汽车自动变速器构造及工作原理原理
自动变速器的构造和工作原理

缺点
由于液力偶合器不能改变扭矩的大小,它虽能使汽车平 稳起步、加速,减少传动系的冲击载荷,但结构复杂、成 本高、效率低,而且不能完全切断动力,必须装有离合器 才能平顺换挡,所以很少采用。
二、液力变矩器
1.液力变矩器的结构 变矩器由泵轮、涡轮和导轮三个基本元件以及外壳组成。
各工作轮用铝合金精密铸造,或用钢板冲压焊接而成。泵
液力变矩器、齿轮变速器、油泵、控制系统、手控连杆 机构、冷却系统、壳体等几个部分。
一、液力变矩器
液力变矩器位于自动变速器的最前端,安装在发动机的飞 轮上。它利用液力传动的原理,将发动机的动力传给自动 变速器的输入轴。
它具有以下作用: ①起到自动离合器的作用,传递或不传递发动机扭矩至变 速器。
②减速增扭。
能,通过导轮加在泵轮上从而增大扭矩。
泵轮与涡轮的转速差越大,扭矩增大也越快。
液力变矩器之所以能起变矩作用,就是由于结构上比液 力偶合器多了一个导轮。在自动变速器油ATF循环流动的 过程中,固定不动的导轮给涡轮一个反作用力矩,使涡轮 输出的扭矩不同于泵轮输入扭矩。
3.综合式液力变矩器
图2-6所示为一种典型 轿车用综合式液力变矩器, 它与液力变矩器的区别在 于导轮是用单向离合器与 固定的套管相连。
自动变速器的构造和工作原理
自动变速器具有
自动变速、连续变扭矩、换挡时不中断动力传递;操作轻 便、换挡平稳、过载保护;
可以减轻驾驶员的劳动强度,提高汽车行驶的机动性、 安全性和越野性。
因此,现在越来越多的轿车甚至货车都装有自动变速器。
2.1 自动变速器的总体构造
不同车型的自动变速器在结构上往往有很大的差异。但 总体来说,主要包括:
在两轮中的液压油,除了随两轮沿其轴线转动外,还在 循环圆内沿叶片作循环运动,如图2-4a所示,这两种运 动的合成形成了一条首尾相接的环形螺旋线,如图2- 4b所示。
汽车自动变速器构造及工作原理原理演示文稿

汽车自动变速器构造及工作原理原理演示文稿汽车自动变速器是现代汽车驱动系统中的重要部件之一,它的主要作用是根据发动机转速和车辆行驶速度,合理地选择不同的齿比,以提供最佳的动力输出和燃油经济性。
本文将详细介绍汽车自动变速器的构造和工作原理,并通过演示来帮助读者更好地理解。
一、自动变速器的构造:1.液力变矩器:液力变矩器是汽车自动变速器的关键部件之一,它通过液压传动方式实现动力输出。
液力变矩器由泵轮、涡轮和导向转子三部分组成。
泵轮由发动机带动,涡轮与变速器输入轴相连,导向转子与输出轴相连。
当发动机运转时,泵轮驱动液体在涡轮中形成一个旋转的涡流,涡轮将这个旋转涡流转化为动力输出,从而驱动汽车行驶。
2.行星齿轮组:行星齿轮组是实现不同齿比选择的核心机构。
它由太阳轮、行星轮和内齿轮三部分组成。
通过改变太阳轮、行星轮和内齿轮之间的连接方式,可以实现不同的齿比。
在实际运行中,变速器会根据车速和行驶状态,自动切换不同的齿比,以实现最佳的动力输出。
3.液压操纵系统:液压操纵系统通过控制油压来实现行星齿轮组的切换。
一般来说,液压操纵系统包括离合器、制动器、却流器等部件。
离合器用于连接或断开相应的行星齿轮组,制动器用于制动相应的行星齿轮组,却流器用于控制液压系统的压力。
二、自动变速器的工作原理:1.挡位选择过程:当驾驶员选择驾驶模式(如P(停车)、R(倒车)、N(空挡)、D (驾驶)等),控制器将信号传递给液压操纵系统,液压操纵系统根据信号切换对应的行星齿轮组连接方式,确定所需齿比。
2.液力变矩器过程:当变速杆位于驾驶档位时,变速器输入轴上的齿轮开始转动,驱动液力变矩器的泵轮。
液压系统通过控制阀门和泵的转速,调节液力变矩器中的工作压力和转矩。
液力变矩器将发动机的转矩传递给变速器输出轴,驱动车辆前进。
当驾驶员加速或减速时,液压操纵系统会根据车速和发动机转速的变化,通过控制液力变矩器的油流量和压力来实现变速器齿比的自动调整。
自动变速器的结构和工作原理

自动变速器的结构和工作原理一、结构自动变速器是一种用于汽车的传动装置,主要作用是根据车辆的速度和负载条件,自动调整发动机输出的扭矩和转速,以提供最佳的动力传递和燃油经济性。
它由多个部件组成,包括液力变矩器、行星齿轮组、离合器、制动器、齿轮轴和控制单元等。
1. 液力变矩器:液力变矩器是自动变速器的核心部件之一,它通过液体的动力传递来实现发动机与变速器之间的连接。
液力变矩器由泵轮、涡轮和导向叶片组成,当发动机转速增加时,泵轮产生液压力,驱动涡轮转动,从而传递动力。
2. 行星齿轮组:行星齿轮组是自动变速器的主要传动装置,由太阳轮、行星轮和环形轮组成。
通过不同组合的行星轮与太阳轮、环形轮的连接,可以实现不同的传动比,从而实现不同的挡位。
3. 离合器:离合器用于连接或断开发动机与变速器之间的动力传递。
自动变速器通常配备多个离合器,通过控制离合器的开合状态,可以实现不同挡位的切换。
4. 制动器:制动器用于停止或限制齿轮轴的旋转,从而实现换挡过程中的顺畅切换。
制动器通常由摩擦片和压力装置组成,通过控制制动器的压力来实现制动效果。
5. 齿轮轴:齿轮轴是连接各个齿轮的轴,它们通过齿轮的啮合来实现动力传递。
6. 控制单元:控制单元是自动变速器的大脑,它通过传感器监测车辆的速度、负载和驾驶者的需求,然后根据预设的程序来控制变速器的工作状态,实现自动换挡。
二、工作原理自动变速器的工作原理可以简单概括为以下几个步骤:1. 液力传递:当发动机启动后,液力变矩器开始工作,通过液体的动力传递将发动机的转动力传递给变速器,实现动力输出。
2. 换挡控制:控制单元通过传感器监测车辆的速度和负载情况,根据预设的程序来判断何时需要进行换挡操作。
当需要换挡时,控制单元会发送信号给相应的离合器和制动器,实现齿轮的切换。
3. 离合器操作:当换挡信号发出后,控制单元会控制相应的离合器断开或连接,断开离合器时,发动机的动力不再传递给变速器,连接离合器时,发动机的动力重新传递给变速器。
自动变速器的原理

自动变速器的原理引言自动变速器是汽车传动系统中的重要组成部分,它能够根据车辆的行驶状态和驾驶人的需求,自动选择合适的挡位,以实现车辆动力的高效传递和驾驶的舒适性。
本文将从原理的角度,详细介绍自动变速器的工作原理。
一、液力变矩器自动变速器的核心部件是液力变矩器,它由泵轮、涡轮和导叶轮组成。
当发动机工作时,泵轮会将液体推向涡轮,涡轮的转动会带动传动轴,实现动力传递。
涡轮转动的快慢取决于涡轮和泵轮之间的液体流动速度。
而导叶轮的作用是调节液体流动的方向和速度,以控制涡轮的转速。
二、齿轮传动系统自动变速器中的齿轮传动系统由多个齿轮组成,每个齿轮都代表着一个挡位。
通过齿轮的组合和配对,可以实现不同挡位的切换。
当液力变矩器传递的动力到达齿轮传动系统时,齿轮会根据当前挡位的需要,将动力传递给车辆的驱动轮。
三、离合器和制动器为了实现挡位的切换,自动变速器中还配备了离合器和制动器。
离合器可以将发动机的动力与液力变矩器分离,以实现挡位的切换。
制动器则用于锁定或释放特定的齿轮,以实现挡位的固定和切换。
四、控制系统自动变速器的工作还离不开一个精确的控制系统。
控制系统通过感应车辆的行驶状态和驾驶人的操作,来决定当前需要的挡位,并通过电磁阀等装置来控制离合器和制动器的动作。
控制系统还可以根据车辆的行驶情况,自动调整挡位的切换时机和速度,以提供最佳的驾驶体验。
五、工作原理当驾驶人将挡位选择杆置于“D”挡位时,控制系统会根据车速、转速等参数,自动选择合适的挡位。
液力变矩器将发动机的动力传递给齿轮传动系统,齿轮会根据当前挡位的需要,将动力传递给驱动轮。
同时,控制系统还会根据行驶状态的变化,自动调整挡位的切换时机和速度,以保证驾驶的平稳和燃油的高效利用。
六、优点和局限性自动变速器相比于手动变速器,具有以下优点:1. 驾驶舒适性好:自动变速器的挡位切换由控制系统自动完成,驾驶人无需踩离合器和操作挡位选择杆,大大减轻了驾驶的负担。
2. 燃油经济性高:自动变速器可以根据车辆的行驶状态和驾驶人的需求,自动选择合适的挡位,以提供最佳的动力输出,从而降低燃油消耗。
汽修自动变速器实训报告

一、实训目的通过本次实训,使学生掌握汽车自动变速器的基本结构、工作原理、故障诊断与维修方法,提高学生的动手实践能力和实际操作技能。
二、实训内容1. 自动变速器概述自动变速器是一种能够自动完成变速、换挡、制动等操作的汽车传动系统。
与手动变速器相比,自动变速器具有操作简便、舒适性好、驾驶平稳等优点。
2. 自动变速器结构及工作原理(1)自动变速器结构自动变速器主要由以下几部分组成:1)液力变矩器:将发动机输出的动力传递给变速器,并实现动力传递过程中的能量转换。
2)行星齿轮机构:实现变速、换挡等功能。
3)液压控制系统:根据驾驶员的操作和车速等信号,控制液力变矩器、离合器、制动器等部件的动作。
4)电子控制系统:接收驾驶员的操作和车速等信号,控制液压控制系统的工作。
(2)自动变速器工作原理1)液力变矩器:发动机输出的动力通过液力变矩器传递到变速器,液力变矩器中的涡轮与泵轮相对转动,实现动力传递和能量转换。
2)行星齿轮机构:根据液力变矩器输出的转速和扭矩,通过行星齿轮机构的传动比变化,实现变速和换挡。
3)液压控制系统:根据电子控制系统的指令,控制离合器、制动器等部件的动作,实现变速、换挡、制动等功能。
4)电子控制系统:接收驾驶员的操作和车速等信号,根据预设的程序控制液压控制系统的工作,实现自动变速。
3. 自动变速器故障诊断与维修(1)故障诊断1)观察故障现象:通过观察汽车行驶过程中的异常现象,初步判断故障原因。
2)检查仪表盘警告灯:根据仪表盘警告灯显示的故障代码,初步判断故障原因。
3)使用诊断仪器:使用OBD诊断仪器读取故障码,进一步确定故障原因。
(2)维修方法1)更换损坏的部件:根据故障诊断结果,更换损坏的部件,如离合器、制动器、液力变矩器等。
2)调整参数:根据维修需求,调整自动变速器的参数,如换挡逻辑、油压等。
3)清洗系统:对自动变速器进行清洗,清除油路中的杂质和沉积物。
4)更换油液:更换自动变速器油液,保证系统正常工作。
自动变速器的构造和工作原理

自动变速器的构造和工作原理自动变速器是一种用来在车辆驱动过程中自动调节发动机转速和车辆速度之间的传动比的装置。
它采用了一系列齿轮和离合器的组合,在不需要驾驶员的干预下,根据车辆当前的工况和驾驶需求,自动地选择最佳的传动比,以实现高效的转速控制和驾驶舒适性。
下面我们来详细介绍一下自动变速器的构造和工作原理。
一、自动变速器构造:1.液力变矩器:液力变矩器是自动变速器最重要的组成部分之一、它由泵轮、涡轮和导流器组成。
其中泵轮与发动机输出轴相连,涡轮与变速器输入主动轴相连。
液力变矩器通过液压传动,在起步和低速行驶时提供高起动力和平滑的加速。
2.行星齿轮装置:行星齿轮装置由太阳轮、行星轮和内齿圈组成。
太阳轮与液力变矩器的输出轴相连,行星轮既可与太阳轮相连,又可与内齿圈相连。
通过改变行星轮与太阳轮或内齿圈的组合方式,可以实现不同的齿轮传动比,从而实现不同的车速。
3.离合器和制动器:离合器和制动器用于连接或断开不同齿轮和轴的传动。
它们通过液力或摩擦力来实现对发动机输出的控制。
4.液压泵和控制单元:液压泵提供所需的压力,控制单元通过对泵、制动器和离合器施加不同的压力,实现对传动装置的控制。
二、自动变速器工作原理:1.起步阶段:在起步阶段,液力变矩器被用来提供高起动力。
当驾驶员踩下油门,发动机转速升高,泵轮开始转动,液力变矩器通过泵轮的液力传递到涡轮,使其开始转动。
涡轮的转动驱动变速器输入主动轴,将动力传递到变速器。
2.行驶阶段:在行驶阶段,液力变矩器还起到了减震和换挡过渡的作用。
液力传递机构可根据车速和油门踏板的位置自动选择传递比。
在高速行驶时,液力变矩器的效率较低,为了提高效率,离合器逐渐接合,变速器开始进入直接传动方式。
3.换档阶段:当驾驶条件改变时,自动变速器会自动切换不同齿轮组合,以适应不同的驾驶需求。
当需要加速时,变速器会将离合器逐渐断开,并选择更高的齿轮比。
当需要减速或停车时,变速器会通过制动器来减速,直到停止。
自动变速器电控系统的组成及工作原理

自动变速器电控系统的组成及工作原理自动变速器电控系统作为现代汽车的重要部件,其组成和工作原理对于实现汽车平稳换挡和提高燃油效率起着至关重要的作用。
本文将从深度和广度两个方面对自动变速器电控系统进行全面评估,通过逐步探讨其组成和工作原理,帮助读者更深入地理解这一主题。
一、自动变速器电控系统的组成1. 传感器部分在自动变速器电控系统中,传感器是至关重要的组成部分。
其作用是实时感知车辆行驶状态、驾驶员需求、发动机转速等参数,并将这些信息传递给控制模块,以便进行相应的调整。
常见的传感器包括车速传感器、油压传感器、温度传感器等。
2. 控制模块部分控制模块是自动变速器电控系统的核心部分,主要由计算机芯片、程序代码和电路板组成。
其功能是接收传感器传来的信号,根据预设的程序代码进行计算和分析,并控制液压系统以实现换挡等功能。
控制模块的稳定性和智能性直接影响到自动变速器的性能。
3. 液压系统部分在自动变速器中,液压系统起着传递动力、实现换挡和提供润滑的重要作用。
其组成包括液压泵、油管路、离合器和制动器等。
液压系统通过控制液压油的流动和压力,实现了换挡的平稳进行,保障了驾驶的舒适性和车辆的性能。
二、自动变速器电控系统的工作原理1. 车速感知与换挡逻辑自动变速器电控系统通过车速传感器感知车辆当前的速度,根据预设的换挡逻辑和程序代码进行计算,并决定何时进行换挡。
其中,根据加速度传感器和转速传感器的信号,控制模块可以判断出车辆是否需要进行加速、减速或保持状态,实现相应的换挡逻辑。
2. 油压控制与换挡执行液压系统在自动变速器电控系统中起着至关重要的作用。
其工作原理是通过控制液压泵和调节阀的开关,实现驱动离合器和制动器的组合进行换挡。
油压控制的精准度和稳定性关系到换挡的平顺性和可靠性。
3. 驾驶模式与动力输出在自动变速器电控系统中,驾驶员的驾驶模式选择也会对电控系统产生影响。
在运动模式下,控制模块会根据驾驶员的需求加大换挡的速度和频率,以提供更强的动力输出;而在节能模式下,会倾向于提前换挡和降低发动机转速,以达到节能的效果。
简述自动变速器的组成

简述自动变速器的组成自动变速器是现代汽车中的一项重要技术,它能够自动调节发动机转速和车轮转速之间的比率,以适应车辆的不同工况。
自动变速器的组成包括油泵、液压控制系统、离合器、齿轮箱、离合器和传动轴等部件。
本文将从这些部件的功能和原理入手,简述自动变速器的组成。
一、油泵油泵是自动变速器中的一个重要组成部分,它的主要作用是将液压油从油箱中吸出,并将其压送到液压控制系统中。
液压油的压力和流量是自动变速器正常工作的基础,因此油泵的质量和性能对自动变速器的工作效果有着重要的影响。
二、液压控制系统液压控制系统是自动变速器中的核心部分,它的主要作用是控制离合器和齿轮箱的工作。
液压控制系统由控制阀、电磁阀、油管、油路等部件组成。
当驾驶员踩下油门时,控制阀会接收到信号,从而控制液压油的流向和压力,以实现离合器和齿轮箱的换挡。
三、离合器离合器是自动变速器中的一个重要部件,它的主要作用是将发动机的动力传递到齿轮箱中。
离合器由离合器盘、离合器压盘、离合器释放器等部件组成。
当离合器踏板被踩下时,离合器压盘会与离合器盘分离,从而使发动机的动力不再传递到齿轮箱中,车辆停止运动。
当离合器踏板松开时,离合器压盘会压缩离合器盘,从而使发动机的动力重新传递到齿轮箱中,车辆继续行驶。
四、齿轮箱齿轮箱是自动变速器中的另一个重要部件,它的主要作用是将发动机的动力转化为车轮的动力。
齿轮箱由齿轮、轴承、轴等部件组成。
齿轮箱的工作原理是通过齿轮的不同组合,实现车辆的不同速度和扭矩输出。
当液压控制系统控制齿轮箱换挡时,齿轮箱会自动调整齿轮的组合,以适应不同的行驶工况。
五、传动轴传动轴是自动变速器中的另一个重要部件,它的主要作用是将齿轮箱的动力传递到车轮上。
传动轴由万向节、轴承、轴等部件组成。
传动轴的工作原理是通过万向节的旋转,实现齿轮箱和车轮之间的动力传递。
传动轴的质量和性能对车辆的行驶效果和稳定性有着重要的影响。
以上就是自动变速器的组成部分,每个部分都有着不同的作用和原理。
汽车底盘--自动变速器结构原理

二、自动变速器的分类
1.按汽车驱动方式分类 按照汽车驱动方式的不同,可分为后驱动自动变速器和前驱动自动变速器两种。
后驱动自动变速器结构
单元一 汽车传动系
2.按前进挡的数目分类 按前进挡的数目自动变速器可分为2个前进挡、3个前进挡、4个前进挡和5个前进挡等几 种。 3.按齿轮变速器的类型分类 按齿轮变速器的类型分为普通齿轮式和行星齿轮式两类。
单元一 汽车传动系
4.按控制方式分类 按控制方式不同可分为全液压控制式自动变速器和电液控制式自动变速器两种。
全液压控制式自动变速器
单元一 汽车传动系
电液控制式自动变速器
三、自动变速器的结构
1.液力变矩器 液力变矩器安装在发动机的飞轮上,以液压油(自动变速器油)为工作介质,起传递转矩、变矩、变速及离合的作用。
单元一 汽车传动系
带锁止离合器的液力变矩器 1—变矩器壳2—锁止离合器压盘3—涡轮4—泵轮
5—液力变矩器轴套6—输入轴花键套7—导轮
单元一 汽车传动系
液力变矩器的增矩过程
单元一 汽车传动系
液力变矩器的等矩过程
单元一 汽车传动系
液力变矩器的减矩过程
单元一 汽车传动系
2.油泵 油泵是自动变速器中液压系统的动力源,安装在变矩器的后方,由变矩器壳后端的轴套 驱动:
单元一 汽车传动系
自动变速器的组成 1—油泵2—齿轮变速器3—液力变矩器4—自动变速器
壳
单元一 汽车传动系
2.自动变速器的特点 (1)普通变速器所有挡位都必须手动换挡,驾驶员劳动强度加大。 自动变速器除倒挡由手控制外,其他各前进挡都可根据发动机工况和 车速进行自动换挡。 (2)自动变速器由于安装了液力变矩器而取消了离合器踏板,提 高了汽车行驶安全性。同时由于液力变矩器是液体传力,可实现无级 变速,使汽车起步、加速更加平稳,还能避免因负荷过大而造成发动 机熄火。 (3)自动变速器结构复杂,零部件较多,零件比较精密。 (4)普通变速器造价便宜,而自动变速器造价比较昂贵。 (5)电控自动变速器有模式选择、自我诊断、失效保护等功能。
汽车自动变速器构造与原理解析

汽车自动变速器构造与原理解析汽车这玩意儿,真是个神奇的家伙!要是没有了变速器,咱们开车就跟跑步似的,完全没法享受那种风驰电掣的快感。
今天咱们就来聊聊这个自动变速器,它可不是一个简单的机器,而是个复杂的小精灵,默默地在我们开车的时候发挥着重要的作用。
1. 自动变速器的基本构造1.1 变速器的“心脏”首先,自动变速器的心脏,大家肯定猜到了,就是变速箱。
变速箱里有很多齿轮,就像一个个小玩意儿在这里跳舞。
根据车速的不同,变速器会自动选择合适的齿轮,就像你在不同场合换衣服一样,真是让人佩服!这可不是随便换的,而是通过复杂的传感器来感知车辆的状态,决定使用哪个档位。
要是没有这些智能设备,咱们开车的时候就得像开老爷车一样,手动换挡,那真是太麻烦了!1.2 液力变矩器的“魔力”接下来,液力变矩器也是变速器里的一块“重要拼图”。
这个小家伙就像是变速器的魔术师,负责将发动机的动力传递给变速箱。
液力变矩器的工作原理可真不简单,它利用液体的流动来完成动力的传递,就像是把热汤倒进碗里,温温的,滑滑的,舒舒服服地传递到每一个齿轮。
这样一来,不管你是加速还是减速,车子都能平稳地跟上你的节奏,简直就是开车的贴心小助手啊!2. 自动变速器的工作原理2.1 自动换挡的“神秘”说到工作原理,咱们得提到自动换挡。
自动变速器通过一系列的电子控制单元,来感应车速、油门和发动机转速等信息。
你想想,当你踩下油门的时候,车子是瞬间就能加速的,而这个过程就是变速器在背后默默地操控着。
就像你玩游戏一样,操作一瞬间,人物就飞速前进,感觉爽到飞起!2.2 适应不同驾驶需求的“灵活”还有一点特别重要,自动变速器非常聪明,能够根据不同的驾驶需求进行调整。
比如说,你在城市里走走停停,变速器会自动调节换挡频率,让你在低速行驶时更加平稳。
而如果你在高速公路上飞驰,它又能迅速换到高档位,让你尽情享受那种“风在耳边呼啸”的感觉。
总之,它就像是车子的“心理医生”,总能感应到你的需求,给你最舒适的驾驶体验。
汽车自动变速器的工作原理

汽车自动变速器的工作原理汽车自动变速器是现代汽车中的重要部件,它负责根据不同的路况和驾驶需求,自动调整车辆的档位。
下面将详细介绍汽车自动变速器的工作原理,分为以下几个方面。
一、变速器的结构成分1.液力变矩器:液力变矩器是连接发动机和变速器之间的传动组件,它能够通过液体的流动调整动力输出和扭矩转换。
2.行星齿轮组:行星齿轮组是变速器中的核心部分,由行星齿轮和太阳齿轮、行星架等组成,通过不同齿轮的组合实现档位的变换。
3.离合器和制动器:离合器和制动器的作用是固定或释放不同的齿轮组件,使其能够连接或分离传动系统,实现档位的变换。
4.控制单元:控制单元是汽车自动变速器的大脑,通过接收来自传感器的信号,制定相应的控制策略,并控制液力变矩器、离合器和制动器的动作。
二、工作原理1.起步阶段:当驾驶员踩下油门时,发动机产生动力输出,经过液力变矩器传递给行星齿轮组。
同时,控制单元根据传感器的信号,判断当前的工况,并调整液力变矩器的转矩输出。
2.档位变换:根据车速、加速度、油门踏板位置等参数,控制单元决定是否进行档位变换。
当需要加速时,控制单元指令离合器和制动器的动作,实现档位的变换。
此时,某个离合器释放,同时对应的制动器固定,使得特定的齿轮组与发动机输出的动力相连。
3.行驶和换挡过程:在行驶过程中,离合器和制动器会根据控制单元的指令,实时完成相应档位的变换。
液力变矩器通过液体的流动,根据发动机的动力输出和车辆的需求,提供合适的转矩输出。
4.停车和倒车:当车辆需要停车或进行倒车时,控制单元会指令离合器和制动器的动作,使得所有齿轮组断开连接,实现车辆的停止或倒退。
三、优势和不足1.优势:- 自动控制:汽车自动变速器能够根据驾驶员的需求自动调整档位,驾驶更加便捷。
- 平顺换挡:汽车自动变速器的换挡过程平稳,不会产生冲击感,提供了更加舒适的驾驶体验。
- 节省燃料:汽车自动变速器能够根据当前的工况和车速自动调整档位,提供最优化的燃料效率,节省燃料消耗。
自动变速器的齿轮传动机构结构及工作原理

自动变速器的齿轮传动机构结构及工作原理自动变速器是一种用于汽车等机械设备的传动装置,其作用是根据发动机转速和负载条件来实现汽车的平稳加速、高速巡航和节能减速等功能。
它在不同的工况下可以选择不同的传动比,将发动机的转速转化为车轮的转速。
自动变速器主要由液力变矩器、行星齿轮机构和液压控制系统组成。
液力变矩器是自动变速器的首要动力转换装置,它由泵轮、涡轮和导叶组成。
液力变矩器的工作原理是通过泵轮的旋转产生液力负载,使得涡轮随之转动,从而实现动力的传递。
泵轮连接到发动机的输出轴上,当发动机转速增加时,泵轮产生的压力将液体送入导叶,然后进一步将动能传递给涡轮。
涡轮的转动驱动变速器的输入轴,从而带动车辆的运动。
在减速或者停车的情况下,液力变矩器能够提供平稳的启动和变速过程。
行星齿轮机构是自动变速器的核心部件,它由太阳齿轮、行星齿轮、内齿轮和外齿轮等组成。
行星齿轮机构根据输入轴和输出轴的动力需求,通过不同的组合方式实现变速功能。
其中,太阳齿轮固定不动,而行星齿轮则绕太阳齿轮旋转,并与内外齿轮相连。
在不同的组合下,行星齿轮可以实现不同的传动比,从而实现变速功能。
液压控制系统通过控制液力器的油路和压力,来控制行星齿轮机构的多个部分,从而实现不同的传动比的选择。
自动变速器通过电子控制单元(ECU)来实现自动化的变速操作。
ECU根据发动机转速、车速、油门踏板位置和驾驶员的需求等参数,通过传感器实时获取数据,然后根据预设的程序,控制液压系统的压力和油路,从而实现自动变速的功能。
总的来说,自动变速器是一种通过液力变矩器和行星齿轮机构来实现变速功能的传动装置。
液力变矩器通过液体的转动和传递动能来实现发动机转速到车轮转速的传递。
行星齿轮机构通过不同的组合方式来实现不同的传动比,从而实现变速功能。
液压控制系统通过控制液力器和行星齿轮机构的压力和油路,来实现变速的控制。
自动变速器可以根据发动机和车辆的工况要求,实现平稳加速、高速巡航和节能减速等功能,提高驾驶的舒适性和安全性。
自动变速器各部件的结构及工作原理

为提高传动效率,需设锁止离 合器。
目前,锁止机构有锁止离合器、 离心式离合器和行星齿轮机构 锁止三种,下面以锁止离合器为 例介绍其工作原理:
✓转子上有均匀分布的径 向狭槽,矩形叶片安装在 槽内,并可在槽内滑动。
✓定子和转子的两端装有 配油盘,盘上开有吸油窗 口和排油窗口,分别与进 出油口相通。
叶片泵
(4)控制机构
1)压力控制阀(压力阀/压力调节阀)
✓作用:用来控制油路中液流压力的。在液压系统中可 起到安全保护、保持系统压力和调节系统压力等。在 自动变速器中压力控制阀用于对油压进行调节和控制 ,以适应工作的需求。 ✓依靠液体压力和弹簧力平衡的原理来实现压力控制 的,常分为球阀、活塞阀和滑阀三种。
液力偶合器的传动特点
根据作用力与反作用力相等的原理,液压油作用在涡轮上的转矩应等于泵 轮作用在液压油上的转矩,即发动机传给泵轮的转矩与涡轮上输出的转矩相等 ,而不改变转矩的大小。 液力偶合器不能使输出扭矩增大,只起液力联轴离合器的作用。
虽然偶合器只能传递扭矩,但“软连接”给汽车带来多方面的好处。 ①在没有附加其他机械操纵装置的情况下,能够通过它平稳地切断和接通发
√涡轮
涡轮同样也是有许多曲面叶片的圆盘,其叶片的曲线方向不同于泵轮的叶片。 涡轮通过花键与变速器的输入轴相啮合,涡轮的叶片与泵轮的叶片相对而设,相 互间保持非常小的间隙。
√导轮
导轮是有叶片的小圆盘,位于泵轮和涡轮之间。它安装于导轮轴上,通过 单向离合器固定于变速器壳体上。
导轮上的单向离合器可以锁住导轮以防止反向转动。这样,导轮根据工作液 冲击叶片的方向进行旋转或锁住
车辆自动变速器构造原理与设计方法课程设计

车辆自动变速器构造原理与设计方法课程设计一、概述车辆自动变速器是现代汽车中应用广泛的一种车辆动力传动装置,它可以自动根据车速和发动机转速的变化,调整齿轮比例,从而使车辆保持在最佳的发动机工况下运转,提高车辆的动力性和燃油经济性。
本文将介绍车辆自动变速器的构造原理和设计方法。
二、车辆自动变速器构造原理车辆自动变速器通常由液力变速器和行星齿轮变速器两大部分组成。
1. 液力变速器液力变速器是车辆自动变速器的关键部件之一,它将发动机输出的动力通过液压传递到齿轮变速器中,从而实现变速。
液力变速器由液力变矩器和液压传动装置组成。
液力变矩器是液力变速器中的第一级传动装置,它将发动机输出的动力传递到液压传动装置中,同时通过扭矩增加器将输出扭矩增大。
液压传动装置是由双联液压转换器、锁止离合器和反向离合器等组成的,它通过液压机构来控制齿轮变速器进行换挡和调节变速比。
2. 行星齿轮变速器行星齿轮变速器是液力变速器后面的一个传动装置,它的主要作用是根据车辆的行驶状态来调整齿轮比例,从而使发动机始终保持在最佳的工作状态下运转。
行星齿轮变速器由太阳轮、行星轮和内齿轮等组成,其中太阳轮是行星齿轮变速器的驱动轴,行星轮和内齿轮则通过制动器和离合器等控制机构来控制变速比例。
三、车辆自动变速器设计方法车辆自动变速器的设计通常是基于液压传动和机械传动的综合设计,其主要设计内容包括变速器传动比、液力变矩器参数、制动器和离合器等控制机构设计等。
以下是一些具体的设计方法和技术要点。
1. 变速器传动比设计变速器传动比设计是车辆自动变速器设计的核心,它直接影响到车辆的动力性和燃油经济性。
传动比的选择应该综合考虑车辆的行驶条件、发动机的特性和驾驶员的习惯等因素。
具体的传动比设计方法可以采用数学模型和试验方法相结合的方式,先进行理论计算和仿真模拟,然后通过实验验证和调整达到最佳的设计效果。
2. 液力变矩器参数设计液力变矩器是车辆自动变速器中的核心部件之一,其性能参数的优化设计可以有效提高液力变速器的效率和可靠性。
汽车自动变速器构造及工作原理原理

检查活塞回位弹簧自由长度
4、行星排和单向离合器的检查:
(1)目视检查太阳轮、行星轮和齿圈的齿面,如有磨损、斑点或疲 劳削落,应更换整个行星排。
(2)检查行星轮与行星架之间的间隙,如图10-20所示。
(3)检查太阳轮、行星架、齿圈等零件的轴颈或滑动轴承处有无磨 损,如有磨损,应更换新件。
图10-14
齿圈与壳体间隙检查
图10-15
齿轮端面间隙检查
(3)检查齿轮、齿圈齿顶间隙: 如图10-16所示,用塞尺测量齿轮、齿圈与月牙板之间的间隙。 (4)目视法检查磨损状况: 检查油泵齿轮、齿轮圈、油泵壳体端面有无磨损痕迹。如有,应 更换新件。
图10-16
齿轮、齿面齿顶间隙检查
3、超速挡离合器和超速挡制动器的检修:
表10-2
行星齿轮机构8种运动情况分析
2、换挡执行机构:
(1)离合器:离 合器的组成及工 作原理(如图105)。
图10-5
离合器分解图
3、制动器:
制动器的作用是将行星齿轮机构中某一组件与变速器壳体相连,使 该组件受约束而固定。制动器有片式制动器和带式制动器,如图10-6所 示为带式制动器结构图。
图10-11
阶梯式滑阀调压装置工作原理
二、自动变速器的检修
1、液力变矩器的检修: (1)目视法(外观检测): 检查液力变矩器外部有无损坏和裂纹,轴套外径有无磨损,驱动 油泵的轴套缺口有无损伤。 (2)径向圆跳动检查: 将液力变矩器安装在发动机飞轮上。用百分表如图10-12所示方法 检查变矩器轴套的径向圆跳动。
(1)直观检查摩擦片,看其有无烧焦、表面剥落或变形。如有, 应更换离合器摩擦片。
(2)检查摩擦片的厚度,如果厚度小于极限值,则应更换摩擦片。 有时摩擦片表面印有符号(如图10-17),
汽车自动变速器的工作原理

汽车自动变速器的工作原理汽车自动变速器是一种自动控制变速器的装置,可以根据车辆的行驶状况自动调整变速器的档位,以提高车辆的动力性和经济性。
下面将从五个方面介绍汽车自动变速器的工作原理。
1. 动力传递汽车自动变速器的动力传递主要依靠液力传动。
在液力传动系统中,发动机的动力通过液力变矩器传递给变速器。
液力变矩器由泵轮、涡轮和导轮组成,其中泵轮与发动机相连,涡轮与变速器输入轴相连。
当发动机工作时,泵轮旋转产生涡流,将动力传递给涡轮,再通过导轮的调节,实现动力的无级变速。
2. 换挡控制汽车自动变速器的换挡控制主要依靠自动控制系统来完成。
自动控制系统根据车辆的行驶状况、发动机的工况以及驾驶员的意图等信息,自动调整变速器的档位。
换挡控制主要通过调节变速器油路的油压来实现,油压的调节由阀体和电磁阀等控制元件完成。
3. 液力变矩器液力变矩器是汽车自动变速器的重要组成部分,它由泵轮、涡轮和导轮组成。
泵轮与发动机相连,涡轮与变速器输入轴相连,导轮则起到调节涡流的作用。
当发动机工作时,泵轮旋转产生涡流,将动力传递给涡轮,再通过导轮的调节,实现动力的无级变速。
同时,液力变矩器还具有离合器和减震器的功能,可以在必要时切断动力传递,减轻变速器振动的负面影响。
4. 自动控制系统汽车自动变速器的自动控制系统是实现自动换挡的关键部分。
自动控制系统通过接收来自各种传感器和执行器的信号,对车辆的行驶状况、发动机的工况以及驾驶员的意图等信息进行综合分析,并根据预设的控制逻辑来决定变速器的档位。
同时,自动控制系统还能够根据实际情况进行自我调整和优化,以提高车辆的动力性和经济性。
5. 电子控制系统汽车自动变速器的电子控制系统是实现自动化控制的核心部分。
电子控制系统主要由传感器、执行器和控制器组成。
传感器用于监测车辆的行驶状况和发动机的工况,并将信号传输给控制器;执行器根据控制器的指令来调节变速器的档位和油压;控制器则是整个电子控制系统的核心,它根据传感器的信号和预设的控制逻辑来决定执行器的动作。
汽车自动变速器(PPT13)

清洗变速器滤网
02
定期清洗变速器滤网,防止杂质和颗粒对变速器内部零件造成
磨损。
检查并调整变速器控制系统
03
检查变速器的电子控制系统,确保其正常工作,并根据需要进
行调整。
故障诊断与排除方法
观察故障现象
注意自动变速器的工作状态, 观察是否有异响、顿挫、漏油
等异常现象。
使用诊断工具
利用专业的汽车诊断工具,读 取变速器的故障码和数据流, 帮助定位故障。
检查相关部件
根据故障现象和诊断结果,检 查与故障相关的部件,如传感 器、执行器、控制模块等。
更换或维修故障部件
对于损坏或失效的部件,进行 更换或维修,恢复变速器的正
常工作状态。
05
自动变速器在新能源汽车中的应用
新能源汽车对自动变速器的需求特点
高效能量转换新能源汽车需要自动 Nhomakorabea 速器实现高效能量转换
控制策略优化
通过优化控制策略,提高变速器的响 应速度和换挡平顺性,提升驾驶体验 。
轻量化设计
采用高强度铝合金等轻量化材料,降 低变速器重量,提高整车续航里程。
高可靠性保障
通过严格的试验验证和质量控制,确 保变速器的可靠性和稳定性。
未来发展趋势预测
多挡位自动变速器
随着新能源汽车对动力性和经济性的更 高要求,多挡位自动变速器将成为发展
趋势。
集成化设计
将自动变速器与其他动力总成部件进 行集成化设计,降低整车重量和成本
。
智能化控制
结合人工智能、大数据等技术,实现 自动变速器的智能化控制,提高换挡 品质和燃油经济性。
电动化发展
随着电动汽车的普及,电动化自动变 速器将成为未来发展的重要方向。
汽车自动变速器工作原理

汽车自动变速器工作原理
汽车自动变速器是一种能够根据车辆行驶状况自动选择合适的挡位进行换挡的装置。
其工作原理主要涉及离合器、齿轮和液压控制系统。
首先,汽车自动变速器的离合器系统起到连接或分离发动机和变速器的作用。
当驾驶员踩下离合器踏板时,离合器压盘与变速器输入轴的摩擦片分离,发动机的动力不传递至变速器。
而当离合器释放时,发动机的动力通过输入轴传到变速器。
其次,汽车自动变速器中的齿轮系统包含一组不同大小的齿轮,这些齿轮可通过转动实现不同的挡位。
通常变速器有多个齿轮(包括同步器等部件)组成的轮系,在不同的挡位下,通过齿轮组的组合或离合,实现不同的传动比。
最后,汽车自动变速器还包含一个液压控制系统,用于判断车辆行驶状态并控制换挡。
液压控制系统通过传感器监测车速、油门踏板以及其他重要参数,然后控制液压阀门的开闭,以调整油压来实现换挡。
例如,当车速升高时,液压控制系统会感知到这一变化并自动切换到更高的挡位以提供更高的速度。
综上所述,汽车自动变速器工作的基本原理是通过离合器的连接与分离、齿轮的组合和液压控制系统的调节,实现车辆的自动换挡,并根据不同的行驶状态选择合适的挡位来进行传动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、液压控制系统主要组成的结构及功能: (1)油泵: 油泵是自动变速器液压控制系统的压力来源;如图10-7所示为内啮
合齿轮油泵结构。
图10-7 内啮合齿轮泵实物与拆解示意图
(2)节气门阀: 根据节气门信号输入的方式不同有机械式和真空式两种(如图108)。
图10-8 真空式节气门阀
(3)调速阀:
它安装在输出轴上,位于油流分配器的后面,它由初级调速阀和 次级调速阀所组成(如图10-9)。调速阀的工作原理如图10-10所示。
图10-9 调速阀的结构
图10-10 调速阀的工作原理
(4)调压装置:
调压装置通常采用阶梯 式滑阀(如图10-11),它 主要由主阀芯、调压柱塞、 调压弹簧、弹簧座、套筒等 组成。
图10-18 检查活塞单向球阀的密封性 图10-19 检查活塞回位弹簧自由长度
4、行星排和单向离合器的检查: (1)目视检查太阳轮、行星轮和齿圈的齿面,如有磨损、斑点或疲 劳削落,应更换整个行星排。 (2)检查行星轮与行星架之间的间隙,如图10-20所示。 (3)检查太阳轮、行星架、齿圈等零件的轴颈或滑动轴承处有无磨 损,如有磨损,应更换新件。 (4)检查单向离合器滚 柱、保持架、内外滚道有 无破损、磨损、起槽等。
1、液力耦合器结构与工作原理: 液力耦合器安装在发动机曲轴的后端,主要由壳体、涡轮和泵轮 组成(如图10-2)。
图10-2 液力耦合器示意图
2、液力变矩器结构与原理: 结构与原理:液力变矩器主要由泵轮、涡轮、导轮组成(如图
10-3)。
图10-3 液力变矩器结构
四、齿轮变速机构
1、行星齿轮变速机构的组成和变速原理: (1)组成: 行星齿轮机构由太阳轮、行星齿轮、行星架、齿圈组成(如图10-4)。
图10-14 齿圈与壳体间隙检查
图10-15 齿轮端面间隙检查
(3)检查齿轮、齿圈齿顶间隙: 如图10-16所示,用塞尺测量齿轮、齿圈与月牙板之间的间隙。 (4)目视法检查磨损状况: 检查油泵齿轮、齿轮圈、油泵壳体端面有无磨损痕迹。如有,应 更换新件。
图10-16 齿轮、齿面齿顶间隙检查
3、超速挡离合器和超速挡制动器的检修: (1)直观检查摩擦片,看其有无烧焦、表面剥落或变形。如有, 应更换离合器摩擦片。 (2)检查摩擦片的厚度,如果厚度小于极限值,则应更换摩擦片。 有时摩擦片表面印有符号(如图10-17), (3)检查钢片是否磨损过 度、翘曲变形,若有,则需 要换。 (4)检查离合器和制动器 活塞表面和液压缸内表面有 无损伤,若有,则需更换。 (5)检查挡圈的摩擦面, 若有磨损,应予以更换。
变
速
器
第一节 自动变速器的构造与原理
一、自动变速器类型
自动变速器类型及各特点见表10-1所示。 变速器
表10-1 自动变速器分类及特点
二、自动变速器的组成
自动变速器主要由液力变矩器、行星齿轮机构、油泵、控制系统等 几个部分组成(如图10-1所示)。
图10-1 自动变速器结构图
三、液力耦合器与液力变矩器
图10-4 行星齿轮结构图
(2)行星齿轮机构各种运动情况分析: 对行星齿轮机构施加不同的约束,可得到表10-2所示的8种运动。
表10-2 行星齿轮机构8种运动情况分析
2、换挡执行机构: (1)离合器:离 合器的组成及工 作原理(如图105)。
图10-5 离合器分解图
3、制动器: 制动器的作用是将行星齿轮机构中某一组件与变速器壳体相连,使 该组件受约束而固定。制动器有片式制动器和带式制动器,如图10-6所 示为带式制动器结构图。
图10-17 检查摩擦片的厚度
(6)检查活塞上的单向球阀,摇动活塞时,球阀应活动自如;从液 压缸侧往单向阀吹压缩空气,如图10-18所示,单向阀应密封不漏气。
(7)检查活塞回位弹簧的自由长度,如图10-19所示。 (8)更换所有离合器、制动器(及制动带)液压缸活塞上的O形密 封圈及轴颈上的密封环。
图10-20 检查行星轮与行星架之间的间隙
5、阀体的检查:(阀体结构如图10-21所示)图10-2ຫໍສະໝຸດ 阀体的结构图/10/29
.
21
图10-12 径向圆跳动检查
(3)检查导轮单向离合器: 用专用工具插入变矩器。转动单向离合器内座圈,检查单向离合器 是否良好,如图10-13所示。 (4)清洗: 用2L自动变速器油加于液力变矩器内部,摇动,清洗内部,倒出油 液。
图10-13 检查导轮单向离合器
2、油泵的检修: (1)检查齿圈与壳体间隙: 检查油泵齿圈与油泵壳体之间的间隙时,将齿轮推向泵体一侧,用 塞尺测量其间隙(如图10-14所示)。 (2)检查齿轮端面间隙: 齿轮端面间隙检查(如图10-15)。
图10-11
阶梯式滑阀调压装置工作原理
二、自动变速器的检修
1、液力变矩器的检修: (1)目视法(外观检测): 检查液力变矩器外部有无损坏和裂纹,轴套外径有无磨损,驱动 油泵的轴套缺口有无损伤。 (2)径向圆跳动检查: 将液力变矩器安装在发动机飞轮上。用百分表如图10-12所示方法 检查变矩器轴套的径向圆跳动。