顺磁性抗磁性铁磁性
磁学中的磁性材料特性与应用
磁学中的磁性材料特性与应用磁性材料是一类具有特殊磁性性质的物质,广泛应用于电子、通信、医疗、能源等领域。
本文将从磁性材料的特性和应用两个方面进行探讨。
一、磁性材料的特性磁性材料的特性主要包括磁化强度、磁化曲线、磁滞回线等。
磁化强度是指材料在外加磁场作用下的磁化程度,通常用磁化强度矢量来表示。
磁化曲线描述了材料在外加磁场变化时的磁化过程,可以分为顺磁性、抗磁性和铁磁性。
顺磁性材料在外加磁场作用下,磁矩与磁场方向相同;抗磁性材料则相反,磁矩与磁场方向相反;而铁磁性材料在外加磁场作用下,磁矩与磁场方向平行或反平行。
磁滞回线是描述材料在磁化和去磁化过程中磁化强度的变化曲线,可以用来表征材料的磁化和去磁化特性。
磁性材料的特性决定了它们在各个领域的应用。
例如,铁磁性材料常用于制造电机、变压器等电磁设备,因为它们具有较高的磁导率和饱和磁感应强度;顺磁性材料则常用于医学成像、核磁共振等领域,因为它们对外加磁场具有较强的响应能力;抗磁性材料则广泛应用于磁屏蔽、磁存储等领域,因为它们具有良好的抗磁性能。
二、磁性材料的应用1. 电子领域磁性材料在电子领域的应用非常广泛。
以硬磁材料为例,它们常用于制造磁头、磁盘等存储设备,因为硬磁材料具有较高的矫顽力和矫顽力储量。
软磁材料则常用于制造变压器、电感等电磁设备,因为软磁材料具有较低的矫顽力和矫顽力储量,能够有效减小能量损耗。
2. 通信领域磁性材料在通信领域的应用主要体现在电磁波的控制和传输方面。
例如,铁氧体材料具有较高的磁导率和较低的磁滞损耗,常用于制造天线、滤波器等通信设备,能够有效地控制和传输电磁波信号。
3. 医疗领域磁性材料在医疗领域的应用主要体现在磁共振成像和磁治疗方面。
顺磁性材料常用于磁共振成像中的对比剂,能够提高图像的对比度和清晰度。
磁性纳米颗粒则常用于磁治疗中的靶向输送和热疗,能够实现对癌细胞的精确杀灭。
4. 能源领域磁性材料在能源领域的应用主要体现在电池、超级电容器等储能设备中。
磁性分类
物质磁性的分类1、抗磁性当磁化强度M为负时,固体表现为抗磁性。
Bi、Cu、Ag、Au等金属具有这种性质。
在外磁场中,这类磁化了的介质内部的磁感应强度小于真空中的磁感应强度M。
抗磁性物质的原子(离子)的磁矩应为零,即不存在永久磁矩。
当抗磁性物质放入外磁场中,外磁场使电子轨道改变,感生一个与外磁场方向相反的磁矩,表现为抗磁性。
所以抗磁性来源于原子中电子轨道状态的变化。
抗磁性物质的抗磁性一般很微弱,磁化率H一般约为-10-5,为负值。
2、顺磁性顺磁性物质的主要特征是,不论外加磁场是否存在,原子内部存在永久磁矩。
但在无外加磁场时,由于顺磁物质的原子做无规则的热振动,宏观看来,没有磁性;在外加磁场作用下,每个原子磁矩比较规则地取向,物质显示极弱的磁性。
磁化强度与外磁场方向一致,为正,而且严格地与外磁场H成正比。
顺磁性物质的磁性除了与H有关外,还依赖于温度。
其磁化率H与绝对温度T成反比。
式中,C称为居里常数,取决于顺磁物质的磁化强度和磁矩大小。
顺磁性物质的磁化率一般也很小,室温下H约为10-5。
一般含有奇数个电子的原子或分子,电子未填满壳层的原子或离子,如过渡元素、稀土元素、钢系元素,还有铝铂等金属,都属于顺磁物质。
3、铁磁性对诸如Fe、Co、Ni等物质,在室温下磁化率可达10-3数量级,称这类物质的磁性为铁磁性。
铁磁性物质即使在较弱的磁场内,也可得到极高的磁化强度,而且当外磁场移去后,仍可保留极强的磁性。
其磁化率为正值,但当外场增大时,由于磁化强度迅速达到饱和,其H变小。
铁磁性物质具有很强的磁性,主要起因于它们具有很强的内部交换场。
铁磁物质的交换能为正值,而且较大,使得相邻原子的磁矩平行取向(相应于稳定状态),在物质内部形成许多小区域——磁畴。
每个磁畴大约有1015个原子。
这些原子的磁矩沿同一方向排列,假设晶体内部存在很强的称为“分子场”的内场,“分子场”足以使每个磁畴自动磁化达饱和状态。
这种自生的磁化强度叫自发磁化强度。
磁学学习题集
1. 顺磁性、抗磁性、铁磁性、反磁性的物理特征及代表性材料一、两种,它们的磁化率的温度关系。
金属导电电子的顺磁性(泡利顺磁性)磁化率FB E n 232μχ=的推导、各种抗磁性的来源。
顺磁性:一种弱磁性,呈现正的磁化率,数量级为10-5-10-2,磁性离子之间不存在明显的相互作用。
代表材料:FeCl2,CoCl2。
磁化率与温度的关系:居里定律和居里-外斯定律。
抗磁性:一种弱磁性,呈现负的磁化率,数量级为10-5,磁性离子之间不存在明显的相互作用,主要分为正常抗磁性和反常抗磁性(Bi )。
代表材料:Ag,Ag,Cu 。
磁化率与温度的关系:正常抗磁性磁化率基本不随温度和磁场变化;反常抗磁性与温度和磁场有明显的依赖关系,在极低温下出现德哈斯-范阿尔芬效应。
正常抗磁性:电磁感应;反常抗磁性:导电电子受周期性晶格场的作用而引起的。
铁磁性:一种强磁性,在居里温度以下,存在自发磁化现象和分畴现象,近邻磁矩排列平行。
代表材料:Fe ,Co ,Ni,Fe3O4,Fe2O3。
磁化率与温度的关系:在居里温度以上,满足居里-外斯定律。
反铁磁性:一种强磁性,在居里温度以下,存在自发磁化现象和分畴现象,近邻磁矩排列反平行。
代表材料:MnO ,FeO 。
磁化率与温度的关系:在居里温度以上,满足居里-外斯定律。
金属导电电子的顺磁性推导:《铁磁学上》P57 2. 孤立原子的磁矩的组成。
用洪德法则分析单个离子(d 电子和f 电子)的磁矩。
原子组成晶体时轨道角动量冻结现象的理解、轨道角动量冻结的本质及其对磁矩的影响。
组成:轨道磁矩与自旋磁矩的耦合。
上P24分析例子:上P25。
轨道冻结:上P73。
3. 铁磁性的基本特征。
从唯象理论和交换作用理论的角度理解铁磁性物质的自发磁化和居里温度(包括反铁磁和亚铁磁情况)。
居里—外斯定律的推导、分子场的本质。
自旋波的理解与低温下铁磁体的磁化强度与温度的关系。
铁磁性基本特征:一种强磁性,在居里温度以下,存在自发磁化现象和分畴现象,近邻磁矩排列平行。
无机材料化学(第11讲物质的磁性分类)
(1)磁滞回线
磁化过程中磁化强度与磁场强度的关系曲线。 (磁化曲线)
OAB 起始磁化曲线 Ms 饱和磁化强度 Mr 剩余磁化强度
或称剩磁 Hc 矫顽磁场或矫顽力 BD 去磁-退磁曲线
磁滞回线
H为铁磁质中的合磁化强度
磁滞回线还可以表示成Biblioteka ~H的关系曲线,其形状和M~H类似。
因为铁磁质中,M的数值比H 大得多(102~106倍),
反铁磁质的磁化率x>0,一般为10-3~10-6,μr>1。 在磁场中表现为弱磁性。 具有反铁磁性的物质(反铁磁体)有: (1)氧化物:MnO、FeO、α-Fe2O3、Cr2O3、NiO等; (2)部分金属:Mn、Cr、Pt、Pd等; (3)其它化合物:FeS2、MnS、NiF2、FeF2等及部分
铁氧体, 如 ZnFe2O4(反尖晶石)等。
3.3.3 物质的磁性分类
根据磁化率 x 值 或 相对磁导率μr (μr = 1+x ) 的 大小及变化规律,物质的磁性可分为以下五类:
逆磁性(或抗磁性) 顺磁性 铁磁性 反铁磁性 亚铁磁性
1. 逆磁性(或抗磁性)
具有逆磁性的物质在磁场中的磁化很弱, x<0,约为 -10-6 ~ -10-4,μr 是略小于1的数。
磁化强度 M 与磁场强度 H 方向相反,( M = x H )
且一般情况下x不随温度变化。
逆磁性物质主要有如下几类:
(1)惰性气体; (2)不含过渡元素的离子晶体,如 NaCl、KCl 等; (3)不含过渡元素的共价化合物(如CO2)和所有有机化合物; (4)某些金属和非金属,如 Bi、Zn、Cu、 Hg、Pb 、Si、P等。
(4) 铁磁居里温度
升高温度时,热运动可以瓦解磁畴内磁矩有规则的 排列,使磁畴全部破坏的最低温度即为 居里点 TC (居里温度),这时铁磁体转变为顺磁性物质,居里 点体现分子热运动对磁畴形成的干扰。
磁性材料名词解释
磁性材料Jump to: navigation, search磁性材料magnetic material可由磁场感生或改变磁化强度的物质。
按照磁性的强弱,物质可以分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性等几类。
铁磁性和亚铁磁性物质为强磁性物质,其余为弱磁性物质。
现代工程上实用的磁性材料多属强磁性物质,通常所说的磁性材料即指强磁性材料。
磁性材料的用途广泛。
主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。
磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。
简史中国是世界上最先发现物质磁性现象和应用磁性材料的国家。
早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。
11世纪就发明了制造人工永磁材料的方法。
1086年《梦溪笔谈》记载了指南针的制作和使用。
1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。
近代,电力工业的发展促进了金属磁性材料──硅钢片(Si-Fe合金)的研制。
永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。
随着通信技术的发展,软磁金属材料从片状改为丝状再改为粉状,仍满足不了频率扩展的要求。
20世纪40年代,荷兰J.L.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料,接着又出现了价格低廉的永磁铁氧体。
50年代初,随着电子计算机的发展,美籍华人王安首先使用矩磁合金元件作为计算机的内存储器,不久被矩磁铁氧体记忆磁芯取代,后者在60~70年代曾对计算机的发展起过重要的作用。
50 年代初人们发现铁氧体具有独特的微波特性,制成一系列微波铁氧体器件。
压磁材料在第一次世界大战时即已用于声纳技术,但由于压电陶瓷的出现,使用有所减少。
后来又出现了强压磁性的稀土合金。
非晶态(无定形)磁性材料是近代磁学研究的成果,在发明快速淬火技术后,1967年解决了制带工艺,正向实用化过渡。
大学物理下15磁介质
二、 介质中的磁场 磁场强度
B B0 B
1、介质中的磁高斯定理
B
B0
B0 dS 0
s
B dS 0
s
B dS 0
s
2、有磁介质时的安培环路定理 磁场强度 无限大各向同性的均匀磁介质中: 磁场强度
H
B
0 r
B
单位(SI): A/m
r : 介质的相对磁导率
0 r
称介 H dl I
L
第 15 章 磁介质
一、 顺磁性和抗磁性
传导电流产生
真空中: B0
磁介质中:
(类比电介质中的电场)
B B0 B
与介质有关的电流产生
无限大均匀磁介质中: B r B0
B 相对磁导率: r B0
r 1 r 1
抗磁质(铜、铋、硫、氢、银等) 顺磁质(锰、铬、铂、氧、氮等) 铁磁质(铁、钴、镍等) 完全抗磁性
r 1
r 0
几种磁介质的相对导磁率
磁介质种类 铋(293K) 汞(293K) 抗磁质 r<l 铜(293K) 氢(气体) 液氧(90K) 氧气(293K) 顺磁质 r >1 铝(293K) 铂(293K) 铁磁质 r >>1 纯 铁 硅 钢 坡莫合金 相对导磁率 l-16.0×10-5 l-2.90×10-5 l-1.00×10-5 l-3.98×10-5 1+769.9×10-5 l+344.9×10-5 l+1.650×10-5 l+26.00×10-5 5 ×103(最大值) 7 ×102(最大值) 1 ×105(最大值)
固体的磁性 基础知识
固体的磁性 基础知识1. 磁性的一种分类方式根据磁化率χ的大小符号以及与温度、磁场的关系,可以把物质的磁性分成五类:(1)抗磁性,磁化强度与磁场方向相反,χ < 0,其值约为10-7~10-6;(2)顺磁性,磁化强度与磁场方向相同,χ > 0,其值约为10-6~10-5;(3)反铁磁性,χ > 0,其值约为10-4;(4)亚铁磁性,χ > 0,其值约为10-1~104;(5)铁磁性,χ > 0,其值约为10-1~106抗磁性的χ几乎与温度无关,其余均与温度有关;亚铁磁性和铁磁性为强磁性,其余为弱磁性。
2. 原子磁矩构成固体物质的原子中,电子磁矩比原子核的磁矩大三个数量级,所以电子磁矩对固体的磁性起主要作用。
2.1 独立原子的磁矩原子中电子的磁矩由轨道磁矩和自旋磁矩两部分组成。
电子的轨道磁矩为L 是电子的轨道角动量,µL 的绝对值为其中l 是电子轨道角动量量子数,µB 是波尔磁子,其大小为电子的自旋磁矩为 = -2L e mμL =(1)L Bl l 2B e m S e mμSS 是电子的自旋角动量,µS 的绝对值及其在z 方向的投影分别为如果原子中只有一个电子,则原子磁矩为J 是电子的总角动量。
如果原子中有多个电子,原子的总角动量有LS 耦合和JJ 耦合两种耦合方式,分别适用于原子序数比较小和原子序数比较大(Z > 80)的耦合方式。
常见的3d 族和4f 族元素,电子之间的轨道-轨道与自旋-自旋偶合较强,适合使用LS 耦合。
2.2 晶场效应原子结合成晶体后,原子的电子状态发生变化,价电子参与各种类型的键合,而处在格点位置的离子也不同于孤立离子,其电子状态因受周围离子所产生的静电场的作用而发生变化,这种静电场称为晶体电场,它所造成的影响称为晶场效应。
晶场效应有两种:一是离子中简并的电子态发生劈裂,二是电子的轨道角动量的贡献部分或者全部被冻结。
铁磁、反铁磁、顺磁、抗磁
铁磁性铁磁性Ferromagnetism过渡族金属(如铁)及它们的合金和化合物所具有的磁性叫做铁磁性,这个名称的由来是因为铁是具有铁磁性物质中最常见也是最典型的。
钐(Samarium),钕(neod ymium)与钴的合金常被用来制造强磁铁。
铁磁理论的奠基者,法国物理学家P.-E.外斯于1907年提出了铁磁现象的唯象理论。
他假定铁磁体内部存在强大的“分子场”,即使无外磁场,也能使内部自发地磁化;自发磁化的小区域称为磁畴,每个磁畴的磁化均达到磁饱和。
实验表明,磁畴磁矩起因于电子的自旋磁矩。
1928年W.K.海森伯首先用量子力学方法计算了铁磁体的自发磁化强度,给予外斯的“分子场”以量子力学解释。
1930年F.布洛赫提出了自旋波理论。
海森伯和布洛赫的铁磁理论认为铁磁性来源于不配对的电子自旋的直接交换作用。
铁磁性材料存在长程序,即磁畴内每个原子的未配对电子自旋倾向于平行排列。
因此,在磁畴内磁性是非常强的,但材料整体可能并不体现出强磁性,因为不同磁畴的磁性取向可能是随机排列的。
如果我们外加一个微小磁场,比如螺线管的磁场会使本来随机排列的磁畴取向一致,这时我们说材料被磁化[1]。
材料被磁化后,将得到很强的磁场,这就是电磁铁的物理原理。
当外加磁场去掉后,材料仍会剩余一些磁场,或者说材料"记忆"了它们被磁化的历史。
这种现象叫作剩磁,所谓永磁体就是被磁化后,剩磁很大。
当温度很高时,由于无规则热运动的增强,磁性会消失,这个临界温度叫居里温度(Curie temperature)。
如果我们考察铁磁材料在外加磁场下的机械响应,会发现在外加磁场方向,材料的长度会发生微小的改变,这种性质叫作磁致伸缩(magnetostriction)。
产生铁磁性条件:铁磁质的自发磁化:铁磁现象虽然发现很早,然而这些现象的本质原因和规律,还是在本世纪初才开始认识的。
1907年法国科学家外斯系统地提出了铁磁性假说,其主要内容有:铁磁物质内部存在很强的“分子场”,在“分子场”的作用下,原子磁矩趋于同向平行排列,即自发磁化至饱和,称为自发磁化;铁磁体自发磁化分成若干个小区域(这种自发磁化至饱和的小区域称为磁畴),由于各个区域(磁畴)的磁化方向各不相同,其磁性彼此相互抵消,所以大块铁磁体对外不显示磁性。
抗性、顺磁性和铁磁性
磁化规律: M H
(1)电子轨道在磁场中旋进产生的宏观磁性
M dPl Pl sin d Pl sin L dt dt
M l B sin
L
l
Pl
B
B
d dPl Pl
B
µ l
Pl dPl
3
旋进角动量与外磁场同方 向,与旋进角动量相应的 轨道磁矩(感应磁矩)与 外磁场方向相反。 感应磁矩是抗磁性的来源。
单位体积的原子数
M N
o Ze N
2
6m
H r2
o Ze2 N 2 M r H 6m
4
电子轨道在磁场中旋进产生的宏观磁性具有抗磁性
(2)具有磁矩的原子在磁场中各种取向的平均效果 产生宏观磁性
具有磁矩的原子在磁场中的附加能量:
=- J B cos
J 和外磁场夹角< 90o的原子的能级 低于 J 和外磁场夹角> 90o的原子的能级
µБайду номын сангаасl
L
l
Pl
B
1 l e B 0 H 电子轨道旋进频率: L 2 Pl 4 m
o Ze H 一个原子中的Z个电子形成的环流: i Ze L 4 m
2
o Ze2 H r2 一个原子中的Z个电子轨道旋进引起的磁矩为: 6m
磁化强度(单位体积中的磁矩):
J
e Mg B / KT
可算出平均磁矩为
J ( J 1) g 2 B 2 B 3kT
o J ( J 1) g 2 B 2 磁化率: H 3KT
o J 2
3KT
(一个原子磁化率)
材料物理性能
一、名词解释1.顺磁体:原子内部存在永久磁矩,无外磁场,材料无规则的热运动使得材料没有磁性,当外磁场作用,每个原子的磁矩比较规则取向,物质显示弱磁场,这样的磁体称顺磁体。
2.铁磁体:在较弱的磁场内,铁磁体也能够获得强的磁化强度,而且在外磁场移去,材料保留强的磁性。
原因是强的内部交换作用,材料内部有强的内部交换场,原子的磁矩平行取向,在物质内部形成磁畴,这样的磁体称铁磁体。
3.金属热膨胀:物质的体积或长度随温度的升高而增大的现象。
4.内耗:对固体材料内在的能量损耗称为内耗。
5.磁致伸缩效应:铁磁体在磁场中被磁化时,其形状和尺寸都会发生变化的现象。
6.磁畴:指在未加磁场时铁磁体内部已经磁化到饱和状态的小区域。
7.软磁材料:软铁被磁化后,磁性容易消失,称为软磁材料。
8.亚铁磁体:磁体中存在大小不等反平行的自旋磁矩,磁矩大小部分抵消,因而磁体仍然可以自发磁化,类似于铁磁体。
这种磁体称为亚铁磁体。
9.磁畴结构:磁畴的形状、尺寸、磁壁的类型与厚度的总称。
10.磁滞回线:当磁化磁场作周期的变化时,表示铁磁体中的磁感应强度与磁场强度关系的一条闭合曲线。
二、问答题1.对于一根具体的导线而言,影响它的导电因素有哪些?答:对于一根具体的导线而言,导电过程分两部分,包括最外电子脱离正离子实和之后的在晶格中运行,所以,影响导电性包括这两部分的影响因素。
(1) 从导电定律关系式中可以看出一个电子的电荷是固定的数值,n有效决定于金属的晶体结构及能带结构,而电子自由运行时间或电子平均自由程则决定于在外电场作用下,电子运动过程中所受到的散射。
(2) 电子在金属中所受到的散射可用散射系数μ来表述。
μ的来源有两方面,一是温度引起离子振动造成的μT,二是各种缺陷及杂质引起晶格畸变造成的μn。
μ=μT+μn相应地电阻为:ρ=ρT+ρn(3) 由温度造成的晶格动畸变和由缺陷造成的晶格静畸变,两者都会引起金属电阻率增大。
2.什么是西贝克(Seeback)效应?它是哪种材料的基础?答:西贝克效应是由于温差产生的热电现象,即温差电动势效应——广义地,在半导体材料中,温度和电动势可以互相产生。
物质的磁性(i)——抗磁性顺磁性和铁磁性
其中
为玻尔磁子,是物
7
质磁矩的最小单元。
二、电子的自旋磁矩(本证磁矩) 电子的自旋是在研究原子的线状光谱时被提出来的,并发现
了光谱线的精细结构。为了解释这种谱线结构,有个重要的假设: 电子具有自旋角动量(本证角动量)和自旋磁矩(本证磁矩)。
自旋角动量在任意方向的外磁场中的投影值
与之相应的电子自旋磁矩在外磁场方向的投影为 注意的是,
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
设两个电子的轨道角动量量子数分别为l则其总轨道角动量l的量子数可取值为对于确定的l值为总轨道角动量l总轨道磁矩的绝对值分别为同样设两个电子的自旋量子数分别为s1和s2则总自旋量子数s的可能取值为其中为朗德因数或光谱分裂因数四洪德定则该定则是洪德基于对原子光谱的分析而总结出来的经验法则
第一章:物质的磁性(I) ——抗磁性、顺磁性和铁磁性
后来证明,巡游电子模型更加接近过渡金属磁电子的真实状 态。近20多年来,守谷等人建立了自旋涨落的自洽重整化理 论并用这一理论对弱铁磁性金属(ZrZn2,Sc3In)进行了计 算,导出了居里-外斯定律。在这基础上,守谷进一步提出 弱铁磁性金属中的居里-外斯定律源于自旋涨落的新物理思 想。在这一思想的指导下,守谷提出了用自旋涨落来统一局 域电子模型和巡游电子模型的模型。
其中
为轨道面积。
电子运动的轨道角动量为 6
于是有
按其态量中在子rn出,力l,的m 学分l,理m 布论s是 概,率轨表 。道根电征 据子量的状 子运力动态 学状的态的 解应释n四 以l,m lm 波s空个 函r间数2量表 量 子nl数lm 示 , ms的r物表该理示状
磁性材料基础知识
永磁材料各项性能参数的单位换算
剩磁Br
法定计量单位为特斯拉(T)。以前常用高斯(G s)为计量单位。 它们之间的换算为: 1T=10000Gs ;1mT=10Gs
二、磁性材料的分类
磁性材料按性质分为金属和非金属两类,前者主要有电工 钢、镍基合金和稀土合金等,后者主要是铁氧体材料。 按使用又分为软磁材料、永磁材料和功能磁性材料。 按生产手段的不同,又分为烧结磁性材料和粘接磁性材料。 按成型时是否外加成型磁场,永磁材料还有各向同性和各 向异性之别。 永磁材料铁氧体材料按压制方式的不同还有干压和湿压之 分。
永磁材料在应用中应注意的问题
(1)永磁材料的应用环境 永磁铁氧体的应用环境包括:温度、湿度、盐雾、辐射、冲击 等等,所以使用人员在设计时应充分考虑永磁材料在应用环境 中的失效,正确选用永磁材料。失效主要表现为:退磁、腐蚀、 性能变坏且不可恢复、不稳定等等。 (2)高温使用时,应选用工作温度高和温度系数小的材料,并尽量 设计靠近最大磁能积点。 (3)材料的磁性能的均匀性和一致性对器件的性能有很大的影响。 导致材料磁性能不均匀不一致的主要原因有:成型磁场的均匀 性,磁粉的流动性、烧结温度的均匀性。加工公差及加工方向, 磁化磁场的均匀性等因素。 (4)选择内禀矫顽力大且矩形度好的永磁体 (5)使用前最好进行高于使用温度50℃的老化处理 (6)使用时充磁一定要充饱和。一般铁氧体永磁充饱和需要外加磁 场为800KA/m以上。
矫顽力Hc
法定计量单位为:安每米(A/m)。以前常用奥斯特(Oe)为计量 单位 两个单位之间的换算为:1 (Oe)=79.6 (A/m);为方便起见, 常取整数80进行换算。1(kOe)=80 ( kA/m)
物质顺磁性和抗磁性的产生原因
顺磁性和抗磁性的原因磁性是物质的一种基本属性。
物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。
铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质(参考文献1 )。
从上面的介绍看出,任何物质都会显示磁性,并且物质从顺磁性到反磁性、磁性从强到弱是逐渐变化的,没有一个明显的界限。
物质的磁性到底是怎么产生的,本文就此观点提出我自己的看法。
一、现在的理论给人们带来的疑惑1、顺磁性:现在人们认为,电子磁矩由电子的轨道磁矩和自旋磁矩组成。
在晶体中,电子的轨道磁矩受晶格的作用,其方向是变化的,不能形成一个联合磁矩,对外没有磁性作用。
因此,物质的磁性不是由电子的轨道磁矩引起,而是主要由自旋磁矩引起。
每个电子自旋磁矩的近似值等于一个波尔磁子。
是原子磁矩的单位。
因为原子核比电子重2000倍左右,其运动速度仅为电子速度的几千分之一,故原子核的磁矩仅为电子的千分之几,可以忽略不计。
(参考文献2 )我认为上面这段论述是不合理的,我们都知道,原子是由原子核和核外电子组成,原子核又是由质子和中子组成,原子核的体积约为原子体积的几千万亿分之一,(半径约为原子的十万分之一).打个比方,原子相当于足球场那么大,而原子核则只有一只蚂蚁那么大。
(参考文献3)。
电子的质量约为质子质量的1/1836(参考文献4 )。
中子能够通过β衰变过程变成质子、电子和反中微子,(参考文献5 )。
从这些论述可想而知,电子的体积会有多大,电子的体积不会超过质子和中子体积的千分子一。
即从电子的角度来看原子,原子就象是一个非常巨大的宇宙一样。
由于电子的体积很小很小,即使电子自旋产生的磁场较强,它影响的范围必然很小很小,不可能影响到原子以外,因此电子自旋产生的磁场在宏观上是显示不出来的,如果能显示出来,电子产生的磁场就强大的无法想象了。
上面还提到原子核的磁矩很小,可以忽略,这个观点我觉得也是错误的,人们现在只是从质量上去考虑对磁矩的影响,而把其它因素忽略了,比方说原子核的体积。
第十二讲抗磁性与顺磁性
H
它的大小反映了物质磁化的难易程度,也是对物质 磁性分类的中主国矿要业大依学 材据料科。
学与工程学院
磁体的分类
抗磁体 磁化率为甚小的负常数,约为10-6数量级
弱 磁
顺磁体
过渡族金属 磁化率为正常数,约为10-3 ~10-6数量级
体
贵金属,稀土金属,碱金属
反铁磁体 磁化率为甚小的正常数,当T 高于某个温度时,
泡利有成就的研究还涉及以下几个方面:相对论量子电动力 学、基本粒子的自族与统计分布律的关系、气体和金属的顺 磁性(导致了金属中的电子量子论)、把单粒子的波动理论 推广到多粒子、介子的解释及核力等等。在理论物理学的每 个领域里,泡利几乎都做出过重要贡献。
中国矿业大学 材料科 学与工程学院
朗道(1908~1968)
合金由不同元素和形式组成时对磁性会有很大的 影响,形成固溶体合金时磁化率因原子之间结合 的改变而有较明显的变化通常,由弱磁化率的两 种金属组成固溶体时,其磁化率和成分按接近于 直线的平滑曲线变化,如Al-Cu合金的α固溶体等。 由抗磁金属为溶剂、强顺磁金属(或铁磁金属)为溶 质形成固溶体时,情况则比较复杂。当固溶体合 金有序化时,由于溶剂、溶质原子呈现有规则的 交替排列,使原子之间结合力随之改变,因而导 致合金磁化率发生明显变化。
苏联著名的物理学家。最著名的贡献有 “朗道十诫”:量子力学中的密度矩阵和 统计物理学 (1927);自由电子抗磁性的理 论(1930);二级相变的研究(1936~1937); 铁磁性的磁畴理论和反铁磁性的理论解释 (1935);超导体的混合态理论(1934);原 子核的几率理论(1937);氦Ⅱ超流性的量 子理论(1940~1941);基本粒子的电荷约 束理论(1954);费米液体的量子理论 (1956);弱相互作用的CP不变性(1957)。 因凝聚态特别是液氦的先驱性理论,被授 予1962年诺贝尔物理学奖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子物理学顺磁性,抗磁性,铁磁性指导教师:XXX专业:XXXX学号:XXXXXXXXXX姓名:XXXXXXX大学XXXX年X月X日顺磁性,抗磁性,铁磁性摘要:一些物质放在磁场中经过磁化后,它的宏观磁矩方向同磁场方向相反,此类物质称为抗磁性的;另一些物质放在磁场中经过磁化后,它的宏观磁矩方向同磁场方向相同,此类物质称为顺磁性的;而某些物质,如铁、钴、镍以及一些稀土元素和许多氧化物,在受到外磁场磁化后,显出比顺磁性强的很多的磁性,在失去磁场后,还保留磁性,这种现象称为铁磁性。
关键词:顺磁性,抗磁性,铁磁性一、顺磁性简介:顺磁性物质的磁化率为正值,比反磁性大1~3个数量级,X约10^-5~10^-3,遵守Curie定律或Curie-Weiss定律。
物质中具有不成对电子的离子、原子或分子时,存在电子的自旋角动量和轨道角动量,也就存在自旋磁矩和轨道磁矩。
在外磁场作用下,原来取向杂乱的磁矩将定向,从而表现出顺磁性。
定义:顺磁性是一种弱磁性。
当分子轨道或原子轨道上有落单的原子或电子时,就会产生顺磁性。
顺磁(性)物质的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩。
但是原子(或分子)磁矩之间并无强的相互作用(一般为交换作用),因此原子磁矩在热骚动的影响下处于无规(混乱)排列状态,原子磁矩互相抵消而无合磁矩。
但是当受到外加磁场作用时,这些原来在热骚动下混乱排列的原子磁矩便同时受到磁场作用使其趋向磁场排列和热骚动作用使其趋向混乱排列,因此总的效果是在外加磁场方向有一定的磁矩分量。
这样便使磁化率(磁化强度与磁场强度之比)成为正值,但数值也是很小,一般顺磁物质的磁化率约为十万分之一(10^-5),并且随温度的降低而增大。
原理:顺磁性物质可以被看作是由许多微小的磁棒组成的,这些磁棒可以旋转,但是无法移动。
这样的物质受到外部磁场的影响后其磁棒主要顺磁力线方向排列,但是这些磁棒互相之间不影响。
热振动不断地使得磁棒的方向重新排列,因此磁棒指向不排列比排列的可能性高。
因此磁力线的强度越强顺磁性物质内磁棒的排列性就越强。
以上模型当然只是一个简化的模型。
实际上顺磁性物质内部并没有小磁棒,而是微观的磁矩。
在顺磁性物质中这些磁矩互相之间不影响。
然而与铁磁性不同的是在顺磁性物质中外部磁场消失后物质内的磁场立刻就由于热运动消失了。
磁化向量与磁场强度成正比,物质的磁化率越高,它就越容易被磁化。
因此磁化率是衡量顺磁性的强度的量。
由于磁化率和相对磁导率之间有以下简单关系磁导率往往也被看作是衡量顺磁性的量。
假如磁矩之间有耦合的话物质内就会产生磁性有序状态,在这种情况下磁化率会非常复杂,因此这样的物质不再是顺磁性的。
总的来说这样的物质的磁性有序状态在一个阈温度以上会被破坏,由于物质中依然有磁矩,因此在这个温度以上这样的物质呈顺磁性。
铁磁性物质均拥有极大的磁化率,但是大的磁化率不一定就说明一个物质是铁磁性的。
分类:从经典物理学出发物质的顺磁性无法完全被解释,只有从量子力学出发这个特征才能被完全理解。
对于磁学最重要的认识是一个原子状态的总角动量总是与其磁矩相连的:在这里是电子自旋g因子,是玻尔磁子。
原子的总角动量由以下三部分组成:1自旋2电子的角量子数3核子的核自旋。
核自旋导致的磁矩非常弱,对磁化率基本上没有多少作用,因此这个量一般不被顾及,不过这个量还是可以被测量得到的,医学中使用的核磁共振成像就是测量这个量获得的。
种类:常见的顺磁物质有氧气、金属铂(白金)、一氧化氮、含掺杂原子的半导体{如掺磷(P)或砷(As)的硅(Si)}、由幅照产生位错和缺陷的物质等。
还有含导电电子的金属如锂(Li)、钠(Na)等,这些顺磁(性)金属的顺磁磁化率却与温度无关,这种金属的特殊顺磁性是可以用量子力学解释的。
二、抗磁性简介:抗磁性是一些物质的原子中电子磁矩互相抵消,合磁矩为零。
但是当受到外加磁场作用时,电子轨道运动会发生变化,而且在与外加磁场的相反方向产生很小的合磁矩。
这样表示物质磁性的磁化率便成为很小的负数(量)。
磁化率是物质在外加磁场作用下的合磁矩(称为磁化强度)与磁场强度之比值,符号为κ。
一般抗磁(性)物质的磁化率约为负百万分之一(-10^-6)。
定义:抗磁性是物质抗拒外磁场的趋向,因此,会被磁场排斥。
所有物质都具有抗磁性。
可是,对于具有顺磁性的物质,顺磁性通常比较显著,遮掩了抗磁性。
[17] 只有纯抗磁性物质才能明显地被观测到抗磁性。
例如,惰性气体元素和抗腐蚀金属元素(金、银、铜等等)都具有显著的抗磁性。
当外磁场存在时,抗磁性才会表现出来。
假设外磁场被撤除,则抗磁性也会遁隐形迹。
原理:抗磁性的成因,是当物质处在外加磁场中,外加磁场使得物质电子轨道(更精确的讲法:轨域)运动产生改变的连带效应。
当施加一外源磁场B时,会对运动中的电子(电荷q)产生了磁力F:F= q v×B。
此力改变了电子所受的向心力,使得电子轨道运动或是加速,或是减慢。
电子速度因此受到改变,而连带改变了其与外加磁场相反方向上的轨道磁矩。
考虑两个电子轨域:一个顺时针运动,一个逆时针运动。
一进入页面方向的外加磁场会使顺时针转动电子的向心力增加,而使其自页面出来方向上的磁矩增加。
同样的外加磁场则会使逆时针转动电子的向心力减少,而使其进入页面方向上的磁矩减少。
两者的改变都与进入页面方向的外加磁场相抗衡。
然而,外加磁场对于多数日常物质所感生的磁矩却非常小,因此净效应会是一种斥力。
所有物质都会对外加磁场作出不同程度的抗磁性反应;但是对于同时拥有其他磁性性质的材料来说(如铁磁性和顺磁性),抗磁性可以完全忽略不计。
那些仅仅或者很大程度显示抗磁性的物质被称之为抗磁性材料或者抗磁性子。
那些被认为具有抗磁性的材料通常被非物理学家作为非磁性物质看待。
它们包括水,DNA,绝大多数有机化合物如石油和一些塑料,和金属如水银(元素),金和铋。
朗之万抗磁性理论朗之万抗磁性理论可用于解释闭壳层原子构成的物质的抗磁性。
强度的磁场作用在电荷量为 e 质量为的电子上,电子受洛伦兹力作用将进行频率为的拉莫尔进动。
单位时间内转动速度为,含个电子的原子所产生的环状电流为(采用国际单位制)环状电流产生的磁矩等于电流强度与闭合环包含的面积。
假定外场沿轴方向。
平均的环内面积为,其中为电子到轴的均方距离。
可知磁矩为若电荷分布呈球对称, 可设,其中为电子到核的均方距离。
则。
若为单位体积原子数,抗磁性磁化率为种类:常见的抗磁物质:水、金属铜、碳(C)和大多数有机物和生物组织。
抗磁物质的一个重要特点是磁化率不随温度变化。
三、铁磁性简介:指的是一种材料的磁性状态,具有自发性的磁化现象。
各材料中以铁最广为人知,故名之。
某些材料在外部磁场的作用下得而磁化后,即使外部磁场消失,依然能保持其磁化的状态而具有磁性,即所谓自发性的磁化现象。
所有的永久磁铁均具有铁磁性或亚铁磁性。
原理:铁磁性的原理可由两个量子力学描述的现象成功的预测:自旋和泡利不相容原理。
电子的自旋加上其轨道角动量导致一个偶极子磁矩和形成一个磁场。
在大多数物质中所有电子的总偶极磁矩为零。
只有电子层不满的原子(电子不成对)可能在没有外部磁场的情况下表现一个净磁矩。
铁磁性物质有许多这样的电子。
假如它们排列在一起的话它们可以一起产生一个可观测得到的宏观场。
这些偶极趋于指向外部磁场的方向。
这个现象被称为顺磁性。
铁磁性物质的偶极趋于在没有外部磁场的情况下也指向同一方向。
这是一个量子力学现象。
按照古典电磁学,两个临近的磁偶极趋于指向相反的方向,因此,它们的磁场会互相抗拒,互相抵销。
但是,由于单独自旋产生的磁场很小,这效应很微弱,形成的排列很容易就会被热涨落摧毁。
在有些物质里,由于一种称为交换相互作用的特别量子力学效应,自旋与自旋彼此之间方向的改变,会导致临近电子静电排斥力的改变。
在近距离,交换相互作用会比偶极-偶极磁相互作用强劲很多。
因此,对于铁磁性物质,临近电子的自旋趋于指向同样的方向。
根据包立不相容原理,两个自旋相同的电子不能占有同样的位置。
因此,两个临近原子的位于最外电子层的不成对价电子,当它们的轨域相互重叠时,假若自旋方向相同(平行自旋),则电荷分布会比较分散,否则,电荷分布会比较集中。
所以,促使自旋方向相同这动作会降低电势能,使得平行自旋态更为稳定。
简言之,因库伦力而互相排斥的电子,借着平行自旋使得电荷分布更加分散,从而降低电势能。
这能量差称为交换能。
在长距离上(数千离子)交换能的作用逐渐被经典偶极相对排列的趋势掩盖,这是在平衡(没有磁性的)情况下铁磁性物质的偶极总的来说不排列起来的原因。
在没有磁性的铁磁性物质中其磁偶极被分割在外斯畴中。
每个外斯畴内部短距离地磁偶极排列指向同一方向,但是在长距离上不同外斯畴的磁偶极的排列不一致。
不同外斯畴之间的边界被称为畴壁,畴壁内原子之间的指向逐渐更改。
因此一块铁一般没有磁性,或者其磁性非常弱。
但是在一个足够强的外部磁场中,所有外斯畴会沿着这个磁场排列,在外部磁场消失后这些外斯畴会继续保存其同一的指向。
这个磁场与外部磁场之间的关系由一条磁滞曲线描写。
虽然这个排列整齐的外斯畴的能量不是最低的,但是它非常稳定。
在海底的磁铁矿会上百万年地指向它形成时的地磁场方向。
通过加热再在没有外部磁场的情况下冷却磁铁的磁场会消失。
温度升高后热振荡(或熵)与铁磁性的偶极排列竞争。
温度高于居里点后晶体内发生二级相变,整个系统无法磁化,在有外部磁场的情况下这时铁磁性物质显示顺磁性。
在居里点下对称破缺,外斯畴形成。
居里点本身是一个阈值,理论上这里的磁化率为无穷大,虽然这里没有磁化,但是在任何长度范围内均有类似外斯畴的自旋波动。
种类:到目前为止,仅有四种金属元素在室温以上是铁磁性的,即铁,钴,镍和钆,极低低温下有五种元素是铁磁性的,即铽、镝、钬、铒和铥。