八年级数学上册 分式填空选择单元复习练习(Word版 含答案)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把a=0代入整式方程得:-3x-3=1-x,即x=-2,不合题意;
把a=1代入整式方程得:-3x-2=1-x,即x=- ,符合题意;
把a=2代入整式方程得:-3x-1=1-x,即x=-1,不合题意;
把a=3代入整式方程得:-3x=1-x,即x=- ,符合题意,
∴符合条件的整数a取值为-3,-1,1,3,之积为9,
经过交流后,形成下面两种不同的答案:
小明说:解这个关于x的分式方程,得到方程的解为x=a﹣2.
因为解是正数,可得a﹣2>0,所以a>2.
小强说:本题还要必须a≠3,所以a取值范围是a>2且a≠3.
(1)小明与小强谁说的对,为什么?
(2)关于x的方程 有整数解,求整数m的值.
【答案】(1)小强的说法对,理由见解析;(2)m=3,4,0.
【详解】
解:(1)小强的说法对,理由如下:
解这个关于x的分式方程,得到方程的解为x=a﹣2,
因为解是正数,可得a﹣2>0,即a>2,
同时a﹣2≠1,即a≠3,
则a的范围是a>2且a≠3,
(2)去分母得:mx﹣1﹣1=2x﹣4,
整理得:(m﹣2)x=﹣2,
当m≠2时,解得:x=﹣ ,
由方程有整数解,得到m﹣2=±1,m﹣2=±2,
【点睛】
本题主要考查含参数的分式方程的解法,掌握分式方程的解法,是解题的关键.
5.若关于x的方程 有增根,则m的值是▲
【答案】0.
【解析】
方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使
最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值:
方程两边都乘以(x-2)得,2-x-m=2(x-2).
【答案】 且k≠±1.
【解析】
【分析】
通过去分母去括号,移项,合并同类项,求出 ,结合条件,列出关于k的不等式组,即可求解.
【详解】
方程两边同乘以(x-6)(x-5),得: ,
去括号,移项,合并同类项,得: ,
解得: ,
∵方程 的解不大于13,且x≠6,x≠5,
∴ 且 ,
∴ 且k≠±1.
故答案是: 且k≠±1.
试题解析:
( )∵a2b2=b2a2,∴a2b2是对称式,
∵a2-b2≠b2-a2,∴a2-b2不是对称式,
∵ + = + ,∴ + 是对称式,
∴①、③是对称式;
( )①∵(x+a)(x+b)=x2+(a+b)x+ab=x2+mx+n,
∴a+b=m,ab=n,
∵m=-2 ,n= ,
∴ + = = = = =2 -2;
【分析】
(1)“?”当成5,解分式方程即可,
(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.
分式方程去分母得:a-3x-3=1-x,
x= ,
由分式方程 -3= 有负分数解,则有a-4<0,所以a<4,
所以-3≤a<4,
把a=-3代入整式方程得:-3x-6=1-x,即x=- ,符合题意;
把a=-2代入整式方程得:-3x-5=1-x,即x=-3,不合题意;
把a=-1代入整式方程得:-3x-4=1-x,即x=- ,符合题意;
(2)若该商场购进A,B型商品共100件进行试销, 其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?
【答案】(1)B型商品的进价为120元, A型商品的进价为150元;(2)5500元.
【解析】
分析:(1)设一件B型商品的进价为x元,则一件A型 商品的进价为(x+30)元,根据“用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍”,这一等量关系列分式方程求解即可;
二、八年级数学分式解答题压轴题(难)
11.已知分式A
(1)化简这个分式;
(2)当a>2时,把分式A化简结果的分子与分母同时加上4后得到分式B,问:分式B的值较原来分式A的值是变大了还是变小了?试说明理由;
(3)若A的值是整数,且a也为整数,求出符合条件的所有a值的和.
【答案】(1) ;(2)原分式值变小了,见解析;(3)11
含有两个字母 , 的对称式的基本对称式是 和 ,像 , 等对称式都可以用 和 表示,例如: .
请根据以上材料解决下列问题:
( )式子① ,② ,③ 中,属于对称式的是__________(填序号).
( )已知 .
①若 , ,求对称式 的值.
②若 ,直接写出对称式 的最小值.
【答案】( )①③.( )① .②
(2)根据题意中的不等关系求出A商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.
详解:(1)设一件B型商品的进价为x元,则一件A型 商品的进价为(x+30)元.
由题意: = ×2,
解得x=120,
经检验x=120是分式方程的解,
答:一件B型商品的进价为120元,则一件A型商品的进价为150元.
【解析】
试题分析:(1)由对称式的定义对三个式子一一进行判断可得属于对称式的是①、③;(2)①将等号左边的式子展开,由等号两边一次项系数和常数项对应相等可得a+b=m,ab=n,已知m、n的值,所以a+b、ab的值即求得,因为 + = = ,所以将a+b、ab的值整体代入化简后的式子计算出结果即可;② + =a2+ +b2+ =(a+b)2-2ab =m2+8+ = + ,因为 m2≥0,所以 m2+ ≥ ,所以 + 的最小值是 .
【解析】
【分析】
(1)根据分式混合运算顺序和运算法则化简即可得;
(2)根据题意列出算式 ,化简可得 ,结合a的范围判断结果与0的大小即可得;
(3)由 可知, =±1、±2、±4,结合a的取值范围可得.
【详解】
解:(1)A=
=
=
= ;
(2)变小了,理由如下:
∵ ,
∴ ,
∴ ;
∵ ,
∴ , ,
∴ ,
∴分式的值变小了;
【答案】 或
【解析】
【分析】
因y元买了x只铅笔,则每只铅笔 元;降价20%后,每只铅笔的价格是 元,依题意得 (x+10)=4,变形可得x= ,即可得y<5;再由x、y均是正整数,确定y只能取3或4,由此求得x的值,即可得小明两次所买铅笔的数量.
【详解】
因y元买了x只铅笔,则每只铅笔 元;降价20%后,每只铅笔的价格是(1-20%) 元,即 元,依题意得: (x+10)=4,
解得:m=3,4,0.
【点睛】
本题主要考查分式方程解是正数和解是整数问题,解决本题的关键是要熟练掌握解分式方程的解法.
14.某商场计划销售A,B两种型号的商品,经调查,用1500元 采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.
(1)求一件A,B型商品的进价分别为多少元?
【答案】2
【解析】
【分析】
先解不等式组确定a的取值范围,再解分式方程,解为正数从而确定a的取值范围,即可得所有满足条件的整数a的和.
【详解】
原不等式组的解集为 x≤3,有4个整数解,所以﹣1 ,解得:-4<a≤2.
原分式方程的解为y=a+3,因为原分式方程的解为正数,所以y>0,即a+3>0,解得:a>﹣3.
∴y(x+10)=5x
∴x= ,
∴5-y>0,即y<5;
又∵x、y均是正整数,
∴y只能取3和4;
①当y=3时,x=15,小明两次共买了铅笔:15+15+10=40(支)
②当y=4时,x=40,小明两次共买了铅笔:40+(40+10)=90(支)
故答案为40或90.
【点睛】
本题考查了方程的应用,解决根据题意列出方程 (x+10)=4确定x、y的值是解决问题的关键.
【答案】2017
【解析】
试题解析:根据题意可知:a2﹣2018a+1=0,
∴a2+1=2018a,
a2﹣2017a=a﹣1,
∴原式=a2﹣2017a+
=a﹣1+
= ﹣1
=2018﹣1
=2017
故答案为2017
10.小明到商场购买某个牌子的铅笔 支,用了 元( 为整数).后来他又去商场时,发现这种牌子的铅笔降价 ,于是他比上一次多买了 支铅笔,用了 元钱,那么小明两次共买了铅笔________支.
(2)因为客商购进A型商品m件,销售利润为w元.
m≤100﹣m,m≤50,
由题意:w=m(200﹣150)+(100﹣m)(180﹣120)=﹣10m+6000,
∵﹣10 <0,
∴m=50时,w有最小值=5500(元)
点睛:此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.
∵y=a+3≠1,∴a≠-2,所以-3<a≤2且a≠-2.
所以满足条件所有整数a的值为-1,0,1,2.
和为-1+0+1+2=2.
故答案为:2.
【点睛】
本题考查了不等式组的整数解、分式方程,解答本题的关键是根据不等式组的整数解确定a的取值范围.
4.若方程 的解不大于13,则 的取值范围是__________.
(3)∵A是整数,a是整数,
则 ,
∴ 、 、 ,
∵ ,
∴ 的值可能为:3、0、4、6、-2;
∴ ;
∴符合条件的所有a值的和为11.
【点睛】
本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
12.一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如: , , ,
15.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚: .
(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;
(2)小华的妈妈说:“我看到标准答案是:方程的增根是 ,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?
【答案】(1) ;(2)原分式方程中“?”代表的数是-1.
【解析】
【解析】
试题分析:分式方程去分母转化为整式方程,表示出x,根据x为正数列出关于m的不等式,求出不等式的解集即可确定出m的范围.
试题解析:分式方程去分母得:2x+m=3(x-2),
解得:x=m+6,
根据题意得:x=m+6>0,且m+6≠2,
解得:m>-6,且m≠-4.
考点:分式方程的解.
9.已知a是方程x2﹣2018x+1=0的一个根a,则a2﹣2017a+ 的值为_____.
【解析】
【分析】
(1)先根据解分式方程的步骤和解法解分式方程可得x=a﹣2,根据分式方程有解和解是正数可得:x>0且x≠1,即a﹣2>0,a﹣2≠1,即可求解,
(2)先根据解分式方程的步骤和解法解分式方程可得(m﹣2)x=﹣2,当m≠2时,
解得:x=﹣ ,根据分式方程有整数解可得:m﹣2=±1,m﹣2=±2,继而求m的值.
∵分式方程有增根,∴x-2=0,解得x=2.
∴2-2-m=2(2-2),解得m=0.
6.若关于x的分式方程 无解,则实数m=_______.
【答案】3或7.
【解析】
解:方程去分母得:7+3(x﹣1)=mx,整理得:(m﹣3)x=4.①当整式方程无解时,m﹣3=0,m=3;
②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7.
综上所述:∴m的值为3或7.
故答案为3或7.
7.若关于x的方程 无解,则m=.
【答案】试题分析:∵关于x的方程 无解,∴x=5
将分式方程 去分母得: ,
将x=5代入得:m=﹣8
【详解】
请在此输入详解!
8.已知关于 的方程 的解是正数,则 的取值范围是__________.
【答案】m>-6且m -4
故选D
【点睛】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键.
2.已知: 满足方程 ,则代数式 的值是_____.
【答案】
【解析】
因为 ,则 .
故答案: .
3.若关于x的不等式组 有4个整数解,且关于y的分式方程 =1的解为正数,则满足条件所有整数a的值之和为_____
② + ,
=a2+ +b2+ ,
=(a+b)2-2ab+ ,
=m2+8+ ,
= + ,
∵ m2≥0,
∴ m2+ ≥ ,
∴ + 的最小值是 .
点睛:本题关键在于理解对称式的定义,并利用分式的性质将分式变形求解.
13.阅读后解决问题:
在“15.3分式方程”一课的学习中,老师提出这样的一个问题:如果关于x的分式方程 的解为正数,那么a的取值范围是什么?
八年级数学上册 分式填空选择单元复习练习(Word版 含答案)
一、八年级数学分式填空题(难)
1.如果关于x的分式方程 -3= 有负分数解,且关于x的不等式组 的解集为x<-2,那么符合条件的所有整数a的积是_________.
【答案】9
【解析】
,
由①得:x≤2a+4,
由②得:x<-2,
由不等式组的解集为x<-2,得到2a+4≥-2,即a≥-3,
把a=1代入整式方程得:-3x-2=1-x,即x=- ,符合题意;
把a=2代入整式方程得:-3x-1=1-x,即x=-1,不合题意;
把a=3代入整式方程得:-3x=1-x,即x=- ,符合题意,
∴符合条件的整数a取值为-3,-1,1,3,之积为9,
经过交流后,形成下面两种不同的答案:
小明说:解这个关于x的分式方程,得到方程的解为x=a﹣2.
因为解是正数,可得a﹣2>0,所以a>2.
小强说:本题还要必须a≠3,所以a取值范围是a>2且a≠3.
(1)小明与小强谁说的对,为什么?
(2)关于x的方程 有整数解,求整数m的值.
【答案】(1)小强的说法对,理由见解析;(2)m=3,4,0.
【详解】
解:(1)小强的说法对,理由如下:
解这个关于x的分式方程,得到方程的解为x=a﹣2,
因为解是正数,可得a﹣2>0,即a>2,
同时a﹣2≠1,即a≠3,
则a的范围是a>2且a≠3,
(2)去分母得:mx﹣1﹣1=2x﹣4,
整理得:(m﹣2)x=﹣2,
当m≠2时,解得:x=﹣ ,
由方程有整数解,得到m﹣2=±1,m﹣2=±2,
【点睛】
本题主要考查含参数的分式方程的解法,掌握分式方程的解法,是解题的关键.
5.若关于x的方程 有增根,则m的值是▲
【答案】0.
【解析】
方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使
最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值:
方程两边都乘以(x-2)得,2-x-m=2(x-2).
【答案】 且k≠±1.
【解析】
【分析】
通过去分母去括号,移项,合并同类项,求出 ,结合条件,列出关于k的不等式组,即可求解.
【详解】
方程两边同乘以(x-6)(x-5),得: ,
去括号,移项,合并同类项,得: ,
解得: ,
∵方程 的解不大于13,且x≠6,x≠5,
∴ 且 ,
∴ 且k≠±1.
故答案是: 且k≠±1.
试题解析:
( )∵a2b2=b2a2,∴a2b2是对称式,
∵a2-b2≠b2-a2,∴a2-b2不是对称式,
∵ + = + ,∴ + 是对称式,
∴①、③是对称式;
( )①∵(x+a)(x+b)=x2+(a+b)x+ab=x2+mx+n,
∴a+b=m,ab=n,
∵m=-2 ,n= ,
∴ + = = = = =2 -2;
【分析】
(1)“?”当成5,解分式方程即可,
(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.
分式方程去分母得:a-3x-3=1-x,
x= ,
由分式方程 -3= 有负分数解,则有a-4<0,所以a<4,
所以-3≤a<4,
把a=-3代入整式方程得:-3x-6=1-x,即x=- ,符合题意;
把a=-2代入整式方程得:-3x-5=1-x,即x=-3,不合题意;
把a=-1代入整式方程得:-3x-4=1-x,即x=- ,符合题意;
(2)若该商场购进A,B型商品共100件进行试销, 其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?
【答案】(1)B型商品的进价为120元, A型商品的进价为150元;(2)5500元.
【解析】
分析:(1)设一件B型商品的进价为x元,则一件A型 商品的进价为(x+30)元,根据“用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍”,这一等量关系列分式方程求解即可;
二、八年级数学分式解答题压轴题(难)
11.已知分式A
(1)化简这个分式;
(2)当a>2时,把分式A化简结果的分子与分母同时加上4后得到分式B,问:分式B的值较原来分式A的值是变大了还是变小了?试说明理由;
(3)若A的值是整数,且a也为整数,求出符合条件的所有a值的和.
【答案】(1) ;(2)原分式值变小了,见解析;(3)11
含有两个字母 , 的对称式的基本对称式是 和 ,像 , 等对称式都可以用 和 表示,例如: .
请根据以上材料解决下列问题:
( )式子① ,② ,③ 中,属于对称式的是__________(填序号).
( )已知 .
①若 , ,求对称式 的值.
②若 ,直接写出对称式 的最小值.
【答案】( )①③.( )① .②
(2)根据题意中的不等关系求出A商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.
详解:(1)设一件B型商品的进价为x元,则一件A型 商品的进价为(x+30)元.
由题意: = ×2,
解得x=120,
经检验x=120是分式方程的解,
答:一件B型商品的进价为120元,则一件A型商品的进价为150元.
【解析】
试题分析:(1)由对称式的定义对三个式子一一进行判断可得属于对称式的是①、③;(2)①将等号左边的式子展开,由等号两边一次项系数和常数项对应相等可得a+b=m,ab=n,已知m、n的值,所以a+b、ab的值即求得,因为 + = = ,所以将a+b、ab的值整体代入化简后的式子计算出结果即可;② + =a2+ +b2+ =(a+b)2-2ab =m2+8+ = + ,因为 m2≥0,所以 m2+ ≥ ,所以 + 的最小值是 .
【解析】
【分析】
(1)根据分式混合运算顺序和运算法则化简即可得;
(2)根据题意列出算式 ,化简可得 ,结合a的范围判断结果与0的大小即可得;
(3)由 可知, =±1、±2、±4,结合a的取值范围可得.
【详解】
解:(1)A=
=
=
= ;
(2)变小了,理由如下:
∵ ,
∴ ,
∴ ;
∵ ,
∴ , ,
∴ ,
∴分式的值变小了;
【答案】 或
【解析】
【分析】
因y元买了x只铅笔,则每只铅笔 元;降价20%后,每只铅笔的价格是 元,依题意得 (x+10)=4,变形可得x= ,即可得y<5;再由x、y均是正整数,确定y只能取3或4,由此求得x的值,即可得小明两次所买铅笔的数量.
【详解】
因y元买了x只铅笔,则每只铅笔 元;降价20%后,每只铅笔的价格是(1-20%) 元,即 元,依题意得: (x+10)=4,
解得:m=3,4,0.
【点睛】
本题主要考查分式方程解是正数和解是整数问题,解决本题的关键是要熟练掌握解分式方程的解法.
14.某商场计划销售A,B两种型号的商品,经调查,用1500元 采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.
(1)求一件A,B型商品的进价分别为多少元?
【答案】2
【解析】
【分析】
先解不等式组确定a的取值范围,再解分式方程,解为正数从而确定a的取值范围,即可得所有满足条件的整数a的和.
【详解】
原不等式组的解集为 x≤3,有4个整数解,所以﹣1 ,解得:-4<a≤2.
原分式方程的解为y=a+3,因为原分式方程的解为正数,所以y>0,即a+3>0,解得:a>﹣3.
∴y(x+10)=5x
∴x= ,
∴5-y>0,即y<5;
又∵x、y均是正整数,
∴y只能取3和4;
①当y=3时,x=15,小明两次共买了铅笔:15+15+10=40(支)
②当y=4时,x=40,小明两次共买了铅笔:40+(40+10)=90(支)
故答案为40或90.
【点睛】
本题考查了方程的应用,解决根据题意列出方程 (x+10)=4确定x、y的值是解决问题的关键.
【答案】2017
【解析】
试题解析:根据题意可知:a2﹣2018a+1=0,
∴a2+1=2018a,
a2﹣2017a=a﹣1,
∴原式=a2﹣2017a+
=a﹣1+
= ﹣1
=2018﹣1
=2017
故答案为2017
10.小明到商场购买某个牌子的铅笔 支,用了 元( 为整数).后来他又去商场时,发现这种牌子的铅笔降价 ,于是他比上一次多买了 支铅笔,用了 元钱,那么小明两次共买了铅笔________支.
(2)因为客商购进A型商品m件,销售利润为w元.
m≤100﹣m,m≤50,
由题意:w=m(200﹣150)+(100﹣m)(180﹣120)=﹣10m+6000,
∵﹣10 <0,
∴m=50时,w有最小值=5500(元)
点睛:此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.
∵y=a+3≠1,∴a≠-2,所以-3<a≤2且a≠-2.
所以满足条件所有整数a的值为-1,0,1,2.
和为-1+0+1+2=2.
故答案为:2.
【点睛】
本题考查了不等式组的整数解、分式方程,解答本题的关键是根据不等式组的整数解确定a的取值范围.
4.若方程 的解不大于13,则 的取值范围是__________.
(3)∵A是整数,a是整数,
则 ,
∴ 、 、 ,
∵ ,
∴ 的值可能为:3、0、4、6、-2;
∴ ;
∴符合条件的所有a值的和为11.
【点睛】
本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
12.一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如: , , ,
15.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚: .
(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;
(2)小华的妈妈说:“我看到标准答案是:方程的增根是 ,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?
【答案】(1) ;(2)原分式方程中“?”代表的数是-1.
【解析】
【解析】
试题分析:分式方程去分母转化为整式方程,表示出x,根据x为正数列出关于m的不等式,求出不等式的解集即可确定出m的范围.
试题解析:分式方程去分母得:2x+m=3(x-2),
解得:x=m+6,
根据题意得:x=m+6>0,且m+6≠2,
解得:m>-6,且m≠-4.
考点:分式方程的解.
9.已知a是方程x2﹣2018x+1=0的一个根a,则a2﹣2017a+ 的值为_____.
【解析】
【分析】
(1)先根据解分式方程的步骤和解法解分式方程可得x=a﹣2,根据分式方程有解和解是正数可得:x>0且x≠1,即a﹣2>0,a﹣2≠1,即可求解,
(2)先根据解分式方程的步骤和解法解分式方程可得(m﹣2)x=﹣2,当m≠2时,
解得:x=﹣ ,根据分式方程有整数解可得:m﹣2=±1,m﹣2=±2,继而求m的值.
∵分式方程有增根,∴x-2=0,解得x=2.
∴2-2-m=2(2-2),解得m=0.
6.若关于x的分式方程 无解,则实数m=_______.
【答案】3或7.
【解析】
解:方程去分母得:7+3(x﹣1)=mx,整理得:(m﹣3)x=4.①当整式方程无解时,m﹣3=0,m=3;
②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7.
综上所述:∴m的值为3或7.
故答案为3或7.
7.若关于x的方程 无解,则m=.
【答案】试题分析:∵关于x的方程 无解,∴x=5
将分式方程 去分母得: ,
将x=5代入得:m=﹣8
【详解】
请在此输入详解!
8.已知关于 的方程 的解是正数,则 的取值范围是__________.
【答案】m>-6且m -4
故选D
【点睛】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键.
2.已知: 满足方程 ,则代数式 的值是_____.
【答案】
【解析】
因为 ,则 .
故答案: .
3.若关于x的不等式组 有4个整数解,且关于y的分式方程 =1的解为正数,则满足条件所有整数a的值之和为_____
② + ,
=a2+ +b2+ ,
=(a+b)2-2ab+ ,
=m2+8+ ,
= + ,
∵ m2≥0,
∴ m2+ ≥ ,
∴ + 的最小值是 .
点睛:本题关键在于理解对称式的定义,并利用分式的性质将分式变形求解.
13.阅读后解决问题:
在“15.3分式方程”一课的学习中,老师提出这样的一个问题:如果关于x的分式方程 的解为正数,那么a的取值范围是什么?
八年级数学上册 分式填空选择单元复习练习(Word版 含答案)
一、八年级数学分式填空题(难)
1.如果关于x的分式方程 -3= 有负分数解,且关于x的不等式组 的解集为x<-2,那么符合条件的所有整数a的积是_________.
【答案】9
【解析】
,
由①得:x≤2a+4,
由②得:x<-2,
由不等式组的解集为x<-2,得到2a+4≥-2,即a≥-3,