要___________小时.
【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 16.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .
17.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .
18.已知tan()3αβ+=,tan()24
π
α+
=,那么tan β= .
三、解答题
19.(本小题满分12分)
已知直三棱柱111C B A ABC -中,上底面是斜边为AC 的直角三角形,F E 、分别是11AC B A 、的中点.
(1)求证://EF 平面ABC ; (2)求证:平面⊥AEF 平面B B AA 11.
20.(本小题满分10分)选修4-4:坐标系与参数方程:
在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2
sin 2cos (0)p p ρθθ=>.
(1)设t 为参数,若22
x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2
||||||PQ MP MQ =⋅,求实数p 的值.
21.已知曲线C 1:ρ=1,曲线C 2:(t 为参数)
(1)求C 1与C 2交点的坐标;
(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 1′与C 2′,写出C 1′与C 2′的参数方程,C 1与C 2公共点的个数和C 1′与C 2′公共点的个数是否相同,说明你的理由.
2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)
22.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0
(1)求实数m的值.
(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.
23.已知数列{a n}的前n项和为S n,a1=3,且2S n=a n+1+2n.(1)求a2;
(2)求数列{a n}的通项公式a n;
(3)令b n=(2n﹣1)(a n﹣1),求数列{b n}的前n项和T n.
24.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若
p∨q为真命题,p∧q为假命题,求实数a的取值范围.
和林格尔县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】D 【解析】
试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于
20151>,则进行2y y =循环,最终可得输出结果为2048.1
考点:程序框图. 2. 【答案】D
【解析】解:由zi=1+i ,得,
∴z 的虚部为﹣1. 故选:D .
【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
3. 【答案】B
【解析】解:∵f (x )是定义在R 上周期为2的奇函数,
∴f (log 35)=f (log 35﹣2)=f (log 3),
∵x ∈(0,1)时,f (x )=3x
﹣1
∴f (log 3)═﹣ 故选:B
4. 【答案】A
【解析】解:∵函数f (x )=,
∴f ()=
=﹣2,
=f (﹣2)=3﹣2=.
故选:A .
5. 【答案】
【解析】选B.∵3a 8-2a 7=4,
∴3(a 1+7d )-2(a 1+6d )=4,
即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+17
2d )不恒为常数.
S 19=19a 1+19×18d
2=19(a 1+9d )=76,
同理S 20,S 21均不恒为常数,故选B. 6. 【答案】D
【解析】解析:本题考查独立性检验与统计抽样调查方法.
由于9.967 6.635 ,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D . 7. 【答案】B
【解析】解:函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2
),
则由于指数函数是单调函数,则有a >1,
由底数大于1指数函数的图象上升,且在x 轴上面,可知B 正确. 故选B .
8. 【答案】A
【解析】解:函数f (x )=3
1+|x|
﹣为偶函数,
当x ≥0时,f (x )=31+x
﹣
∵此时y=3
1+x
为增函数,y=为减函数,
∴当x ≥0时,f (x )为增函数, 则当x ≤0时,f (x )为减函数, ∵f (x )>f (2x ﹣1), ∴|x|>|2x ﹣1|, ∴x 2>(2x ﹣1)2, 解得:x ∈,
故选:A .
【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.
9. 【答案】C
【解析】由已知,圆1O 的标准方程为222
(1)()(4)x y a a ++-=+,圆2O 的标准方程为 222
()()(2)x a y a a ++-=+,∵
2->a ,要使两圆恒有公共点,则122||26O O a ≤≤+,即 62|1|2+≤-≤a a ,解得3≥a 或1
35
-≤≤-a ,故答案选C
10.【答案】D
【解析】解:∵函数在[0,7]上是增函数,在[7,+∞)上是减函数, ∴函数f (x )在x=7时,函数取得最大值f (7)=6, ∵函数f (x )是偶函数,
∴在[﹣7,0]上是减函数,且最大值是6, 故选:D
11.【答案】A
【解析】解:设所求双曲线方程为﹣y 2
=λ,
把(2,﹣2)代入方程
﹣y 2
=λ,
解得λ=﹣2.由此可求得所求双曲线的方程为.
故选A .
【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.
12.【答案】A
【解析】解:∵点P (1,3)在α终边上, ∴tan α=3,
∴
=
=
=
=﹣.
故选:A .
二、填空题
13.【答案】 (±,0) y=±2x .
【解析】解:双曲线的a=2,b=4,
c=
=2
,
可得焦点的坐标为(±,0),
渐近线方程为y=±x ,即为y=±2x . 故答案为:(±
,0),y=±2x .
【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.
14.【答案】 (﹣∞,﹣1) .
【解析】解:函数的定义域为{x|x >3或x <﹣1}
令t=x 2
﹣2x ﹣3,则y=
因为y=在(0,+∞)单调递减
t=x 2﹣2x ﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增 由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1) 故答案为:(﹣∞,﹣1)
15.【答案】15
【解析】由条件知5000.9e k P P -=,所以5e 0.9k
-=.消除了27.1%的污染物后,废气中的污染物数量为00.729P ,于是000.729e kt P P -=,∴315e 0.7290.9e kt k --===,所以15t =小时.
16.【答案】 .
【解析】解:因为全称命题的否定是特称命题所以,命题“∀x ∈R ,x 2
﹣2x ﹣1>0”的否定形式是:
.
故答案为:.
17.【答案】 50π
【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,
所以长方体的对角线就是球的直径,长方体的对角线为:,
所以球的半径为:
;则这个球的表面积是:
=50π.
故答案为:50π.
18.【答案】43
【解析】
试题分析:由1tan tan()24
1tan π
ααα++
=
=-得1
tan 3
α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβααβα+-=
++ 1
34313133-
=
=+⨯
. 考点:两角和与差的正切公式.
三、解答题
19.【答案】(1)详见解析;(2)详见解析. 【
解
析
】
试
题解析:证明:(1)连接C A 1,∵直三棱柱111C B A ABC -中,四边形C C AA 11是矩形, 故点F 在C A 1上,且F 为C A 1的中点,
在BC A 1∆中,∵F E 、分别是11AC B A 、的中点,∴BC EF //. 又⊄EF 平面ABC ,⊂BC 平面ABC ,∴//EF 平面ABC .
考点:1.线面平行的判定定理;2.面面垂直的判定定理.
20.【答案】
【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.
21.【答案】
【解析】解:(1)∵曲线C1:ρ=1,∴C1的直角坐标方程为x2+y2=1,
∴C1是以原点为圆心,以1为半径的圆,
∵曲线C2:(t为参数),∴C2的普通方程为x﹣y+=0,是直线,
联立,解得x=﹣,y=.
∴C2与C1只有一个公共点:(﹣,).
(2)压缩后的参数方程分别为
:(θ为参数):(t为参数),
化为普通方程为::x2+4y2=1,:y=,
联立消元得,
其判别式,
∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.
【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.
22.【答案】
【解析】解:(1)∵f(4)=0,
∴4|4﹣m|=0
∴m=4,
(2)f(x)=x|x﹣4|=图象如图所示:
由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.
(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,
由图可知k∈(0,4).
23.【答案】
【解析】解:(1)当n=1时,2S1=2a1=a2+2,
∴a2=4…1;
(2)当n≥2时,2a n=2s n﹣2s n﹣1=a n+1+2n﹣a n﹣2(n﹣1)=a n+1﹣a n+2,
∴a n+1=3a n﹣2,
∴a n+1﹣1=3(a n﹣1)…4,
∴,
∴{a n﹣1}从第二项起是公比为3的等比数列…5,
∵,
∴,
∴;
(3)∴ (8)
∴① (9)
∴②
①﹣②得:,
=,
=(2﹣2n)×3n﹣4, (11)
∴ (12)
【点评】本题考查等比数列的通项公式,数列的递推公式,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题.
24.【答案】
【解析】解:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,
等价于a≥x2﹣x在x∈[2,4]恒成立,
而函数g(x)=x2﹣x在x∈[2,4]递增,
其最大值是g(4)=4,
∴a≥4,
若p为真命题,则a≥4;
f(x)=x2﹣ax+1在区间上是增函数,
对称轴x=≤,∴a≤1,
若q为真命题,则a≤1;
由题意知p、q一真一假,
当p真q假时,a≥4;当p假q真时,a≤1,
所以a的取值范围为(﹣∞,1]∪[4,+∞).。