MATLAB仿真三相桥式整流电路(详细完美)..

合集下载

三相桥式整流电路的matlab仿真

三相桥式整流电路的matlab仿真

五邑大学电力电子技术课程设计报告题目:三相桥式整流电路的MATLAB仿真院系信息工程学院专业轨道交通自动化学号11071339学生姓名唐伟轩指导教师张建民一、题目的要求和意义利用MATLAB软件中的SIMULINK对三相桥式整流电路进行建模、仿真,设置参数,采集波形。

具体要求如下:输入三相电压源,线电压取380V,50Hz,内阻0.002欧姆。

利用六个晶闸管搭建三相桥式整流电路的模型。

当负载为纯电阻负载与阻感负载时,利用示波器查看仿真波形,并将Ud 、Id、UVT1波形记录下来。

并画出电路的移相特性曲线Ud=f(α)。

故障波形的采集:当触发角为30度时,将其中某一个晶闸管断开,查看电阻或阻感负载下的输出电压Ud 、UVT1的波形,记录下来,并分析故障现象。

整流电路是电力电子技术中最为重要,也是应用得最为广泛的电路,不仅应用于一般工业领域,也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域。

常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。

三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。

Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强。

利用matlab对三相桥式全控整流电路仿真,可以让我们进一步深入了解三相整流电路工作的每一个步骤,充分掌握三相整流电路,而对故障波形的采集与分析,锻炼我们解决电路出现问题时的能力,以使我们在实际工作中也能足够的理论知识去排除及解决各种电路故障,具有十分重要的意义。

二、方案的论证与设计三相桥式全控整流电路由一组共阴极的和一组共阳极接法的晶闸管串联而成。

其中阴极连在一起的三个晶闸管(VT1、VT3、VT5)称为共阴极组,阳极连在一起的三个晶闸管(VT4、VT6、VT2)称为共阳极组,如图1所示。

图1中a相电源的初相角是0,c相电源初相角是120度,b相电源的初相角是-120度。

基于Matlab_Simulink的三相桥式全控整流电路的建模与仿真

基于Matlab_Simulink的三相桥式全控整流电路的建模与仿真

基于Matlab/Simulink的三相桥式全控整流电路的建模与仿真摘要本文在对三相桥式全控整流电路理论分析的基础上,建立了基于Simulink的三相桥式全控整流电路的仿真模型,并对其带电阻负载时的工作情况进行了仿真分析与研究。

通过仿真分析也验证了本文所建模型的正确性。

关键词Simulink建模仿真三相桥式全控整流对于三相对称电源系统而言,单相可控整流电路为不对称负载,可影响电源三相负载的平衡性和系统的对称性。

故在负载容量较大的场合,通常采用三相或多相整流电路。

三相或多相电源可控整流电路是三相电源系统的对称负载,输出整流电压的脉动小、控制响应快,因此被广泛应用于众多工业场合。

本文在Simulink仿真环境下,运用PowerSystemBlockset的各种元件模型建立三相桥式全控整流电路的仿真模型,并对其进行仿真研究。

一、三相桥式全控整流电路的工作原理三相桥式全控整流原理电路结构如图1所示。

三相桥式全控整流电路是应用最广泛的整流电路,完整的三相桥式整流电路由整流变压器、6个桥式连接的晶闸管、负载、触发器和同步环节组成(见图1-1)。

6个晶闸管以次相隔60度触发,将电源交流电整流为直流电。

三相桥式整流电路必须采用双脉冲触发或宽脉冲触发方式,以保证在每一瞬时都有两个晶闸管同时导通(上桥臂和下桥臂各一个)。

整流变压器采用三角形/星形联结是为了减少3的整倍次谐波电流对电源的影响。

元件的有序控制,即共阴极组中与a、b、c三相电源相接的三个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的三个晶闸管分别为VT、VT。

它们可构成电源系统对负载供电的6条整流回路,各整流回路的交流电源电压为两元件所在的相间的线电压。

图1-1 三相桥式全控整流原理电路二、基于Simulink三相桥式全控整流电路的建模三相桥式全控整流电路在Simulink环境下,运用PowerSystemBlockset的各种元件模型建立了三相桥式全控整流电路的仿真模型,仿真结构如图2-1所示:图2-1 三相桥式全控整流电路的仿真模型在模型的整流变压器和整流桥之间接入一个三相电压-电流测量单元V-I是为了观测方便。

三相桥式整流及有源逆变电路的MATLAB仿真

三相桥式整流及有源逆变电路的MATLAB仿真

三相桥式整流及有源逆变电路的MATLAB 仿真5.1 三相桥式整流及有源逆变电路的原理和仿真模型5.1.1 三相桥式整流及有源逆变电路的原理实验线路如图5-1及图5-2所示。

主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l 、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。

集成触发电路的原理可参考有关内容,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。

图中的R 用D42三相可调电阻,将两个900Ω接成并联形式;电感Ld 在DJK02面板上,选用700mH ,直流电压、电流表由DJK02获得。

在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器均在DJK10挂件上,其中心式变压器用作升压R图5-1 三相桥式全控整流电路实验原理图R图5-2 三相桥式有源逆变电路实验原理图变压器,逆变输出的电压接心式变压器的中压端Am 、Bm 、Cm,返回电网的电压从高压端A 、B 、C 输出,变压器接成Y/Y 接法。

当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。

其交流侧由三相电源供电。

三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。

三相桥式整流电路主回路接线图如图所示。

完整的三相桥式全控整流电路由整流变压器,6个桥式连接的晶闸管、负载、触发器和同步环节组成。

六个晶闸管依次相隔60°触发,将电源交流电整流为直流电。

5.1.2三相桥式整流及有源逆变电路的仿真模型三相桥式整流电路及有源逆变的仿真使用了MATLAB模型库中的三相桥和触发集成模块,建立该电路的仿真过程可以分为建立仿真模型,设置模型参数和观测仿真结果等几个主要阶段,叙述如下:1. 建立仿真模型(1)首先建立一个仿真的新文件。

MATLAB仿真三相桥式整流电路(详细完美)..

MATLAB仿真三相桥式整流电路(详细完美)..

目录摘要........................................ - 2 - Abstract ..................................... - 3 - 第一章引言.................................. - 4 -1.1 设计背景 ............................... - 4 -1.2 设计任务 ............................... - 4 - 第二章方案选择论证.......................... - 6 -2.1方案分析................................ - 6 -2.2方案选择................................ - 6 - 第三章电路设计............................. - 7 -3.1 主电路原理分析.......................... - 7 - 第四章仿真分析............................. - 9 -4.1 建立仿真模型............................ - 9 -4.2仿真参数的设置 ......................... - 10 -4.3 仿真结果及波形分析 ..................... - 11 - 第五章设计总结............................. - 26 - 致谢..................................... - 27 - 参考文献.................................... - 28 -摘要目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。

三相桥式整流电路的matlab仿真-电力电子课程设计

三相桥式整流电路的matlab仿真-电力电子课程设计

五邑大学电力电子技术课程设计报告题目:三相桥式整流电路的MATLAB仿真院系信息工程学院专业自动化班级130705学号3113001682学生姓名李上雄指导教师张建民三相桥式整流电路的matlab仿真一、题目的要求和意义利用MATLAB软件中的SIMULINK对三相桥式整流电路进行建模、仿真,设置参数,采集波形。

设计意义:整流电路是电力电子技术中最为重要的电路,应用广泛。

常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。

三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。

Matlab 提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强。

利用matlab对三相桥式全控整流电路仿真,可以让我们进一步深入了解三相整流电路工作的每一个步骤,充分掌握三相整流电路,而对故障波形的采集与分析,锻炼我们解决电路出现问题时的能力,以使我们在实际工作中也能足够的理论知识去排除及解决各种电路故障,具有十分重要的意义。

设计目的:1、掌握MATLAB软件中的SIMULIN K仿真。

2、加深对三相桥式整流电路的理解。

实验要求:1、利用示波器观察纯电阻负载时的仿真波形,并将u d、i d、u VT1波形记录下来(触发角选择30°)。

2、利用示波器观察阻感负载时的仿真波形,并将u d、i d、u VT1波形记录下来(触发角选择30°)。

3、故障波形的采集:当触发角为0度时,将晶闸管2断开,查看阻感负载下的输出电压u d的波形,记录下来,并分析故障现象。

二、基本原理三相桥式全控整流电路图如下:图1三相桥式全控整流电路原理图晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6,相位依次差60°;共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,相位依次差120°。

基于Matlab的三相桥式全控整流电路的仿真研究_图文(精)

基于Matlab的三相桥式全控整流电路的仿真研究_图文(精)

用simulink对三相桥式全控整流电路进行仿真研究姓名:刘佰兰学校:中山大学学号:09382014 专业:自动化摘要:三相桥式全控整流电路在现代电力电子技术中具有很重要的作用和很广泛的应用。

这里结合全控整流电路理论基础,采用Matlab的仿真工具Simulink对三相桥式全控整流电路的进行仿真,对输出参数进行仿真及验证,进一步了解三相桥式全控整流电路的工作原理。

关键词:simulink 三相桥式全控整流仿真一、研究背景随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。

常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。

三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。

它是由半波整流电路发展而来的。

由一组共阴极的三相半波可控整流电路和一组共阳极接法的晶闸管串联而成。

六个晶闸管分别由按一定规律的脉冲触发导通,来实现对三相交流电的整流,当改变晶闸管的触发角时,相应的输出电压平均值也会改变,从而得到不同的输出。

由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。

Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。

本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。

二、三相桥式全控整流电路工作原理1.三相桥式全控整流电路特性分析图1是电路接线图。

三相桥式全控整流电路图是应用最为广泛的整流电路,其电路图如下:图1在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。

三相桥式全控整流电路的Matlab仿真及其故障分析资料讲解

三相桥式全控整流电路的Matlab仿真及其故障分析资料讲解

三相桥式全控整流电路的M a t l a b仿真及其故障分析三相桥式全控整流电路的MATLAB仿真及其故障分析摘要:设计一种以三相桥式全控整流电路的MATLAB仿真及其故障分析。

以三相桥式全控整流电路为分析对象,利用Matlab/Simulink环境下的SimPowerSystems仿真采集功率器件在开路时的各种波形,根据输出波形分析整流器件发生故障的种类,判断故障发生类型,确定发生故障的晶闸管,实现进一步故障诊断。

运用matlab中的电气系统库可以快速完成对三相整流电路故障仿真,通过分析可以对故障类型给予初步判断,对电力电子设备的开发、运用以及维修有极大的现实意义。

关键词:Matlab;三相整流桥;电力电子故障Matlab Simulation and Trouble Analysis of the Three-Phase Full-Bridge Controlled RectifierZhang lu-xiaCollege of Physics& Electronic Information Electrical Engineering &Automation No: 060544076Tutor: Wu yanAbstract: the article introduces a design of Matlab Simulation and Trouble Analysis of the Three-Phase Full-Bridge Controlled Rectifier. using the three-phase full-bridge controlled rectifier circuit for analysis, the output waveform in each kind of fault can be simulated through the circuit with the SimPower Systems under the Matlab/Simulink surroundings, for sure the SCR of having troubles in order to fulfill further trouble diagnoses. it can finish Matlab Simulation ahout electrical system1quickly and fulfill further trouble diagnoses. it will play an important role in the field of electric power & electron on equipment exploration and maintenance..key words: Matlab; three-phase rectifier bridge; power electronics trouble目录1 引言 (3)2 三相全控整流电路 (4)2.1 整流器件 (4)2.2 整流原理 (4)2.2.1 触发脉冲 (5)2.2.2 带电阻负载时的工作情况 (6)2.2.3 带阻感负载时的工作情况 (8)3 三相桥式全控整流电路仿真建模 (10)3.1 仿真模块 (10)3.1.1 交流电压源模块 (10)3.1.2 选择开关 (10)3.1.3 晶闸管的仿真模型 (11)3.1.4 同步6脉冲触发器的仿真模型 (12)3.1.5 常数模块参数的设置 (13)3.1.6 通用桥设置 (13)3.1.7 显示模块 (14)3.2 三相全控整流电路的matlab仿真 (14)3.2.1 带电阻负载的仿真 (14)3.2.2 阻感负载的仿真 (16)4 故障分析 (17)5 结束语 (18)1 引言在电力、冶金、交通运输、矿业等行业,电力电子器件通常被用于电机变频调速、大功率设备驱动的关键流程之中,由于电力电子器件故障往往是致命性的、不可恢复的,常导致设备的损毁、生产的中断,造成重大经济损失。

三相桥式全控整流电路的MATLAB仿真

三相桥式全控整流电路的MATLAB仿真

中北大学朔州校区电力电子技术课程设计说明书电气工程及其自动::三相桥式全控整流电路的设计与仿真(阻感负载牛慧1227034136组长姓名李学学号组员姓名:1227034138 范铮学号组员姓名:1227034139 组员姓名:崔少东学号1227034129 学号王新嘉组员姓名:1227034144 学号组员姓名:张艺1227034153学号于亮组员姓名:日年 2015 14 月 1- 0 -1. 概述 (1)1.1 设计目的 (1)1.2 设计目标及设计要求 (1)1.3 设计进度 (1)1.4 分工 (1)2. 系统方案及主电路设计 (2)2.1方案的选择 (2)2.2 系统流程框图 (2)2.3 主电路设计 (3)3.控制、驱动电路设计 (6)3.1触发电路简介 (6)3.2触发电力设计要求 (7)3.3过电压保护 (8)3.4过电流保护 (10)4.系统MATLAB仿真 (12)4.1MATLAB软件介绍 (12)4.2系统建模与参数设置 (12)4.3系统仿真结果及分析 (19)5.设计体会 (12)6.参考文献 (120)- 0 -1. 概述1.1 设计目的三相桥式全控整流电路在现代电力电子技术中具有很重要的作用和很广泛的应用。

这里结合全控整流电路理论基础,采用Matlab的仿真工具Simulink对三相桥式全控整流电路进行仿真,对输出参数进行仿真及验证,进一步了解三相桥式全控整流电路的工作原理。

1.2 设计目标及要求设计要求2.1设计任务设计一个三相可控整流电路使其输入电压:(1)三相交流380伏、频率为50赫兹、(2)输出功率2KW、负载为阻感性负载。

(3)移相范围:0°~ 90°2.2 设计要求(1)设计出总体结构框图,以说明本课题由哪些相对独立的部分组成,并以文字对原理作辅助说明;(2)设计各个部分的电路图,并加上原理说明;(3)MATLAB仿真实验。

1.3 设计进度(1) 1月14日—1月15日对实验进行理论分析、论证;(2) 1月15日—1月16日进行主电路、触发电路、保护电路的设计及理论分析;(3) 1月19日—1月21日用MATLAB软件对实验进行建模仿真并对仿真结果进行分析;(4) 1月22日—1月23日对本次实验进行分析总结,分享实验心得体会。

MATLAB仿真三相桥式整流电路详细完美

MATLAB仿真三相桥式整流电路详细完美

目录摘要 (2)Abstract (3)第一章引言 (4)1.1 设计背景 (4)1.2 设计任务 (4)第二章方案选择论证 (6)2.1方案分析 (6)2.2方案选择 (6)第三章电路设计 (7)3.1 主电路原理分析 (7)第四章仿真分析 (9)4.1 建立仿真模型 (9)4.2仿真参数的设置 (10)4.3 仿真结果及波形分析 (11)第五章设计总结 (26)致 (27)参考文献 (28)摘要目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。

这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。

据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。

电力电子技术在电力系统中有着非常广泛的应用。

据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。

电力系统在通向现代化的进程中,电力电子技术是关键技术之一。

可以毫不夸地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。

随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。

Matlab提供的可视化仿真工具Simulink 可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。

本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。

此次课程设计要求设计晶闸管三相桥式可控整流电路,与三相半波整流电路相比,三相桥式整流电路的电源利用率更高,应用更为广泛。

关键词:电力电子晶闸管simulink 三相桥式整流电路AbstractAt present, all kinds of power electronic converter input rectifier circuit input power level generally use the uncontrolled rectifier or phase controlled rectifier circuit. This kind of rectifier circuit is simple in structure, control technology is mature, but the AC input power factor is low, and the harmonic currents injected a lot to the power grid. According to estimates, in developed countries 60% of the electric energy transformed before use, and this figure reached 95% at the beginning of the century.Power electronic technology has been widely used in electric power system. According to estimates, the developed countries in the end users to use electricity, with more than 60% of the electricity at least after more than once in power electronic converter device. Power system in the modernization process, the power electronic technology is one of the key technologies. It is no exaggeration to say that, if you leave the power electronic technology, power system modernization isunthinkable.With the development of social production and scientific technology, application of rectifier circuit in the field of automatic control system, the measuring system and the generator excitation system is more and more widely. Matlab provides a visual simulation tool Simulink can directly establish circuit simulation model, changing the simulation parameters, and can immediately get the simulation results of arbitrary, intuitive, further saves the programming steps. In this paper, Simulink is used to model the three-phase full-bridge controlled rectifier circuit, the different control angle, bridge fault conditions are simulated and analyzed, which deepens the three-phase full-bridge controlled rectifier circuit theory, it also examines the foundations for modern power electronic experimental teaching lay a good solid.The curriculum design for the design of thyristor three-phase bridge controlled rectifier circuit, compared with three phase half wave rectifier circuit, the power of three-phase bridge rectifier circuit utilization rate higher, more extensive application.Key words: electronic power thyristor Simulink three-phase bridge rectifier circuit第一章引言1.1 设计背景在电力、冶金、交通运输、矿业等行业,电力电子器件通常被用于电机变频调速、大功率设备驱动的关键流程之中,由于电力电子器件故障往往是致命性的、不可恢复的,常导致设备的损毁、生产的中断,造成重大经济损失。

(完整word版)三相桥式全控整流电路Simulink仿真实验

(完整word版)三相桥式全控整流电路Simulink仿真实验

基于三相桥式全控整流电路Matlab仿真实验报告 13351040 施定邦一、电路仿真原理及仿真电路图:图1图21、带电阻负载时当a≤60°时,电压波形均连续,对于电阻负载,电流波形与电压波形形状相同,也连续。

当a>60°时,电压波形每60°中的后一部分为零,电压波形因为晶闸管不能反向导通而不出现负值。

分析可知α角的移相范围是0°--120°。

2、带阻感负载时a≤60°时,电压波形连续,输出整流电压电压波形和晶闸管承受的电压波形与带电阻负载时十分相似,但得到的负载电流波形却有差异。

电容的容值越大电流波形就越平缓,近于水平直线。

a >60°时,电压波形则出现负值,是因为环流的作用使得电压反向。

分析可知α角的移相范围是0°--90°。

二、仿真过程与结果:设置三个交流电压源Va,Vb,Vc相位差均为120°,得到桥式全控的三相电源。

6个信号发生器产生整流电路的触发脉冲,六个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序依次给出,相位差依次为60°。

设置电源频率为50Hz:三、仿真结果1、带电阻负载:R=100Ω,无电容(1)α=0°时各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:2、带阻感负载:R=100Ω,H=1H (1)α=0°各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:(可以看到,和理论符合得很好,说明各参数设置合理,电路的工作状态接近于理想情况)实验总结:通过此次仿真实验,让自己对相关电路工作原理了解得更加详细和印象深刻,反正就是熟能生巧,然后多动手操作设置各种参数组合观察实验结果以得到比较理想的波形。

三相桥式整流电路仿真(精)

三相桥式整流电路仿真(精)

1.1 MATLAB 介绍MATLAB 是一种科学计算软件。

MATLAB 是 Matrix Laboratory(矩阵实验室的缩写,这是一种以矩阵为基础的交互式程序计算语言。

早期的 MATLAB 主要用于解决科学和工程的复杂数学计算问题。

由于它使用方便、输入便捷、运算高效、适应科技人员的思维方式,并且有绘图功能,有用户自行扩展的空间,因此受到用户的欢迎,使它成为在科技界广为使用的软件,也是国内外高校教学和科学研究的常用软件。

MATLAB 由美国 Mathworks 公司于 1984 年开始推出,历经升级,到 2001 年已经有了 6.0 版,现在MATLAB 6.5、7.1、7.8版都已相继面世。

早期的 MATLAB 在 DOS 环境下运行,1990 年推出了Windows 版本。

1993年,Mathworks 公司又推出了MATLAB 的微机版,充分支持在 MicrosoftWindows 界面下的编程,它的功能越来越强大,在科技和工程界广为传播,是各种科学计算软件中用频率最高的软件。

1993 年出现了 SIMULINK,这是基于框图的仿真平台,SIMULINK 挂接在 MATLAB 环境上,以 MATLAB 的强大计算功能为基础,以直观的模块框图进行仿真和计算。

SIMULINK 提供了各种仿真工具,尤其是它不断扩展的、内容丰富的模块库,为系统的仿真提供了极大便利。

在SIMULINK平台上,拖拉和连接典型模块就可以绘制仿真对象的模型框图,并对模型进行仿真。

在 SIMULINK 平台上,仿真模型的可读性很强,这就避免了在 MATLAB 窗口使用 MATLAB 命令和函数仿真时,需要熟悉记忆大量M 函数的麻烦,对广大工程技术人员来说,这无疑是最好的福音。

现在的MATLAB都同时捆绑了 SIMULINK,SIMULINK 的版本也在不断地升级,从 1993 年的 MATLAB 4.0/SIMULINK 1.0 版到 2001 年的MATLAB 6.1/SIMULINK 4.1 版,2002 年即推出了 MATLAB 6.5 /SIMULINK 5.0 版。

MATLAB仿真三相桥式整流电路(详细完美)解读

MATLAB仿真三相桥式整流电路(详细完美)解读

目录摘要....................................................................................... - 2 - Abstract .................................................................................. - 3 - 第一章引言 .......................................................................... - 4 - 1.1 设计背景....................................................................... - 4 - 1.2 设计任务....................................................................... - 4 - 第二章方案选择论证 .......................................................... - 6 - 2.1方案分析........................................................................ - 6 - 2.2方案选择........................................................................ - 6 - 第三章电路设计 ................................................................ - 7 - 3.1 主电路原理分析............................................................ - 7 - 第四章仿真分析 ................................................................ - 9 - 4.1 建立仿真模型 ............................................................... - 9 - 4.2仿真参数的设置 .......................................................... - 10 - 4.3 仿真结果及波形分析................................................... - 11 - 第五章设计总结 ................................................................ - 26 - 致谢................................................................................. - 27 - 参考文献............................................................................... - 28 -摘要目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。

三相桥式整流电路MATLAB仿真报告

三相桥式整流电路MATLAB仿真报告

五邑大学电力电子技术课程设计报告题目:三相桥式整流电路的MATLAB仿真院系信息工程学院专业轨道交通自动化学号11071336学生姓名容浩宇指导教师张建民三相桥式整流电路的MATLAB仿真一、三相桥式整流电路实验的要求和意义(四号宋字,粗体)1、课程设计的目的:1)利用simlink建立三相桥式整流电路的仿真模型及参数的调节2)理解三相桥式整流电路的工作原理3)分析由记录纯电阻负载,阻感负载时的输出电压波形,故障波形的采集与分析2、设计要求:利用MATLAB软件中的SIMULINK对三相桥式整流电路进行建模、仿真,设置参数,采集波形。

具体要求如下:(1)利用六个晶闸管搭建三相桥式整流电路的模型,输入三相电压源的线电压取380V,频率为50Hz,内阻为0.002欧姆。

(2)负载为1欧姆的纯电阻负载,仿真时间取0.06s,设置相关参数,利用示波器查看仿真波形,并将Ud 、Id、UVT1波形记录下来。

并画出电路的移相特性曲线Ud=f(α)。

(3)负载为电阻取1欧姆,电感10mH的阻感负载,其仿真时间取0.08s,设置相关参数,利用示波器查看仿真波形,并将Ud 、Id、UVT1波形记录下来。

并画出电路的移相特性曲线Ud=f(α)。

(4)故障波形的采集:当触发角为30度时,将第六个个晶闸管断开,查看阻感负载下的输出电压Ud 、UVT1的波形,记录下来,并分析故障现象。

二、方案的论证和设计1.1三相桥式全控整流电路三相桥式整流电路原理图如下:图1三相桥式整流电路中有6个晶闸管,三个共阴极,三个共阳极。

晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6.工作特点是任何时刻都有不同组别的两只晶闸管同时导通,为保证电路启动或电流断续后能正常导通,必须对不同组别导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。

每个π/3换相一次,换相过程在共阴极组合共阳极组轮流进行,但只在同一组别中换相。

《MATLAB环境下三相桥式整流器的仿真研究与实现》

《MATLAB环境下三相桥式整流器的仿真研究与实现》

温馨小提示:本文主要介绍的是关于《MATLAB环境下三相桥式整流器的仿真研究与实现》的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。

文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。

本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。

愿本篇《MATLAB环境下三相桥式整流器的仿真研究与实现》能真实确切的帮助各位。

本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。

感谢支持!(Thank you for downloading and checkingit out!)《MATLAB环境下三相桥式整流器的仿真研究与实现》一、引言背景及意义随着电力电子技术的发展,三相桥式整流器在电力系统中扮演着越来越重要的角色。

作为一种高效、可靠的电力转换装置,三相桥式整流器广泛应用于工业生产、电力传输和新能源等领域。

然而,传统的机械式整流器存在维护成本高、故障率高、效率低等问题,已无法满足现代电力系统对高效、稳定、可靠的需求。

因此,研究一种新型的三相桥式整流器具有重要的现实意义。

国内外研究现状目前,国内外学者对三相桥式整流器的研究主要集中在以下几个方面:一是整流器拓扑结构的研究,如采用开关器件、变压器、滤波器等元件的不同组合方式;二是控制策略的研究,如PWM控制、相位控制、脉宽调制控制等;三是整流器性能优化,如提高转换效率、降低开关损耗、减小电磁干扰等。

近年来,随着电力电子器件的不断发展,如IGBT、MOSFET等,三相桥式整流器的性能得到了显著提高。

同时,仿真软件如MATLAB在电力系统仿真中的应用也日益广泛。

利用MATLAB进行三相桥式整流器的仿真研究,可以有效地优化整流器的设计,提高整流器的性能。

研究目的与意义本研究旨在利用MATLAB环境,对三相桥式整流器进行仿真研究与实现。

主要研究内容包括:一是分析三相桥式整流器的原理及其工作特性;二是搭建三相桥式整流器的仿真模型,并对其进行仿真验证;三是针对整流器的性能优化,设计相应的控制策略,并验证其有效性。

MATLAB仿真三相桥式整流电路(详细完美)教程文件

MATLAB仿真三相桥式整流电路(详细完美)教程文件

M A T L A B仿真三相桥式整流电路(详细完美)目录摘要........................................................................................ - 3 - Abstract .................................................................................. - 4 - 第一章引言 ........................................................................... - 5 - 1.1 设计背景........................................................................ - 5 - 1.2 设计任务........................................................................ - 5 - 第二章方案选择论证 .......................................................... - 8 - 2.1方案分析........................................................................ - 8 - 2.2方案选择........................................................................ - 8 - 第三章电路设计 ................................................................ - 9 - 3.1 主电路原理分析 ............................................................ - 9 - 第四章仿真分析 ............................................................... - 11 - 4.1 建立仿真模型 ............................................................... - 11 - 4.2仿真参数的设置........................................................... - 13 - 4.3 仿真结果及波形分析................................................... - 14 - 第五章设计总结 ................................................................ - 30 - 致谢.................................................................................... - 32 - 参考文献............................................................................... - 33 -摘要目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。

《MATLAB工程应用》---三相桥式全控整流电路仿真一

《MATLAB工程应用》---三相桥式全控整流电路仿真一

《MATLAB工程应用》三相桥式全控整流电路仿真一、选题背景科技不断革新,生产力不断发展,整流电路越来越被广泛应用在自动控制系统测量系统和发电机动磁系统等领域口。

经常使用的三相整流电路包括三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路,因为整流电路由晶闸管、电阻、电感、电容等多种电子器件组成,又涉及到直流信号、触发信号和交流信号,所以用常规方法分析整流电路就会显得繁琐,对实验环境的要求也十分苛刻,致使实验、分析过程显得棘手。

在MATLAB中可以通过Simulink实现对电路拓扑结构的搭建能够直观的看到电路运行后的结果,在MATLAB中通过对话框可以按照要求对原器件的参数进行修改,并且得到相应的运行结果,可以让实验人员直接进行分析实验结果,不需要通过复杂的编程来得到结果。

将MATLAB的动态仿真功能应用到实践教学中,可以使学生直观地观察到波形随着电路参数的修改而产生相应的变化,大大提高了学生学习电力电子技术的热情。

又能够提高学生的动手操作能力,在实战中检验所学的理论知识,将所学的知识得到进一步巩固,提高学生的综合能力。

二、原理分析(设计理念)三相桥式全控整流电路交流侧由三相电源供电。

三相整流电路适用于整流电路中有比较大的电阻、电感或电容,或者用户需要交流电经过整流电路转换的直流电压具有容易滤波、小脉动的特性。

三相桥式全控整流电路的拓扑结构如图 2.1所示。

为了减少整流电路里的三次谐波对电网的干扰,将变压器接成星(二次侧〉-三角(一次侧)的连接方式。

如下图所示,晶闸管1、晶闸管3和晶闸管5的阴极连接到一起,把VTI、VT3、VT5称为共阴极组;晶闸管2、晶闸管4、晶闸管6的阳极连接到一起,把VT2、VT4、VT6称为共阳极组。

将共阴极组的晶闸管1、晶闸管3、晶闸管5和共阳极组的晶闸管4、晶闸管6、晶闸管2分别与三相电源的a相、b相、c相连接,这样做的目的是使三相桥式整流电路的6个晶闸管导通顺序是从晶闸管1到晶闸管6依次导通,方便记录、观察与分析。

《MATLAB工程应用》---三相桥式全控整流电路仿真三

《MATLAB工程应用》---三相桥式全控整流电路仿真三

《MATLAB工程应用》三相桥式全控整流电路仿真一、选题背景说明本课题应解决的主要问题及应达到的技术要求,简述本设计的指导思想。

MATLAB是国际控制领域内最流行的仿真软件, Simulink是MATLAB提供的一个用来对动态系统进行建模、仿真和分析的软件包。

由于采用实机难以进行极限与失效测试,而采用仿真器可以自由地给定各种测试条件,测试被测控制器的性能,因此仿真系统可作为快速控制原型的虚拟试验台。

而三相桥是应用最广泛的整流电路,它是由两组三相半波整流电路串联而成的。

选取这个题目对研究电路有积极意义。

二、原理分析(设计理念)通过学习原理,采用三相桥式原理图的设计技巧,确保其结果的稳定。

要求:1、输入侧是380V,50Hz的三相交流电压源,设计一个三相桥式全控整流电路,输出负载分别是触发角为30°和90°时的电阻负载,触发角为30°、60°、90°时的阻感负载。

2、要求完成仿真模型图和仿真波形图,其中波形图包括输出电流,输出电压,晶闸管电压。

三、过程论述(格式:宋体,4号,加粗,两端对齐)1、建立仿真模型图1 三相桥式整流电路仿真模型2、设计参数:图2 三相电源参数图3晶闸管的输入在向角α变化时设置参数的变化公式3、图像结果(1)α=30°、R=1Ω时的电阻负载图4输出电流波形图5输出电压波形图6晶闸管电压波形(2)α=90°、R=1Ω时的电阻负载图7电流波形图8电压波形图9晶闸管电压波形(3)α=90°、R=1Ω、L=1mH时的阻感负载、图10电压波形图11电流波形图12晶闸管电压波形(4)α=60°、R=1Ω、L=1mH时的阻感负载图13电压波形图14电流波形图15晶闸管电压波形(5)α=30°、R=1Ω、L=mH时的阻感负载图16电压波形图17电流波形图18晶闸管电压波形四、结果分析对研究过程中所获得的主要的数据、现象进行定性或定量分析,得出结论和推论。

三相桥式全控整流电路Simulink仿真实验

三相桥式全控整流电路Simulink仿真实验

基于三相桥式全控整流电路Matlab仿真实验报告13351040 施定邦一、电路仿真原理及仿真电路图:图1图21、带电阻负载时当a≤60°时,电压波形均连续,对于电阻负载,电流波形与电压波形形状相同,也连续。

当a>60°时,电压波形每60°中的后一部分为零,电压波形因为晶闸管不能反向导通而不出现负值。

分析可知α角的移相范围是0°--120°。

2、带阻感负载时a≤60°时,电压波形连续,输出整流电压电压波形和晶闸管承受的电压波形与带电阻负载时十分相似,但得到的负载电流波形却有差异。

电容的容值越大电流波形就越平缓,近于水平直线。

a >60°时,电压波形则出现负值,是因为环流的作用使得电压反向。

分析可知α角的移相范围是0°--90°。

二、仿真过程与结果:设置三个交流电压源Va,Vb,Vc相位差均为120°,得到桥式全控的三相电源。

6个信号发生器产生整流电路的触发脉冲,六个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序依次给出,相位差依次为60°。

设置电源频率为50Hz:三、仿真结果1、带电阻负载:R=100Ω,无电容(1)α=0°时各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:2、带阻感负载:R=100Ω,H=1H (1)α=0°各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:(可以看到,和理论符合得很好,说明各参数设置合理,电路的工作状态接近于理想情况)实验总结:通过此次仿真实验,让自己对相关电路工作原理了解得更加详细和印象深刻,反正就是熟能生巧,然后多动手操作设置各种参数组合观察实验结果以得到比较理想的波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (2)Abstract (3)第一章引言 (4)1.1 设计背景 (4)1.2 设计任务 (4)第二章方案选择论证 (6)2.1方案分析 (6)2.2方案选择 (6)第三章电路设计 (7)3.1 主电路原理分析 (7)第四章仿真分析 (9)4.1 建立仿真模型 (9)4.2仿真参数的设置 (10)4.3 仿真结果及波形分析 (11)第五章设计总结 (26)致 (27)参考文献 (28)摘要目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。

这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。

据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。

电力电子技术在电力系统中有着非常广泛的应用。

据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。

电力系统在通向现代化的进程中,电力电子技术是关键技术之一。

可以毫不夸地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。

随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。

Matlab提供的可视化仿真工具Simulink 可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。

本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。

此次课程设计要求设计晶闸管三相桥式可控整流电路,与三相半波整流电路相比,三相桥式整流电路的电源利用率更高,应用更为广泛。

关键词:电力电子晶闸管simulink 三相桥式整流电路AbstractAt present, all kinds of power electronic converter input rectifier circuit input power level generally use the uncontrolled rectifier or phase controlled rectifier circuit. This kind of rectifier circuit is simple in structure, control technology is mature, but the AC input power factor is low, and the harmonic currents injected a lot to the power grid. According to estimates, in developed countries 60% of the electric energy transformed before use, and this figure reached 95% at the beginning of the century.Power electronic technology has been widely used in electric power system. According to estimates, the developed countries in the end users to use electricity, with more than 60% of the electricity at least after more than once in power electronic converter device. Power system in the modernization process, the power electronic technology is one of the key technologies. It is no exaggeration to say that, if you leave the power electronic technology, power system modernization is unthinkable.With the development of social production and scientific technology,application of rectifier circuit in the field of automatic control system, the measuring system and the generator excitation system is more and more widely. Matlab provides a visual simulation tool Simulink can directly establish circuit simulation model, changing the simulation parameters, and can immediately get the simulation results of arbitrary, intuitive, further saves the programming steps. In this paper, Simulink is used to model the three-phase full-bridge controlled rectifier circuit, the different control angle, bridge fault conditions are simulated and analyzed, which deepens the three-phase full-bridge controlled rectifier circuit theory, it also examines the foundations for modern power electronic experimental teaching lay a good solid.The curriculum design for the design of thyristor three-phase bridge controlled rectifier circuit, compared with three phase half wave rectifier circuit, the power of three-phase bridge rectifier circuit utilization rate higher, more extensive application.Key words: electronic power thyristor Simulink three-phase bridge rectifier circuit第一章引言1.1 设计背景在电力、冶金、交通运输、矿业等行业,电力电子器件通常被用于电机变频调速、大功率设备驱动的关键流程之中,由于电力电子器件故障往往是致命性的、不可恢复的,常导致设备的损毁、生产的中断,造成重大经济损失。

因此,通过储存故障信息用以检测对比尤为重要,并且也是一种简单可行的测量方法。

根据电力电路的实际运行情况可知,大多数故障表现为功率开关器件的损坏,其中以功率开关器件的开路和直通最为常见,本文通过仿真采集功率器件在开路时的各种波形,分析整流器件发生故障的种类,判断可能发生故障的器件。

1.2 设计任务一、设计容及技术要求:计算机仿真具有效率高、精度高、可靠性高和成本低等特点,已经广泛应用于电力电子电路(或系统)的分析和设计中。

计算机仿真不仅可以取代系统的许多繁琐的人工分析,减轻劳动强度,提高分析和设计能力,避免因为解析法在近似处理中带来的较大误差,还可以与实物试制和调试相互补充,最大限度地降低设计成本,缩短系统研制周期。

可以说,电路的计算机仿真技术大大加速了电路的设计和试验过程。

通过本次仿真,学生可以初步认识电力电子计算机仿真的优势,并掌握电力电子计算机仿真的基本方法。

晶闸管三相桥式可控整流电路的电路,参数要求:电网频率f=50hz电网额定电压U=380v电网电压波动正负10%阻感负载电压0——250V 连续可调。

1、设计容(1)制定设计方案;(2)主电路设计及主电路元件选择;(3)驱动电路和保护电路设计及参数计算;器件选择;(4)绘制电路原理图;(5)总体电路原理图及其说明。

2、仿真任务要求(1)熟悉matlab/simulink/power system中的仿真模块用法及功能;(2)根据设计电路搭建仿真模型;(3)设置参数并进行仿真(4)给出不同触发角时对应电压电流的波形;3、设计的总体要求(1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务;(2)掌握基本电路的数据分析、处理;描绘波形并加以判断;(3)能正确设计电路,画出线路图,分析电路原理;(4)广泛收集相关技术资料。

第二章方案选择论证2.1方案分析单相可控电路与三相可控电路相比,有结构简单,输出脉动大,脉动频率低的特点,其不适于容量要求高的情况,而三相可控整流电路有与之基本相反的特点,对于相当于反电动势负载的电动机来说,它能满足其电流容量较大,电流脉动小且连续不断的要求。

2.2方案选择课设题目中给出的正是要求为220V、20A的直流电动机供电,它的容量为S= kw,属于高容量,所以应选用三相可控整流电路整流。

另外三相桥式整流电压的脉动频率比三相半波高一倍,因而所需平波电抗器的电感量也减小约一半。

三相半波虽具有接线简单的特点,但由于其只采用三个晶闸管,所以晶闸管承受的反向峰值电压较高,并且电流是单方向的,存在直流磁化问题。

基于以上原因,最终我选择三相桥式全控电路为电机整流。

三相可控整流电路的控制量可以很大,输出电压脉动较小,易滤波,控制滞后时间短,因此在工业中几乎都是采用三相可控整流电路。

在电子设备中有时也会遇到功率较大的电源,例如几百瓦甚至超过1—2kw的电源,这时为了提高变压器的利用率,减小波纹系数,也常采用三相整流电路。

另外由于三相半波可控整流电路的主要缺点在于其变压器二次侧电流中含有直流分量,为此在应用中较少。

而采用三相桥式全控整流电路,可以有效的避免直流磁化作用。

虽然三相桥式全控整流电路的晶闸管的数目比三相半波可控整流电路的少,但是三相桥式全控整流电路的输出电流波形便得平直,当电感足够大时,负载电流波形可以近似为一条水平线。

相关文档
最新文档