巴彦县高中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巴彦县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 把函数y=sin (2x ﹣)的图象向右平移
个单位得到的函数解析式为( )
A .y=sin (2x ﹣
) B .y=sin (2x+
)
C .y=cos2x
D .y=﹣sin2x
2. 在ABC ∆中,222
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,
]6π
B .[,)6ππ C. (0,]3π D .[,)3
π
π 3. 已知函数f (x )的图象如图,则它的一个可能的解析式为( )
A .y=2
B .y=log 3(x+1)
C .y=4﹣
D .y=
4. 设函数f (x )在x 0处可导,则等于( )
A .f ′(x 0)
B .f ′(﹣x 0)
C .﹣f ′(x 0)
D .﹣f (﹣x 0)
5. 设集合M={x|x 2﹣2x ﹣3<0},N={x|log 2x <0},则M ∩N 等于( ) A .(﹣1,0) B .(﹣1,1) C .(0,1) D .(1,3)
6. 如图,正六边形ABCDEF 中,AB=2,则(﹣)•(+
)=( )
A .﹣6
B .﹣2
C .2
D .6
7. 已知曲线2
:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O
P Q ∆的面积等于( )
A .
B .
C D
8. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成
角的正切值为( )
A .
B .
C .
D .
9. 已知函数()e sin x
f x x =,其中x ∈R ,e 2.71828
=为自然对数的底数.当[0,
]2
x π
∈时,
函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )
A .(,1)-∞
B .(,1]-∞
C .2
(,e )π
-∞ D .2
(,e ]π-∞
【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用. 10.设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )
A.{}|12x x <≤
B.{}|21x x -≤≤
C. {}2,1,1,2--
D. {}1,2
【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.
11.已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:
上任意一点,则PAB ∆的面积为( )
A . B.
C. D. 12.“x ≠0”是“x >0”是的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
二、填空题
13.已知含有三个实数的集合既可表示成}1,,
{a
b
a ,又可表示成}0,,{2
b a a +,则 =+20042003b a .
14.设函数 则
______;若
,
,则
的大小
关系是______.
15.若等比数列{a n }的前n 项和为S n ,且,则= .
16.若不等式组表示的平面区域是一个锐角三角形,则k 的取值范围是 .
17.如图是函数y=f(x)的导函数y=f′(x)的图象,对此图象,有如下结论:
①在区间(﹣2,1)内f(x)是增函数;
②在区间(1,3)内f(x)是减函数;
③在x=2时,f(x)取得极大值;
④在x=3时,f(x)取得极小值.
其中正确的是.
18.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全
校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取
100人,则应在高三年级中抽取的人数等于.
三、解答题
19.已知f()=﹣x﹣1.
(1)求f(x);
(2)求f(x)在区间[2,6]上的最大值和最小值.
20.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.
21.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为
ρ(sinθ+cosθ)=1,曲线C2的参数方程为(θ为参数).
(Ⅰ)求曲线C1的直角坐标方程与曲线C2的普通方程;
(Ⅱ)试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.
22.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.
(Ⅰ)求圆C的方程;
(Ⅱ)若,求实数k的值;
(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.
23.已知,且.
(1)求sinα,cosα的值;
(2)若,求sinβ的值.
24.如图,在Rt△ABC中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE,CE为边向Rt△BEC外作正△EBA 和正△CED.
(Ⅰ)求线段AD的长;
(Ⅱ)比较∠ADC和∠ABC的大小.
巴彦县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:把函数y=sin(2x﹣)的图象向右平移个单位,
所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.
故选D.
【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x加与减,上下平移,y的另一侧加与减.
2.【答案】C
【解析】
考点:三角形中正余弦定理的运用.
3.【答案】C
【解析】解:由图可得,y=4为函数图象的渐近线,
函数y=2,y=log3(x+1),y=的值域均含4,
即y=4不是它们的渐近线,
函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),
故y=4为函数图象的渐近线,
故选:C
【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.
4.【答案】C
【解析】解:=﹣=﹣f′(x0),
故选C .
5. 【答案】C
【解析】解:∵集合M={x|x 2
﹣2x ﹣3<0}={x|﹣1<x <3}, N={x|log 2x <0}={x|0<x <1}, ∴M ∩N={x|0<x <1}=(0,1). 故选:C .
【点评】本题考查集合的交集及其运算,是基础题,解题时要注意一元二次不等式和对数函数等知识点的合理运用.
6. 【答案】D
【解析】解:根据正六边形的边的关系及内角的大小便得:
=
=
=2+4﹣
2+2=6. 故选:D .
【点评】考查正六边形的内角大小,以及对边的关系,相等向量,以及数量积的运算公式.
7. 【答案】C 【解析】
∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得2
18
m =,
∴12y y -=
=.
∴12122
S OF y y =
-=
. (由1212420y y y y =-⎧⎨+=⎩
,得12y y ⎧=⎪⎨=⎪⎩
12y y ⎧=-⎪⎨=⎪⎩
考点:抛物线的性质. 8. 【答案】D
【解析】
解:双曲线
(a >0,b >0)的渐近线方程为y=
±x
联立方程组,解得A
(
,),B
(
,﹣),
设直线
x=与x 轴交于点D ∵F 为双曲线的右焦点,∴F (C ,0)
∵△ABF 为钝角三角形,且AF=BF ,∴∠AFB >90°,∴∠AFD >45°,即DF <DA
∴c
﹣
<
,b <a ,c 2﹣a 2<a 2∴c 2<2a 2,e 2
<2,e
<
又∵e >1
∴离心率的取值范围是1<e
<
故选D
【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a ,c 的齐次式,再解不等式.
9. 【答案】B
【解析】由题意设()()e sin x
g x f x kx x kx =-=-,且()0g x ≥在[0,]2
x π∈时恒成立,而
'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e c o s 0x
h x x =≥,所以()h x 在[0,]2
π上递
增,所以21()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2
π
上递增,()(0)0g x g ≥=,符合题意;当2
e k π
≥时,'()0g x ≤,()g x 在[0,]2
π
上递减,()(0)0g x g ≤=,与题意不合;当21e k π
<<时,()g x '为一个递增
函数,而'(0)10g k =-<,2'()e 02
g k π
π
=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,
当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上
所述:k 的取值范围为(,1]-∞,故选B .
10.【答案】D
【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2A B =,故选D.
11.【答案】 C
【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.
圆心C 到直线m 的距离1d =,||AB ==m n 、之间的距离为3d '=,∴PAB ∆
的面积为
1
||2
AB d '⋅=,选C . 12.【答案】B
【解析】解:当x=﹣1时,满足x ≠0,但x >0不成立. 当x >0时,一定有x ≠0成立, ∴“x ≠0”是“x >0”是的必要不充分条件. 故选:B .
二、填空题
13.【答案】-1 【解析】
试题分析:由于{}2,,1,,0b a a a b a ⎧⎫
=+⎨⎬⎩⎭
,所以只能0b =,1a =-,所以()20032003200411a b +=-=-。
考点:集合相等。
14.【答案】,
【解析】【知识点】函数图象分段函数,抽象函数与复合函数 【试题解析】
,因为
,所以
又若,结合图像知:
所以:。
故答案为:,
15.【答案】
.
【解析】解:∵等比数列{a n}的前n项和为S n,且,
∴S4=5S2,又S2,S4﹣S2,S6﹣S4成等比数列,
∴(S4﹣S2)2=S2(S6﹣S4),
∴(5S2﹣S2)2=S2(S6﹣5S2),
解得S6=21S2,
∴==.
故答案为:.
【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题.16.【答案】(﹣1,0).
【解析】解:作出不等式组表示的平面区域,
得到如图的△ABC及其内部,其中A(0,5),B(2,7),C(2,2k+5)
△ABC的形状随着直线AC:y=kx+5斜率的变化而变化,
将直线AC绕A点旋转,可得
当C点与C1(2,5)重合或与C2(2,3)重合时,△ABC是直角三角形,
当点C位于B、C1之间,或在C1C2的延长线上时,△ABC是钝角三角形,
当点C位于C1、C2之间时,△ABC是锐角三角形,
而点C在其它的位置不能构成三角形
综上所述,可得3<2k+5<5,解之得﹣1<k<0
即k的取值范围是(﹣1,0)
故答案为:(﹣1,0)
【点评】本题给出二元一次不等式组,在表示的图形为锐角三角形的情况下,求参数k的取值范围,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.
17.【答案】③.
【解析】解:由y=f'(x)的图象可知,
x∈(﹣3,﹣),f'(x)<0,函数为减函数;
所以,①在区间(﹣2,1)内f(x)是增函数;不正确;
②在区间(1,3)内f(x)是减函数;不正确;
x=2时,y=f'(x)=0,且在x=2的两侧导数值先正后负,
③在x=2时,f(x)取得极大值;
而,x=3附近,导函数值为正,
所以,④在x=3时,f(x)取得极小值.不正确.
故答案为③.
【点评】本题考察了函数的单调性,导数的应用,是一道基础题.
18.【答案】25
【解析】
考点:分层抽样方法.
三、解答题
19.【答案】
【解析】解:(1)令t=,则x=,
∴f(t)=,
∴f(x)=(x≠1)…
(2)任取x1,x2∈[2,6],且x1<x2,
f(x1)﹣f(x2)=﹣=,
∵2≤x1<x2≤6,∴(x1﹣1)(x2﹣1)>0,2(x2﹣x1)>0,
∴f(x1)﹣f(x2)>0,
∴f(x)在[2,6]上单调递减,…
∴当x=2时,f(x)max=2,当x=6时,f(x)min=…
20.【答案】
【解析】解:依题意,由M=得|M|=1,故M﹣1=
从而由=得═=
故A(2,﹣3)为所求.
【点评】此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,考查学生的计算能力,比较基础.21.【答案】
【解析】解:(Ⅰ)由曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,可得它的直角坐标方程为x+y=1,
根据曲线C2的参数方程为(θ为参数),可得它的普通方程为+y2=1.
(Ⅱ)把曲线C1与C2是联立方程组,化简可得5x2﹣8x=0,显然△=64>0,
故曲线C1与C2是相交于两个点.
解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).
【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.
22.【答案】
【解析】
【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;
(II)方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l:kx﹣y+1=0的距离,即可求得实数k的值;
方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1•x2+y1•y2=,即可求得k的值;
(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,
,再利用基本不等式,可求四边形PMQN面积的最大值;
方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设,
则,代入消元得(1+k2)x2+2kx﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN
面积的最大值.
【解答】解:(I)设圆心C(a,a),半径为r.
因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,
所以
解得a=0,r=2,…(2分)
所以圆C的方程是x2+y2=4.…(4分)
(II)方法一:因为,…(6分)
所以,∠POQ=120°,…(7分)
所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)
又,所以k=0.…(9分)
方法二:设P(x1,y1),Q(x2,y2),
因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)
由题意得:…(7分)
因为=x1•x2+y1•y2=﹣2,
又,
所以x1•x2+y1•y2=,…(8分)
化简得:﹣5k2﹣3+3(k2+1)=0,
所以k2=0,即k=0.…(9分)
(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)
又根据垂径定理和勾股定理得到,,…(11分)
而,即
…(13分)
当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)
方法二:设四边形PMQN的面积为S.
当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)
当直线l的斜率k≠0时,设
则,代入消元得(1+k2)x2+2kx﹣3=0
所以
同理得到.…(11分)
=…(12分)
因为,
所以,…(13分)
当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)
23.【答案】
【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos2=1+sinα=,
∴sinα=,
∵α∈(,π),
∴cosα=﹣=﹣;
(2)∵α∈(,π),β∈(0,),
∴α+β∈(,),
∵sin(α+β)=﹣<0,
∴α+β∈(π,),
∴cos(α+β)=﹣=﹣,
则sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα=﹣×(﹣)﹣(﹣)×=+=.
【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.
24.【答案】
【解析】解:(Ⅰ)在Rt△BEC中,CE=1,∠EBC=30°,∴BE=,
在△ADE中,AE=BE=,DE=CE=1,∠AED=150°,
由余弦定理可得AD==;
(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,
∴问题转化为比较∠ADE与∠EBC的大小.
在△ADE中,由正弦定理可得,
∴sin∠ADE=<=sin30°,
∴∠ADE<30°
∴∠ADC<∠ABC.
【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键.。