济南市高中物理必修3物理 全册全单元精选试卷检测题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
济南市高中物理必修3物理 全册全单元精选试卷检测题
一、必修第3册 静电场及其应用解答题易错题培优(难)
1.有三根长度皆为l =0.3 m 的不可伸长的绝缘轻线,其中两根的一端固定在天花板的O 点,另一端分别栓有质量皆为m =1.0×10﹣2kg 的带电小球A 和B ,它们的电荷量分别为﹣q 和+q ,q =1.0×10﹣6C .A 、B 之间用第三根线连接起来,空间中存在大小为E =2.0×105N/C 的匀强电场,电场强度的方向水平向右.平衡时A 、B 球的位置如图所示.已知静电力常量k =9×109N•m 2/C 2重力加速度g =10m/s 2.求:
(1)A 、B 间的库仑力的大小 (2)连接A 、B 的轻线的拉力大小. 【答案】(1)F=0.1N (2)10.042T N = 【解析】
试题分析:(1)以B 球为研究对象,B 球受到重力mg ,电场力Eq ,静电力F ,AB 间绳子的拉力1T 和OB 绳子的拉力2T ,共5个力的作用,处于平衡状态,
A 、
B 间的静电力2
2q F k l
=,代入数据可得F=0.1N
(2)在竖直方向上有:2sin 60T mg ︒=,在水平方向上有:12cos 60qE F T T =++︒ 代入数据可得10.042T N = 考点:考查了共点力平衡条件的应用
【名师点睛】注意成立的条件,掌握力的平行四边形定则的应用,理解三角知识运用,注意平衡条件的方程的建立.
2.如图所示,固定于同一条竖直线上的A 、B 是两个带等量异种电荷的点电荷,电荷量均为Q ,其中A 带正电荷,B 带负电荷,A 、B 相距为2d 。
MN 是竖直放置的光滑绝缘细杆,
另有一个穿过细杆的带电小球P ,质量为m 、电荷量为+q (可视为点电荷),现将小球P 从与点电荷A 等高的C 处由静止开始释放,小球P 向下运动到距C 点距离为d 的D 点时,速度为v 。
已知MN 与AB 之间的距离为d ,静电力常量为k ,重力加速度为g ,若取无限远处的电势为零,试求:
(1)在A 、B 所形成的电场中,C 的电势φC 。
(2)小球P 经过D 点时的加速度。
(3)小球P 经过与点电荷B 等高的E 点时的速度。
【答案】(1)222mv mgd q -(2)g +2
22kQq
md (3)2v
【解析】 【详解】
(1)由等量异种电荷形成的电场特点可知,D 点的电势与无限远处电势相等,即D 点电势为零。
小球P 由C 运动到D 的过程,由动能定理得:
2
102
CD mgd q mv ϕ+=
- ① 0CD C D C ϕϕϕϕ=-=- ②
222C mv mgd q
ϕ-= ③
(2)小球P 经过D 点时受力如图:
由库仑定律得:
122
(2)
F F k
d
==④
由牛顿第二定律得:
12
cos45cos45
mg F F ma
+︒+︒=⑤
解得:
a=g+
2
2
2
kQq
md
⑥
(3)小球P由D运动到E的过程,由动能定理得:
22
11
22
DE B
mgd q mv mv
ϕ
+=-⑦
由等量异种电荷形成的电场特点可知:
DE CD
ϕϕ
=⑧
联立①⑦⑧解得:
2
B
v v
=⑨
3.如图所示,在绝缘的水平面上,相隔2L的,A、B两点固定有两个电量均为Q的正点电荷,C、O、D是AB连线上的三个点,O为连线的中点,CO=OD=L/2。一质量为m、电量为q的带电物块以初速度v0从c点出发沿AB连线向B运动,运动过程中物块受到大小恒定的阻力作用。当物块运动到O点时,物块的动能为初动能的n倍,到达D点刚好速度为零,然后返回做往复运动,直至最后静止在O点。已知静电力恒量为k,求:
(1)AB两处的点电荷在c点产生的电场强度的大小;
(2)物块在运动中受到的阻力的大小;
(3)带电物块在电场中运动的总路程。
【答案】(1)
(2)
(3)
【解析】
【分析】
【详解】
(1)设两个正点电荷在电场中C点的场强分别为E1和E2,在C点的合场强为E C;则
1
2
()
2
kQ
E
L
=
;2
2
3
()
2
kQ
E
L
=
则E C=E1-E2
解得:E C =
2
32 9kQ
L . (2)带电物块从C 点运动到D 点的过程中,先加速后减速.AB 连线上对称点φC =φD ,电场力对带电物块做功为零.设物块受到的阻力为f , 由动能定理有:−fL =0−1
2
mv 02 解得:2
012f mv L
=
(3)设带电物块从C 到O 点电场力做功为W 电,根据动能定理得:
22
0011222
L W f n mv mv 电=-⋅⋅-
解得:()201
214
W n mv -电=
设带电物块在电场中运动的总路程为S ,由动能定理有:W 电−fs =0−1
2
mv 02 解得:s=(n+0.5)L 【点睛】
本题考查了动能定理的应用,分析清楚电荷的运动过程,应用动能定理、点电荷的场强公式与场的叠加原理即可正确解题.
4.一带正电的 A 点电荷在电场中某点的电场强度为 4.0×104N/C ,电荷量为+5.0×10-8 C 的 B 点电荷放在该点,求: (1)点电荷在该点受到的电场力?
(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的电场强度? 【答案】(1)3210N -⨯,方向由A 指向B (2)4410/N C ⨯,方向由A 指向B 【解析】 【分析】 【详解】 (1)
方向:由A 指向B
(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的场强不变,仍为
方向:由A 指向B
5.如图所示,长l =1 m 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向的夹角θ=37°.已知小球所带电荷量q =1.0×10–6 C ,匀强电场的场强E =3.0×103 N/C ,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:
(1)小球所受电场力F 的大小和小球的质量m ;
(2)将小球拉至最低点由静止释放,小球回到绳与竖直方向的夹角θ=37°时速度v 的大小;
(3)在(2)所述情况下小球通过绳与竖直方向的夹角θ=37°时绳中张力T 的大小. 【答案】(1)F = 3.0×10-3 N m=4.0×10–4 kg (2)5m/s v = (3)T =7.0×10-3 N
【解析】 【分析】 【详解】
(1)小球受到的电场力的大小为:
F =qE =1.0×10–6×3.0×103N =3.0×10-3 N
小球受力如图所示:
根据平衡可知:
tan F mg θ=
解得:
m=4.0×10–4 kg
(2)将小球拉至最低点由静止释放,小球回到绳与竖直方向的夹角θ=37°时根据动能定理有
21sin (1cos )2
Fl mgl mv θθ--=
解得:
1
2(
1)5m/s cos v gl θ
=-= (3)沿绳方向根据牛顿第二定律可知
2
sin cos mv T F mg l
θθ--= 解得:
T =7.0×10-3 N
6.有一水平向右的匀强电场中,竖直平面内有半径为0.1m 的圆周,在圆心O 处放置电荷量为Q =10-8C 的带正电的点电荷,圆周a 点与圆心O 在同一水平线上,且E a =0(静电力常数K =9×109N.m 2/C 2)
(1)匀强电场场强大小? (2)圆周最高点C 处的场强
【答案】(1)3910N/C ⨯ (2)41.2710N/C ⨯ 方向与水平方向成45斜向右上方 【解析】 【详解】
(1)在a 点的合场强等于零,则表明点电荷在a 点产生的场强与匀强电场的场强相等即:
32=910N/C kQ
E r
=
⨯ (2)正点电荷在C 点产生的场强大小为2
kQ
E r =
,方向竖直向上,匀强电场的场强大小2kQ
E r
=
,方向水平向右,根据矢量合可知C 点的合场强等于; 22
4222=2 1.2710N/C kQ kQ kQ E r r r ⎛⎫⎛⎫
=+=⨯ ⎪ ⎪⎝⎭⎝⎭
合
方向与水平方向成45斜向右上方
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.如图,xOy 为竖直面内的直角坐标系,y 轴正向竖直向上,空间中存在平行于xOy 所在平面的匀强电场。
质量为m 的不带电小球A 以一定的初动能从P (0,d )点沿平行x 轴方向水平抛出,并通过Q (2d ,0)点。
使A 带上电量为+q 的电荷,仍从P 点以同样的初动能沿某一方向抛出,A 通过N (2d ,0)点时的动能是初动能的0.5倍;若使A 带上电量为-q 的电荷,还从P 点以同样的初动能沿另一方向抛出,A 通过M (0,-
d)点时的动能是初动能的4倍。
重力加速度为g。
求:
(1)A不带电时,到达Q点的动能;
(2)P、N两点间的电势差;
(3)电场强度的大小和方向。
【答案】(1)3mgd;(2)
2mg
q
,方向沿y轴正方向。
【解析】
【详解】
(1)小球做平抛运动,故
2
1
2
d gt
=
22dυt
=
从P到Q,由动能定理
2
1
2
Q
k
mgd E mυ
=-
解得
3
Q
k
E mgd
=
(2)小球带电后,从P到N,由动能定理
00
0.5
PN k k
mgd qU E E
+=-
从P到M由动能定理可得
00
24
PM k k
mgd qU E E
-=-
由(1)中可知,
2
k
E mgd
=
联立以上几式可得
1
2
PN
PM
U
U
=
故O、N两点电势相等,场强方向为y轴正方向,场强大小为
2
NP
U mg
E
d q
==
8.如图所示,在xOy直角坐标系0<x<L的区域存在沿y轴负方向的匀强电场,在
L≤x≤2.5L的区域存在方向垂直xOy平面向里的匀强磁场。
S为一粒子源,可以产生带电量
为q 、质量为m 的正粒子,粒子初速度可忽略。
粒子经电压为U 0的加速电场加速后沿x 轴正方向从y 轴上的M 点进入电场区域,M 点到原点的距离为L ,一段时间后该粒子从磁场左边界与x 轴的交点处进入磁场,经磁场偏转后从磁场右边界射出磁场,该粒子在磁场中运动的时间为其在磁场中做匀速圆周运动周期的四分之一,若不计粒子重力。
求: (1)0<x <L 区域内匀强电场的电场强度; (2)匀强磁场的磁感应强度大小;
(3)若仅将匀强磁场的磁感应强度增大到原来的2倍,分析计算粒子将从什么位置离开电磁场区。
【答案】(1)04U L
;0
22mU L q (3)2.5L
【解析】 【分析】 【详解】
(1)设粒子经加速电场加速后的速度为0v 则有
2001
2
qU mv =
令磁场左边界与x 轴的交点为C 点,从M 点到C 点:粒子在电场中做类平抛运动:
0L v t =
212
L at =
Eq a m =
联立可得:
4U E L
=
(2)粒子从M 进入电场,经C 进入磁场,在电场和磁场中的运动轨迹如图所示。
粒子在C 点进入磁场的速度,
y v at =
22005y v v v v =+= sin 5
y v v
α=
=
粒子在磁场中洛伦磁力提供向心力:
2
v Bqv m r
=
根据几何关系可得:
sin sin 1.5r r L αβ+=
根据题意可得
90αβ+=︒
解得:
22mU B L q
=
当磁感应强度加倍时,半径减半2
r
r '=
,则: sin 1.5r r L α''+<
运动轨迹如图
设:粒子从磁场左边界回到电场(F 点)时速度方向与水平方向夹角为α,则F 、C 两点的距离为;
2cos 0.52
r
y L α∆=⨯=
把粒子从y
轴进入电场和由磁场左边界返回电场两段运动看做一个完整的平抛运动,前后两段运动的时间相同,由磁场返回偏转电场的过程沿y 轴方向的位移为:
2211
(2)322
a t at L -= 所以到达y 轴的位置距原点
3- 2.5L y L ∆=
9.如图所示,竖直平面内有一坐标系xoy ,已知A 点坐标为(–2h ,h ),O 、B 区间存在竖直向上的匀强电场。
甲、乙两小球质量均为m ,甲球带电量为+q ,乙球带电量为–q ,分别从A 点以相同的初速度水平向右抛出后,都从O 点进入匀强电场,其中甲球恰从B 点射出电场,乙球从C 点射出电场,且乙球射出电场时的动能是甲球射出电场时动能的13倍。
已知重力加速度为g 。
求
(1)小球经过O 点时速度的大小和方向; (2)匀强电场的场强E 。
【答案】(1)2v gh = ;θ=450(2)3mg
E q
= 【解析】
(1)如图1所示,设小球经过O 点时的速度为v ,水平分速度为v x ,竖直分速度为v y ,平抛运动的时间为t 。
根据平抛运动规律212
h gt =
①,2x h v t =②,y gt =v ③,22x y v v v =+,
tan x y v v θ=⑤ 由以上式子解得2v gh =45θ=︒,y x v v =⑥
(2)甲球在B 点的速度如图2所示,乙球在C 点的速度如图3所示。
依题意得
13kC kB E E =
即
()()
2222111322
x cy x y m v v m v v +=⋅+,解得5cy x v v =⑦ 设甲球在电场中的加速度为a 甲,乙球在电场中的加速度为a 乙;甲、乙两球在电场中运动的时间为't 。
研究竖直方向,有
对甲球:2'y v a t 甲=⑧,Eq mg ma -=甲⑨, 对乙球:'cy y v v a t -=乙⑩,Eq mg ma +=乙⑪, 由⑥~⑪式解得3mg
E q
=
;
10.一匀强电场足够大,场强方向是水平的.一个质量为m 的带正电的小球,从O 点出发,初速度的大小为v 0,在电场力与重力的作用下,恰能沿与场强的反方向成θ角的直线运动.求:
(1)小球运动的加速度的大小是多少?
(2)小球从O 点出发到其运动到最高点时发生的位移大小? (3)小球运动到最高点时其电势能与在O 点的电势能之差?
【答案】(1)
sin g θ
(2)20sin 2v g θ(3) 22
01cos 2mv θ 【解析】 【详解】
(1)小球做直线运动,所受的合力与速度方向在同一条直线上,
根据平行四边形定则得:sinθ=mg
ma
解得小球的加速度:sin g
a θ
=
.
(2)小球从开始到最高点的位移为:
22
00
22
v v sin
x
a g
θ
==.
(3)因为Eq=mg/tanθ,则小球运动到最高点时其电势能与在O点的电势能之差等于电场
力做功,即
2
22
1
cos.cos cos
tan22 P
v sin
mg
E W Eqx mv
g
θ
θθθ
θ
∆===⋅=
【点睛】
本题有两点需要注意,一是由运动情景应能找出受力关系;二是知道小球做匀减速直线运动,结合牛顿第二定律和运动学公式求解位移.知道电势能的变化量的等于电场力的功.
11.如图所示,在竖直平面内的平面直角坐标系xoy中,x轴上方有水平向右的匀强电场,有一质量为m,电荷量为-q(-q<0)的带电绝缘小球,从y轴上的P(0,L)点由静止开始释放,运动至x轴上的A(-L,0)点时,恰好无碰撞地沿切线方向进入在x轴下方竖直放置的四分之三圆弧形光滑绝缘细管。
细管的圆心O1位于y轴上,交y轴于点B,交x轴于A点和C(L,0)点。
该细管固定且紧贴x轴,内径略大于小球外径。
小球直径远小于细管半径,不计一切阻力,重力加速度为g。
求:
(1)匀强电场的电场强度的大小;
(2)小球运动到B点时对管的压力的大小和方向;
(3)小球从C点飞出后会落在x轴上的哪一位置。
【答案】(1)mg
q
;(2))
321mg方向向下;(3)-7L。
【解析】
【详解】
(1)小球释放后在重力和电场力的作用下做匀加速直线运动,小球从A点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则
tan45
mg
Eq ︒=
解得:
mg
q
E= (2)根据几何关系可知,圆弧的半径
2
r L
=
从P到B点的过程中,根据动能定理得:
()
2
1022
B mv mg L EqL -=+ 在B 点,根据牛顿第二定律得:
2B
v N mg m r
-=
联立解得:
)
3
1N mg =,
方向向上,由牛顿第三定律可知,小球运动到B 点时对管的压力的方向向下 (3)从P 到A 的过程中,根据动能定理得:
2
12
A mv mgL EqL =+ 解得:
A v =
小球从C 点抛出后做类平抛运动,抛出时的速度
C A v v ==小球的加速度
'g =,
当小球沿抛出方向和垂直抛出方向位移相等时,又回到x 轴,则有:
21
'2
C v t g t =
解得:
t = 则沿x 轴方向运动的位移
8C x t L === 则小球从C 点飞出后落在x 轴上的位置
87x L L L '=-=-
12.如图所示,在竖直直角坐标系xOy 内,x 轴下方区域I 存在场强大小为E 、方向沿y 轴正方向的匀强电场,x 轴上方区域Ⅱ存在方向沿x 轴正方向的匀强电场。
已知图中点D 的坐标为(27
,2
L L -
-),虚线GD x ⊥轴。
两固定平行绝缘挡板AB 、DC 间距为3L ,OC 在x 轴上,AB 、OC 板平面垂直纸面,点B 在y 轴上。
一质量为m 、电荷量为q 的带电粒子(不计重力)从D 点由静止开始向上运动,通过x 轴后不与AB 碰撞,恰好到达B 点,已知
AB =14L ,OC =13L 。
(1)求区域Ⅱ的场强大小E '以及粒子从D 点运动到B 点所用的时间0t ;
(2)改变该粒子的初位置,粒子从GD 上某点M 由静止开始向上运动,通过x 轴后第一次与AB 相碰前瞬间动能恰好最大。
①求此最大动能km E 以及M 点与x 轴间的距离1y ;
②若粒子与AB 、OC 碰撞前后均无动能损失(碰后水平方向速度不变,竖直方向速度大小不变,方向相反),求粒子通过y 轴时的位置与O 点的距离y 2。
【答案】(1)6E ;52mL
qE
(2)①18qEL ,9L ;②3L 【解析】 【详解】
(1)该粒子带正电,从D 点运动到x 轴所用的时间设为1t ,则
21112
L a t =
11a t υ=
根据牛顿第二定律有
1qE ma =
粒子在区域II 中做类平抛运动,所用的时间设为2t ,则
2
2227122L a t = 23L t υ=
根据牛顿第二定律有
2qE ma '=
粒子从D 点运动到B 点所用的时间
012t t t =+
解得
6E E '=,0t =(2)①设粒子通过x 轴时的速度大小为0υ,碰到AB 前做类平抛运动的时间为t ,则
03L t
υ=
粒子第一次碰到AB 前瞬间的x 轴分速度大小
2x a t υ=
碰前瞬间动能
()22012
k x E m υυ=
+ 即
2222292k m L E a t t ⎛⎫=+ ⎪⎝⎭
由于22222
22299L a t L a t
⋅=为定值,当222229L a t t =即t =k E 有最大值 由(1)得
26qE a m
=
最大动能
18km E qEL =
对应的
0υ=
粒子在区域I 中做初速度为零的匀加速直线运动,则
20112a y υ=
解得
19y L =
②粒子在区域II 中的运动可等效为粒子以大小为0υ的初速度在场强大小为6E 的匀强电场中做类平抛运动直接到达y 轴的K 点,如图所示,则时间仍然为2t
02OK t υ=
得
9OK L =
由于933OK L
OB L
==,粒子与AB 碰撞一次后,再与CD 碰撞一次,最后到达B 处 则
23y L =
三、必修第3册 电路及其应用实验题易错题培优(难)
13.某实验小组欲描绘额定电压为2.5V 的小灯泡L 的U -I 曲线。
现准备如下实验器材: 电压表(3V ,内阻很大) 电流表(0.6A ,内阻较小) 滑动变阻器(0~5Ω,额定电流1A ) 电键 导线若干 请回答下列问题:
(1)请用笔划线代替导线,将实验电路图甲补充完整_____;
(2)闭合电键,移动滑动变阻器的滑片,其电压表、电流表的示数如图乙所示,则电压表读数为_____V ,电流表读数为_____A ;
(3)将实验数据绘制成U -I 图像如图丙中Ⅰ。
则该小灯泡的额定功率P =_____W ; (4)现有一电子元件,其U -I 图像如图丙中Ⅱ所示。
现将该电子元件与该灯泡L 并联后同电动势3V E =、内阻5r =Ω的电源连接,则该灯泡的实际功率P =_____W (保留两位有效数字)。
【答案】 1.30 0.44 1.45(1.43~1.46之间均可) 0.20
(0.19~0.21之间均可)
【解析】
【分析】
【详解】
(1)[1].由于电压表内阻远大于小灯泡的电阻,故采用电流表外接;滑动变阻器用分压电路,则电路如图;
(2)[2][3].电压表量程为3V,最小刻度为0.1V,则读数为1.30V;电流表量程为0.6V,最小刻度为0.02A,则读数为0.44A;
(3)[4].由图可知,当电压为2.5V时,电流为0.58A,则该小灯泡的额定功率P=IU=1.45W;
(4) [5].电子元件与该灯泡L并联,则电压相等;若画出电源的U-I图像如图;画出平行于I轴的直线即为电压相等的线,与图像Ⅰ、Ⅱ分别交于两点B和A,与U轴交于C点,电源的U-I线交于D,若CD的中点恰在AB的中点,则此时Ⅰ图像对应的B点电压和电流值即为小灯泡的工作状态点,由图可知:U=0.70V,I=0.28A,则灯泡的实际功率
P′=IU≈0.20W。
14.在一次实验技能比赛中,要求较精确地测量电阻的阻值,有下列器材供选用:
A.待测电阻Rx(约300Ω)
B.电压表V(量程3V,内阻约3kΩ)
C.电流表A1(量程20mA,内阻约5Ω)
D.电流表A2(量程10mA,内阻约10Ω)
E.滑动变阻器R1(0~20Ω,额定电流2A)
F.滑动变阻器R2((0~2000Ω,额定电流0.5A)
G.直流电源E(3V,内阻约1Ω)
H.开关、导线若干
(1)甲同学根据以上器材设计成用伏安法测量电阻的电路,电路图如图甲所示,则电流表应选择_________(选填“A1”或“A2”),滑动变阻器应选择____________(选填“R1”或
“R2”)。
(2)乙同学经过反复思考,利用所给器材设计出了如图乙所示的测量电路,具体操作如下:
①按图乙连接好实验电路,闭合开关S1前调节滑动变阻器R1、R2的滑片至适当位置;
②闭合开关S1,开关S2处于断开状态,调节滑动变阻器R1、R2的滑片,使电流表A2的示数恰好为电流表A1的示数的一半;
③闭合开关S2并保持滑动变阻器R2的滑片位置不变,读出电压表V和电流表A2的示数,分别记为U、I;
④则待测电阻的阻值Rx=__________(用题中所给字母表示)。
(3)比较两同学测量电阻Rx的方法,你认为哪个同学方法更有利于减小系统误差?
____________(选填“甲”或“乙”)同学。
【答案】A 2 R 1 U
I
乙 【解析】 【分析】
由题意可知考查伏安法测电阻,消除系统误差的方法。
根据欧姆定律、串并联电路关系分析可得。
【详解】
(1)[1] [2] 估算一下待测电流,
3A=0.01A=10mA 300
U I R =
=, 故电流表选择A 2,因滑动变阻器采用分压式接法,选择R 1调节更方便,故滑动变阻器选择R 1;
(2)[3] 闭合开关S 1,开关S 2处于断开状态,调节滑动变阻器R 1、R 2的滑片,使电流表A 2的示数恰好为电流表A 1的示数的一半;此时A 2和R 2电阻之和等于R x 的电阻。
当闭合开关S 2并保持滑动变阻器R 2的滑片位置不变,读出电压表V 和电流表A 2的示数,分别记为U 、I ;A 2和R 2电阻之和等于R x 的电阻等于U 与I 的比值。
(3)[4] 甲图存在系统误差,测量值大于真实值,乙图方案消除了系统误差,故乙同学的方案更有利于减小系统误差。
【点睛】
电流表内接法测量值大于真实值,外接法测量值小于真实值,当R X ,电流表选
择内接法,当R X
15.某同学将一个量程为0~1mA 、内阻未知的电流表G 改装为量程为0~3V 的电压表V 。
他先测量该电流表G 的内阻R g ,再进行改装,然后把改装的电压表与标准电压表进行校准并进行误差分析。
实验室准备的仪器有: 电源E (电动势为4.5V ,内阻约1.2Ω)
滑动变阻器R 1(最大阻值为5000Ω,允许通过的最大电流约为0.02A ) 滑动变阻器R 2(最大阻值为20Ω,允许通过的最大电流约为1.0A ) 电阻箱R (最大阻值为999.9Ω,允许通过的最大电流约为0.2A ) 标准电压表0V (最大量程为3.0V ,内阻约为4000Ω) 开关两个,导线若干 他的操作过程如下:
(1)先按如图(a)所示的电路,测量电流表G 的内阻R g ,其步骤为:
①将滑动变阻器R 1调到最大,保持开关K 2断开,闭合开关K 1,再调节滑动变阻器R 1,使电流表G 的指针指在满刻度I g 处。
②保持滑动变阻器R 1的阻值不变,再闭合开关K 2,调节电阻箱R 的阻值使电流表G 的指针指在满刻度的一半处,即
1
2
g I I =
, 此时电阻箱上示数如图(b)所示,则电流表G 的内阻R g =__Ω。
(2)他根据所测出的电流表G 内阻R g 的值,通过计算后,在表头G 上串联一个电阻R ,就将电流表G 改装成量程0~3V 的电压表V ,如图(c)所示,则这个定值电阻的阻值为R =__Ω。
(3)他再用标准电压表V 0对改装的电压表进行校准,要求电压能从0到最大值之间逐一进行校准,试在图(d)的方框中补全校准电路图,并标出所选用器材的符号,其中改装的电压表和标准电压表已画出。
(______________)
(4)由于电流表G 内阻R g 的测量值____(填“小于”或“大于”)真实值,改装电压表V 时串联电阻R 的阻值_____(填“偏大”或“偏小”),因此在校准过程中,改装的电压表的示数总比标准表的示数______(填“偏大”或“偏小”)。
【答案】105.0Ω 2895Ω 小于 偏大 偏小
【解析】 【分析】
根据题目中给出的提示,以及电表的改装知识进行解答。
【详解】
(1)[1]电阻箱的读数为
105.0ΩK R =,
电流表的内阻为
g 105.0ΩR =;
(2)[2]由电压表的改装原理可知:
()g g g g g 112895Ωg U U
R n R R R I R I ⎛⎫=-=-=-= ⎪ ⎪⎝⎭
;
(3)[3]要求电压从0到最大值之间逐一进行校准,因此应采用分压法,滑动变阻器选用
2R ,标准电压表和改装电压表应并联。
电路图如图所示:
;
(4)[4][5][6]用半偏法测电流表内阻g R 时,由于电阻箱R 的连入使得电路总电流变大,致使
g R 的测量值偏小,这样在改装电压表时串联电阻
()g g 1U
R n R R I
=-=
-, 其阻值偏大,使得校准时通过其电流值偏小,故改装的电压表示数小于标准表的示数。
【点睛】
电表的改装及校准。
16.某小组进行“测定金属丝电阻率”的实验.先测量该金属丝电阻R x (约为9 Ω),已经选好的器材有:
A .电压表V 1(量程0~1 V ,内阻约10 kΩ)
B .电压表V 2(量程0~3 V ,内阻约20 kΩ)
C .定值电阻R 0=20 Ω
D .被测电阻R x
E .滑动变阻器(阻值范围0~5 Ω)
F .电源(电动势3 V ,内阻很小)
G .导线若干,开关一个
(1)为了减小误差,并尽可能多的测量几组数据,请在方框中画出合理,便捷的测量电路图. (_______)
(2)在某次测量中,若电压表V 1读数为U 1,电压表V 2读数为U 2,则待测金属丝电阻的表达式R x =___________________.
(3)测得金属丝直径为d ,测得金属丝阻值为R ,测得金属丝的长度为L ,则该金属丝电阻率
的表达式ρ=________(用符号表示).如果在实验中通电时间较长,则电阻率的测量结果会__________(填变大或变小或不变)
【答案】
102U R U 2
π4Rd L
变大 【解析】 【详解】
(1)[1]利用伏安法测电阻,首先选取实验仪器,可以把其中一个电压表作为电流表使用,如果选取电压表V 2作为电压表使用,电压表V 1改装成电流表使用,把电压表V 1和定值电阻R 0并联,满偏电流为:
11
V10
0.05A m U U I R R =
+≈ 被测电阻R x 两端电压的最大值
0.45V m m x U I R ==
远小于电压表V 2量程,故仪器选取不合适;
把电压表V 1作为电压表使用,电压表V 2和定值电阻R 0并联改装成电流表使用,满偏电流为
22
V20
0.15A m U U I R R =
+≈ 被测电阻R x 两端电压的最大值
1.35V m m x U I R ==
比电压表V 1量程略大,可以使用;为了多测几组数据,减少实验误差,选用分压法组装电路,电压表分流可忽略,选用外接法,电路图如图所示:
(2)[2]根据图示电路图由欧姆定律得
12
x
U U
R R
≈
解得:
1
2
x
U
R R
U
=
(3)[3]由电阻定律2
2
4
π
π()
2
L L L
R
d
S d
ρρρ
===
得
2
π
4
Rd
L
ρ=
[4]金属丝的电阻率随温度升高而增大,所以实验中通电时间较长,金属丝的温度较高,电阻率的测量结果会变大。
17.某同学想要测量一只量程已知的电压表V的内阻,实验室提供的器材如下:
A.电池组(电动势约为3V,内阻不计)
B.待测电压表V(量程3V,内阻约3kΩ)一只
C.电流表A(量程3A,内阻15Ω)一只
D.滑动变阻器R1(最大阻值为15kΩ)一个
E.变阻箱R2(0~9999Ω)一个
F.开关和导线若干
(1)该同学设计了如下图所示的两个实验电路图,为了较准确地测出该电压表内阻,你认为合理且可行的是_______。
(2)用你选择的电路进行实验时,闭合电键,改变阻值,记录需要直接测量的物理量:电压表的示数U 和_________(填上文字和符号)。
(3)为了能作出相应的直线图线,方便计算出电压表的内阻,根据所测物理量建立适当的图象_________(填字母序号)。
A .U I - B .1U I
- C .
1
R U
- D .U R -
(4)根据前面所做的选择,若利用实验数据所作图像的斜率为k 、截距为b ,则待测电压表V 内阻的表达式R V =_______。
【答案】A 电阻R C b k
【解析】 【分析】 【详解】
(1)[1].图B 电路 中由于滑动变阻器最大阻值为15kΩ,电路电流较小,改变阻值过程中,电流表读数变化范围太小,因此B 电路不合理。
图A 电路,由于电阻箱R 2电阻最大阻值为9999Ω,改变电阻箱阻值可以改变电压表示数,测出多组实验数据,因此比较合理的实验电路是图A 。
(2)[2].选择电路A 进行实验时,闭合电键,改变阻值,记录需要直接测量的物理量:电压表的示数U 和电阻箱R 2的阻值R 。
(3)[3].由于电源内阻可以忽略不计,由闭合电路欧姆定律可得
V
U E U R R +
= 此式可改写为
111 V
R U E ER += 以R 为横坐标,
1U 为纵坐标,作出1
U −R 图象,用图象法处理实验数据,故选C 。
(4)[4].由
111 V R U E ER +=,则1U
−R 图象的斜率 1
V
k ER =
截距
1b E
=
则电压表内阻
V
b
R
k
=
18.在“测定金属丝的电阻率”的实验中,待测电阻丝阻值约为4Ω.
(1)用螺旋测微器测量电阻丝的直径d.其中一次测量结果如图所示,图中读数为d= mm.
(2)为了测量电阻丝的电阻R,除了导线和开关外,还有以下一些器材可供选择:
电压表V;量程3V,内阻约为3kΩ
电流表A1;量程0.6A,内阻约为0.2Ω)
电流表A2;量程100μA,内阻约为2000Ω)
滑动变阻器R1, 阻值0~1750Ω,额定电流为0.3A
滑动变阻器R2,阻值0~50Ω,额定电流为1A
电源E1(电动势15V,内阻约为0.5Ω)
电源E2(电动势3V,内阻约为1.2Ω)
为了调节方便,测量准确,实验中应选用电流表________,滑动变阻器_________,电源___________.(填器材的符号)
(3)用测量量表示计算材料电阻率的公式是ρ =(已用刻度尺测量出接入电路中的金属导线的有效长度为l).
【答案】(1)0.853~0.857 (2).A1 ;R2 ;E2;(3)
【解析】
试题分析:(1)由图示螺旋测微器可知,固定刻度示数为0.5mm,可动刻度示数为35.5×0.01mm=0.355mm,螺旋测微器示数为0.5mm+0.355mm=0.855mm.(2)电压表量程是3V,电源应选E2(电动势为3V,内阻约为1.2Ω),电路最大电流约为
3
0.58
4 1.2
E
I A
R r
==≈
++
,电流表应选A1,量程0.6A,内阻约0.2Ω.
(3)由欧姆定律得,电阻阻值
U
R
I
=,由电阻定律得:2
()
2
l l
R
d
S
ρ
ρ
π
==
,解得:
ρ=
考点:测定金属丝的电阻率
【名师点睛】此题考查了测定金属丝的电阻率的实验;解题时要首先搞清实验的原理,知道器材选择的原则“安全、准确、方便”;螺旋测微器是利用将长度的测量转化为对转动角。