植被遥感

合集下载

植被遥感的原理和应用

植被遥感的原理和应用

植被遥感的原理和应用1. 植被遥感的原理植被遥感是指利用遥感技术获取关于植被的信息。

主要通过感知、识别和解译植被的光谱、空间和时间特征,从而实现对植被生态系统的监测和评估。

植被遥感的原理可以概括为以下几点:•光谱反射特性:植被对不同波段的电磁辐射有不同的反射特性。

通过测量植被对可见光和红外辐射的反射率,可以获取与植被生理和结构特征相关的信息。

•植被指数:植被指数是通过计算植被光谱特征之间的关系得到的一种指标。

常用的植被指数有归一化植被指数(NDVI)、差值植被指数(DVI)等。

植被指数可以反映植被的生长状况和叶绿素含量等信息。

•植被分类:通过分析植被光谱特征的差异,可以将植被进行分类和识别。

常用的植被分类方法包括基于光谱特征的有监督分类和无监督分类等。

•时序变化:植被在不同季节和年份的生长状态存在差异,通过观测植被的时序变化,可以获取植被的生长过程和季节变化规律。

2. 植被遥感的应用植被遥感可以广泛应用于农林牧渔、环境保护、地质勘察和城市规划等领域。

以下是一些植被遥感的具体应用:•农业管理:植被遥感可以用于农作物的监测和评价。

通过监测植被生长状况和叶面积指数变化,可以实现农作物的施肥、灌溉和病虫害防治等管理工作。

•生态环境监测:植被遥感可以用于湿地、森林和草原等生态系统的监测和评估。

通过监测植被覆盖度、植被类型和植被退化状况等指标,可以了解生态系统的健康状况和环境变化趋势。

•火灾监测:植被遥感可以通过监测植被的温度和湿度等指标,实现对火灾的预警和监测。

及时发现火点并采取措施可以有效减少火灾的危害和损失。

•城市绿化规划:植被遥感可以用于城市的绿化规划和管理。

通过分析城市植被覆盖度和类型分布,可以优化城市绿地布局和植被种植结构,改善城市环境质量。

•土地利用变化:植被遥感可以用于监测土地利用变化和评估土地资源的可持续利用。

通过比较不同时间段的遥感影像,可以分析土地利用类型的变化和转移。

3. 总结植被遥感是一种重要的环境监测和资源管理技术。

植被信息遥感提取方法

植被信息遥感提取方法

植被信息遥感提取是一种利用遥感技术来获取地表植被信息的方法。

这种方法通过卫星或无人机拍摄地表图像,然后利用图像处理技术和计算机视觉技术,提取出植被的特征信息,如植被覆盖率、植被类型、植被生长状态等。

以下是植被信息遥感提取的基本方法:
1. 图像获取:使用卫星或无人机拍摄地表图像,获取不同分辨率、不同光谱特性的图像数据。

这些图像数据可以提供丰富的植被信息,为后续的植被信息提取提供基础。

2. 图像预处理:对获取的图像进行预处理,包括去噪、增强、裁剪等操作,以提高图像的质量和可读性,为后续的植被信息提取提供更好的基础。

3. 特征提取:利用图像处理技术和计算机视觉技术,从图像中提取植被的特征信息。

常用的特征包括植被覆盖率、植被类型、植被生长状态等。

这些特征可以通过不同的算法和方法进行提取,如基于光谱特征的方法、基于纹理特征的方法、基于机器学习的方法等。

4. 分类识别:将提取的特征进行分类识别,确定植被的类型和生长状态。

常用的分类方法包括监督学习、非监督学习等。

通过对图像中的植被进行分类,可以得到各种植被的信息,如草地的面积、森林的覆盖率等。

5. 结果评估:对植被信息提取的结果进行评估,以确保提取结果的准确性和可靠性。

评估的方法包括人工目视检查、统计分析等。

评估结果可以用于优化植被信息提取的方法和算法,提高结果的准确性和可靠性。

总的来说,植被信息遥感提取是一种综合利用遥感技术、图像处理技术和计算机视觉技术的方法,可以快速、准确地获取地表植被的信息。

这种方法在农业、林业、环境监测等领域具有广泛的应用价值。

森林植被遥感图像分类及目标识别

森林植被遥感图像分类及目标识别

森林植被遥感图像分类及目标识别植被遥感图像分类及目标识别是利用遥感技术进行森林植被研究和保护的重要手段。

它通过获取植被信息,实现对植被类型分类和目标识别的精准分析,为森林生态系统的管理、保护和可持续发展提供科学依据。

一、植被遥感图像分类森林植被遥感图像分类是指将遥感图像中的植被区域按照物种、功能和结构等特征进行分类。

这一过程需要借助计算机视觉和机器学习等技术手段,从遥感图像中提取有关植被的特征信息,并根据这些特征进行分类和识别。

在植被遥感图像分类中,常用的方法包括基于像元和基于对象两种方式。

基于像元的分类方法是指将每个像素点视为分类单元,通过像素点的光谱信息、纹理信息和形状信息等进行分类。

而基于对象的分类方法是将一组相连的像素点或区域视为一个分类单元,利用连接关系和形状特征进行分类。

常用的遥感图像分类算法包括支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest)、卷积神经网络(Convolutional Neural Network,CNN)等。

这些算法在特征提取、模型训练和分类决策等方面都有不同的优势,可以根据实际情况选择合适的算法进行植被遥感图像分类。

二、目标识别森林植被遥感图像目标识别是指在植被图像中准确识别出目标,如森林火灾、病虫害、盗伐等,以及其他与植被有关的人为活动。

目标识别的目的是及时监测和预警植被异常情况,为森林生态环境的保护提供依据。

目标识别的关键技术包括特征提取、目标检测和目标分类。

特征提取是从植被图像中提取与目标相关的特征信息,可以包括颜色、纹理、形状、结构等特征。

目标检测是在植被图像中寻找目标的位置和边界,常用的方法包括边缘检测、区域生长和模板匹配等。

目标分类是将检测到的目标进行分类和识别,可以利用机器学习和深度学习等技术进行分类模型的训练和应用。

在实际应用中,为了提高目标识别的准确性和效率,可以将植被遥感图像与其他数据源相结合,如地理信息系统(Geographic Information System,GIS)、气象数据和传感器数据等,进行多源数据融合分析。

论述植被的遥感波段特征

论述植被的遥感波段特征

论述植被的遥感波段特征植被遥感是利用遥感技术获取地表植被信息的一种手段,通过对地球表面反射或辐射的电磁波进行探测,获取植被的空间分布、生理状况等信息。

在植被遥感中,不同的波段对于植被的反射和吸收呈现出独特的特征,对于理解和监测植被的生态、生理和空间分布具有重要意义。

本文将深入论述植被的遥感波段特征,涵盖可见光、近红外、红外和微波等波段,以及这些波段在植被遥感中的应用。

一、可见光波段特征可见光波段主要包括蓝、绿、红三个波段,它们的波长分别为0.45-0.50μm、0.50-0.60μm和0.63-0.70μm。

植被在可见光波段的特征主要表现在叶绿素的吸收和叶片的反射。

1.1 叶绿素吸收特征植物中的叶绿素对于蓝光和红光的吸收较高,而在绿光波段的吸收较低。

这是因为叶绿素A和B主要吸收波长为430-450nm和640-680nm 的光,而在绿光波段的吸收较小。

1.2 叶片反射特征植物的叶片在可见光波段表现出不同的反射特性。

通常,植被的叶片在绿光波段的反射较高,因为叶绿素对于绿光的吸收相对较低,而在红光波段的反射相对较低,因为叶绿素对于红光的吸收较高。

可见光波段主要应用于植被的视觉监测,通过对植被在不同波段的反射特性进行分析,可以识别植被类型、监测植被覆盖度以及研究植被的生长状态。

二、近红外波段特征近红外波段的波长范围为0.70-1.00μm,植被在近红外波段的特征主要表现在叶绿素的吸收和细胞结构的散射。

2.1 叶绿素吸收特征在近红外波段,叶绿素A和B对光的吸收较小,因此近红外波段的反射较高。

2.2 细胞结构散射特征植物细胞中的细胞壁和细胞质等结构在近红外波段对光表现出较强的散射,导致近红外波段的反射相对较高。

近红外波段主要应用于植被的生理监测,通过近红外波段的反射特性,可以推测植被的叶绿素含量、植被的生长状况以及植被的健康状态。

三、红外波段特征红外波段通常包括短波红外(SWIR)和中波红外(MWIR),波长范围分别为1.00-3.00μm和3.00-5.00μm。

遥感第九章 植被遥感

遥感第九章 植被遥感

荒漠化是发生在上述气候区内的土地退化,按 成因分为:
风蚀荒漠化 沙化、沙漠化
水蚀荒漠化 劣地或石质坡地,如浙江常山大塘溪 福建长汀 县河田,西南诸省的山区。也有以泥石流方式呈 现土地砂石化景观分布在河谷中,如滇东北的 东川市小江流域等;或以石山荒漠化景观分布 在岩溶山区,如广西西部及云南东部等地。
三.城市生态环境 1.定义;经过人类充分改造过的人工环境,属于人类生态系统
的范畴(社会生态系统)。
阳光 空气 水资源 森林 气候 岩石 动物 植物 微生物 自然景观
城市自然生态子系统
利用遥感技术调查、分析
城市经济生态子系统
城市生产、分配、流通与消 费的各个环节
物质
居住 饮食 服务 供应 医疗 旅游 人们心理状态
传感器 NOAA/AVHRR 波段 用途
LANDSAT/TM SPOT/HRV CBERS/CCD 红色、近红外-远红外 大中小比例尺 土地利用研究 中大比例尺土 地利用监测
全球、大洲、区域等 尺度环境资源研究
2.植被 植被遥感调查中经常用植被指数区分不同植被类型。 通常利用植物光谱中的近红外与可见光红波段两个典型波 段值。 近红外波段是叶子健康状况最灵敏的标志,对植被长 势差异敏感,指示光合作用能否正常进行; 可见光红波段被植被叶绿素强吸收,进行光合作用制造 干物质,是光合作用的代表性波段。 植被指数便于植物专题研究、绿色植物的遥感监测、 病虫害监测及生物量估算等。 目前植被监测的遥感数据有: NOAA/AVHRR LANDSAT/TM/ETM CBERS/CCD
SPOT/HRV
3.湿地 水域与陆地间的交互区域,是地球上具有多功能的独特的 生态系统,是自然界最富有生机的生态景观和人类最重要 的生存环境之一。 森林 ————————地球之“肺” 湿地 ————————地球之“肾” 湿地巨大的经济效益、极丰富的生物多样性和极高的 生物生产力为人类生存创造了重要条件。在我国,湿地占 国土面积的1.65%,湿地能吸收CO2等温室气体,降解污染 物,其生态系统效益价值高达2.67万亿元,在全国陆地生 态系统总价值中占47.71%,是最昂贵的生态系统。 利用遥感技术研究湿地包括湿地景观格局调查、湿地景 观破碎化程度调查、湿地景观变化分析、湿地类型遥感解 译等。 --------------------------------------------------------------------------------

植被遥感_精品文档

植被遥感_精品文档
1. 叶绿素 植被叶子中含有 多种色素,如叶 青素、叶红素、 叶绿素等,在可 见光范围内,其 反射峰值落在相 应的波长范围内 。
叶绿素a和叶绿素b导致以0.45μm和0.67μm为中心形成两 个强烈的吸收带。
不同生长状态的橡树叶子
不同橡树叶子的反射特性
2. 叶子的组织构造
绿色植物的叶子是由上表皮、叶绿素颗粒组成的栅 栏组织和多孔薄壁细胞组织(海绵组织)构成的。
遥感地学分析
Geography Analysis for Remote Sensing
第5章 植被遥感
主要内容
一、植被遥感原理 二、植被分类 三、植被生态参数 四、植被指数与地表参数的关系 五、中国及中亚地区荒漠化遥感监测研究
一、植被遥感原理
植被遥感不仅依赖于对单张植物叶片的光谱特性的 认识,还需要进一步认识植被冠层的光谱特性。
冬季多数植物凋零----长年常绿植被 同种植被在不同季节的波谱特征差异 不同植物生长期的不同,光谱特征也有差异
植物季节性规律
各种作物的生 长期和收获期 的差异
3. 根据植物的生态条件的不同来区分植被
不同种类的植物有不同的适宜生态条件,如温度、 水分、土壤、地貌等。 比如:(我国北方山坡的阴阳面差异性)
低植被覆盖度时(<15%),植被NDVI值高于裸土NDVI 值,植被可被检测出来,但因植被覆盖度很低(如干旱、 半干旱地区),其 NDVI很难指示区域生物量;
中植被覆盖度时(25—80%), NDVI值 随生物量的增 加呈线性迅速增加;
高植被覆盖度时(>80%), NDVI值 增加延缓而呈现 饱和状态,对植被检测灵敏度下降。
被指数饱和为代价来减少大气影响; (2)根据蓝光和红光对气溶胶散射存 在差异的原理。采用“抗大气植被 指数(ARVl)对残留气溶胶做进一步 的处理;(3)采用“土壤调节植;波 指数(SAVl)”减弱了树冠背景土壤变 化对植被指数的影响;(4)综合 ARVI和SAVI的理论基础。形成 “增强型植被指数(EVI)”。它可以 同时减少来自大气和土壤噪音的影 响。

遥感地学分析课件——第7章 植被遥感

遥感地学分析课件——第7章 植被遥感
7.3.1 病虫害监测 7.3.2 森林火灾监测 7.3.3 旱灾监测
7.4 资源遥感调查
7.4.1 草场资源调查 7.4.2 林业资源调查
7.1 植被的光谱特性
7.1.1 健康植被的,不同的植物各有其自身的波谱特征, 从而成为区分植被类型、长势及估算生物量的依据。
健康植物的波谱曲线有明显的特点,在可见光的 0.55µm附近有一个反射率为10%~20%的小反射峰。在 0.45µm和0.65µm附近有两个明显的吸收谷。在 0.7~0.8µm是一个陡坡,反射率急剧增高。在近红外波 段0.8~1.3µm之间形成一个高的,反射率可达40%或更 大的反射峰。在1.45µm,1.95µm和2.6~2.7µm处有三个 吸收谷。
(NIR)对绿色植物的光谱响应十分不同,且 具倒转关系。两者简单的数值比能充分表达两 反射率之间的差异。 比值植被指数可表达为:
RVI=DN NIR/ DN R (简单表示为NIR/R)
7.2 植被生态参数的估算
RVI是绿色植物的一个灵敏的指示参数。研究表明, 它与叶面积指数(LAI)、叶干生物量(DM)、叶绿素 含量相关性高,被广泛用于估算和监测绿色植物生物量。 在植被高密度覆盖情况下,它对植被十分敏感,与生物 量的相关性最好。但当植被覆盖度小于50%时,它的分 辨能力显著下降。此外,RVI对大气状况很敏感,大气效 应大大地降低了它对植被检测的灵敏度,尤其是当RVI值 高时。因此,最好运用经大气纠正的数据,或将两波段 的灰度值(DN)转换成反射率(ρ)后再计算RVI,以消 除大气对两波段不同非线性衰减的影响。
不同颜色叶子的反射光谱
7.1 植被的光谱特性
不同水分含量对玉米叶子反射率的影响
7.1 植被的光谱特性
植物遭受不同程度损害的反射光谱曲线

植被遥感指数公式及简介

植被遥感指数公式及简介
植被遥感指数
可编辑ppt
1
植被指数类型
比值植被指数(RVI) 归一化植被指数(NDVI) 差值植被指数(DVI) 缨帽变换中的绿度植被指数(GVI) 垂直植被指数(PVI)
可编辑ppt
2
比值植被指数(Ratio Vegetation Index)
由于可见光红波段(R)与近红外波段(NIR)对绿色 植物的光谱响应十分不同。两者简单的数值比能充分 表达两反射率之间的差异。
可编辑ppt
同植被与土壤亮度线的距离不同。于是 Richardson(1977)把植物象元到土壤亮度线的垂 直距离定义为垂直植被指数(Perpendicular Vegetation Index)。
PVI是一种简单的欧几米得(Euclidean)距离。 表示为:
PVI= (SRVR)2(SVI RSVI)R 2
可编辑ppt
9
缨帽变换(TC变换)是以陆地卫星MSS各波段的辐度 亮度值作为变量。经线性变换后,组成4个新变量:
TC10.433MSS40.632MSS50.586MSS60.264MSS7 TC2-0.290MSS4-0.562MSS5-0.600MSS60.491MSS7 TC3-0.829MSS40.522MSS50.039MSS60.194MSS7 TC4 0.233MSS40.021MSS5-0.543MSS60.810MSS7
NDVI的一个缺陷在于,对土壤背景的变化 较为敏感。
实验表明,作物生长初期NDVI将过高估计 植被覆盖度,而在作物生长的结束季节,NDVI 值偏低。因此,NDVI更适用于植被发育中期或 中等覆盖度的植被检测。
可编辑ppt
6
差值植被指数 (Difference Vegetation Index)

7植被遥感

7植被遥感
植被遥感
主要内容
植被遥感原理 植被遥感解译 植被指数与植被覆盖信息提取
植被是生长在地球表层内各种植物类型的总 称,它是地球表层内重要的再生资源。
植被遥感是遥感应用的重要内容,也是地学 遥感理论研究和信息提取定量方法研究较为 成熟的领域之一。
植被遥感的主要内容有:植被遥感原理、基 于林业的植被遥感、基于农业的植被遥感、 植被多光谱遥感与植被指数信息提取、植被 指数与生物物理量以及地表生态环境的关联 研究、全球植被覆盖遥感监测与生物多样性 监测,等。
可见光两个吸收带、一个窄反射峰,近红外 宽反射峰,短波红外三个强吸收带。
总的来说,健康绿色植物的基本光谱特征:
光谱曲线总的“峰-谷”形态变化是基本相似的,说 明植物的光谱特性取决于其生物物理结构特征。
不同植物类别由于叶片的色素含量、细胞结构、含水 量的不同,其光谱曲线形态总是存在着一定的差异; 这就是植被遥感的理论基础和图像认知依据,也是进 行植被分类、长势监测、作物估产、病虫害预测等专 题研究的波谱分析依据。
3.植被物候特征与植被长势分析
植被物候特征和长势的解译需要利用多 时相的遥感数据,即基于波谱时差变化 信息,并利用图像处理算法进行信息提 取。
植被长势分析还需要对植物病虫害进行 遥感监测。
主要内容
植被遥感原理 植被遥感解译 植被指数与植被覆盖信息提取
植被指数
植被指数是植被定量遥感的特征参数,它是 将遥感图像光谱数据经数学方法处理后生成 的能够揭示植被生物物理学的一种特征参数 值。
对植被类型的图像解译是以覆盖层的植 冠的光谱特征组合、植冠构图的几何形 态及图像纹理标志位基本依据进行。
2. 植被地带性分布及植被区划解译
植被覆盖类型具有特定的地带性,可分为水 平地带性和垂直地带性。植被的地带性对植 被遥感解译具有一定的指导意义。

如何进行植被变化遥感监测和评价

如何进行植被变化遥感监测和评价

如何进行植被变化遥感监测和评价近年来,植被变化对于生态环境和地球资源的可持续发展具有重要影响。

植被是地球上生物多样性和生态系统健康的关键组成部分。

随着技术的进步和遥感技术的广泛应用,通过遥感监测和评价植被变化成为可能。

本文将探讨如何进行植被变化遥感监测和评价的方法和技术,并讨论其在生态保护和资源管理中的应用。

一、植被遥感监测技术的原理植被遥感监测技术是利用卫星或航空器搭载的传感器获取植被相关数据,并通过分析这些数据来监测和评价植被变化的过程。

遥感监测植被变化的原理基于植物和其他植被形成可见光、红外辐射和微波辐射的反射、辐射和传输特性。

这些辐射特性可以通过遥感技术获取,并用于分析植被的生物物理参数和类型。

常用的遥感数据包括光学遥感数据和雷达遥感数据。

光学遥感数据主要利用自然光或主动辐射源的能量进行拍摄,包括可见光、红外光和热红外光等。

它具有高分辨率、丰富的信息和多波段的优势,可以提供详细的植被植物类型和植被指数。

例如,彩色合成图像可以提供植被的空间分布和类型,而归一化植被指数(NDVI)可以反映植被的繁茂程度和生长状况。

雷达遥感数据则利用雷达波的特性,通过发射和接收雷达信号来获取植被信息。

相较于光学遥感,雷达遥感在遥感图像的获取过程中不受时间、天气和云雾的限制,并具有较高的穿透能力。

雷达遥感数据可以被用来分析植被的结构、湿度和生理特性。

二、植被变化遥感监测的方法植被变化遥感监测的方法主要包括变化检测、分类和模型建立。

变化检测是指利用遥感数据比较和分析植被覆盖的差异,以找出植被变化的空间和时间模式。

这种方法可以通过多时相遥感影像的比较来检测植被变化,例如,利用NDVI值的变化来反映植被覆盖的改变。

植被分类是指将遥感图像中的植被区域划分为不同的类别,例如森林、草地、农田等。

这种方法可以通过监督或无监督分类技术来实现。

监督分类需要预先定义训练样本来训练分类算法,而无监督分类则通过聚类分析来自动划分植被类别。

第 5 章 植被生态遥感

第 5 章 植被生态遥感

叶子的组织结构 及光谱特征

叶绿素对紫外线和紫色光
的吸收率极高,对蓝色光
和红色光也强烈吸收,以 进行光合作用。

对绿色光部分则部分吸收,部分反射,所以叶子呈绿色,并形 成在0.55µm,附近的一个小反射峰值,而在0.33µm-0.45µm及 0.65µm附近有两个吸收谷。叶子的多孔薄壁细胞组织(海绵组 织)对0.8µm-1.3µm的近红外光强烈地反射,形成光谱曲线上 的最高峰区。其反射率可达40%,甚至高达60%,吸收率不到15

再如,可见光中绿光波段0.52µm-0.59 µm对区分植
物类别敏感;红光波段0.63µm-0.69µm对植被覆盖度、
植物生长状况敏感等。但是,对于复杂的植被遥感, 仅用个别波段或多个单波段数据分析对比来提取植 被信息是相当局限的。因而往往选用多光谱遥感数 据经分析运算(加、减、乘、除等线性或非线性组
变 化 信 息 提 取
统计数据
初始动态图
变化信息提取(续)
详 查 图 数 字 化 形 式 时相① 遥感影像 配 准 配 准 裁 剪 和高克投影配准 主成分分析法 迭 加 分析图像特征选择反映变化信息明显的分量 分 类 初始动态分类(有变化) 确定动态变化的具体内容(由什么变成什么) 初始动态变化图 时相② 遥感影像
合方式),产生某些对植被长势、生物量等有一定
指示意义的数值——即所谓的“植被指数”。它用 一种简单有效的形式来实现对植物状态信息的表达, 以定性和定量地评价植被覆盖、生长活力及生物量 等。
植被指数:是由遥感图像的多光谱数据,经线 性和非线性组合构成的对植被有一定指示意 义的各种数值。 在植被指数中,通常选用对绿色植物强吸收的 可见光红波段和对绿色植物高反射和高透射 的近红外波段。

植被覆盖度的遥感与空间分析

植被覆盖度的遥感与空间分析

植被覆盖度的遥感与空间分析一、引言植被覆盖度是指一个区域地表被植被覆盖的程度,是评估生态系统健康状况和生态环境质量的重要指标之一。

有效地监测和评估植被覆盖度,有助于制定科学可行的植被恢复、重建计划,同时也是评估生态环境变化的重要依据。

二、植被覆盖度的遥感监测利用遥感技术来监测植被覆盖度可以准确快捷地获取大范围内的数据。

遥感技术利用传感器检测和记录地表反射和辐射信息,能够获得地表植被覆盖度信息。

植被覆盖度的监测主要利用遥感数据中反映植被状态的信息,如植被指数、归一化植被指数(NDVI)、植被指数混合、可见光遥感等。

其中,NDVI指标是广泛运用的植被监测指标之一。

NDVI反映了植被覆盖度和植被生长状况,其取值范围在-1至+1之间,一般来说,数值越高,代表植被覆盖度和植被生长越好。

三、植被覆盖度的空间分析方法1. 空间自相关分析空间自相关分析方法用于判断变量在空间上的相关性,常用的方法有Moran's I、Geary's C等。

在植被覆盖度的分析中,可以通过上述方法判断植被覆盖度的空间分布规律,以及不同区域之间植被覆盖度的相关性。

2. 空间插值分析空间插值分析是以现有数据为基础,通过各种插值方法构建连续的空间表面,以获得未知位置的数据。

在植被覆盖度的分析中,空间插值方法可以被用来填补植被覆盖度缺失的区域。

3. 空间聚类分析空间聚类分析方法可以根据聚类效应将整个区域分成若干个聚类区域,对于植被覆盖度的分析来说,可以通过聚类效应将不同区域之间的植被覆盖度水平进行比较,并进一步判断各个区域的植被覆盖度分布。

四、植被覆盖度的应用植被覆盖度监测和分析在许多领域都有着广泛的应用,如土地利用规划、生态环境评估、气候变化研究等。

以下几个方面是植被覆盖度监测和分析的主要应用:1. 生态环境变化评估生态环境变化评估是植被覆盖度监测和分析的主要应用之一。

通过对植被覆盖度变化趋势的分析,可以掌握一定地区的生态环境变化情况。

测绘技术中的植被遥感监测方法与技巧

测绘技术中的植被遥感监测方法与技巧

测绘技术中的植被遥感监测方法与技巧植被是地球上生物多样性和生态系统健康的重要组成部分。

为了有效管理和保护植被资源,测绘技术中的植被遥感监测方法与技巧扮演了重要的角色。

本文将就该主题展开讨论。

一、植被遥感介绍植被遥感是利用遥感技术获取和分析与植被相关的信息。

遥感数据可以来自卫星、航空器或无人机等。

通过特定波段的电磁能谱响应差异,可以识别和获取植被的不同信息。

这些信息包括植被覆盖度、叶绿素含量、生物量、植被类型等。

二、植被遥感监测方法1. 监测方法选择在植被遥感监测中,常用的方法包括光谱监测、纹理分析和变化检测等。

光谱监测是通过分析不同波段的反射率或辐射亮度来获取植被信息。

纹理分析则是通过分析图像中的纹理特征来推断植被类型。

变化检测侧重于检测植被变化的空间和时间模式。

2. 数据获取与处理数据的获取是植被遥感监测的基础。

为了获得高质量的数据,需要选择合适的传感器、设置正确的采样率和像元大小。

此外,数据的预处理也是不可或缺的环节,包括辐射定标、大气校正和几何校正等,以提高数据准确性和一致性。

三、植被遥感监测技巧1. 特征选择不同的研究目的和需求可能需要不同的特征。

根据实际需求,可以选择适当的植被指数(如NDVI、EVI等)或纹理特征进行分析。

同时,还可以结合地面调查数据和模型进行验证和辅助分析。

2. 多源数据融合当只依靠一种传感器数据无法满足需求时,可以采用多源数据融合的方法。

通过将多种遥感数据进行叠加或组合,可以提高精度和分类效果。

常用的融合方法包括像元级融合、特征级融合和决策级融合等。

3. 时间序列分析植被遥感监测是一个动态过程,时间序列分析可以帮助揭示植被的季节变化和长期趋势。

通过分析植被指数的时序数据,可以了解植被的生长状态和变化趋势,对灾害监测和生态评估具有重要意义。

4. 精密定位技术精确的定位是植被遥感监测的关键,尤其是对于大尺度和高分辨率的遥感数据。

利用全球卫星定位系统(GNSS)等定位技术,可以提高地理坐标和图像坐标的一致性,为后续分析和数据融合提供基础。

植被遥感

植被遥感
RV:植被总反射辐射 RS:土壤总反射辐射 R:传感器测的反射辐射
C1 = ( R − RS ) /( RV − RS )
C2 = ( ρ − ρs ) /( ρv − ρs )
ρ:植被与土壤混合光谱反射率 ρs :纯土壤宽波段反射率 ρv :纯植被宽波段反射率
RVI、NDVI与植土比分别成指数和幂函数关系 RVI、NDVI与植土比分别成指数和幂函数关系。 与植土比分别成指数和幂函数关系。 遥感测量植被覆盖度方法: 遥感测量植被覆盖度方法: 回归模型法、植被指数与像元分解模型法。 回归模型法、植被指数与像元分解模型法。 回归模型法:是通过对遥感数据的某一波段、波段组合或利用遥感数据 回归模型法:是通过对遥感数据的某一波段、
NDVI = A[1 − B exp(−C • LAI )] RVI = A′[1 − B′ exp(−C ′ • LAI )]
A、B、C为经验系数。 A由植物本身光谱反射确定 B与叶倾角、观测角相关 C取决于叶子对辐射的衰减,衰减成非线性的指数函数关系。
植被指数与叶绿素含量的关系: 植被指数与叶绿素含量的关系:
3)差值植被指数DVI 差值植被指数DVI
DVI = DN NIR − DN R
4)缨帽变换中的绿度植被指数GVI 缨帽变换中的绿度植被指数GVI
GVI = −0.2848TM 1 − 0.2435TM 2 − 0.5436TM 3 + 0.7243TM 4 + 0.084TM 5 − 0.18TM 7
植物内部所含的色素、水分以及它的结构等控制 植物内部所含的色素、 所含的色素 着植物特殊的光谱响应。 着植物特殊的光谱响应。 植被在生长发育的不同阶段(从发芽-生长生长发育的不同阶段 植被在生长发育的不同阶段(从发芽-生长-衰 ),内部成分结构及外部形态特征均会发生变 老),内部成分结构及外部形态特征均会发生变 化。

遥感技术在植被监测中的应用

遥感技术在植被监测中的应用

遥感技术在植被监测中的应用植被是地球上最重要的生态系统之一,它不仅影响着全球的水循环、碳循环和气候变化,还为人类提供了食物、水果、药材等资源。

因此,对植被的监测与评估显得格外重要。

目前,遥感技术在植被监测中得到了广泛应用,成为了监测植被的重要手段。

第一部分:遥感技术概论遥感是指利用各种遥感设备对地球或天体物体进行观测并从遥远的地方获取信息的一种技术。

在遥感技术中,主要涉及到传感器、图像处理、遥感数据和信息应用四个方面。

其中,传感器是遥感技术的核心,它可以通过不同的波段来获取地球表面的信息,如光学、红外、微波等。

第二部分:遥感在植被监测中的应用遥感在植被监测中的应用主要有以下几方面:1.植被覆盖度监测植被覆盖度是指某一区域植被所占比例。

通过遥感技术可以获取到相应的卫星影像,然后进行遥感信息提取。

植被监测的流程通常包括影像预处理、分类、评价等步骤,这些步骤的完成需要依赖于遥感图像处理软件。

通过人工和半自动化的方法,可以准确地测定出某个区域的植被覆盖程度。

2.植被生长状态监测植物的生长状态与其植被指数(Vegetation Index, VI)有着密切的关系。

植被指数通常由反射比计算而来,主要包括地表反照率、叶面积指数和叶绿素含量。

植被指数可以有效地反映植被的生长状态,因此被广泛应用于植被监测。

遥感技术通过实时地获取植被指数信息,可以实现对植物生长状态的快速、准确监测。

3.植被类型与分布监测不同类型的植被对环境的要求不同,因此其对气候、水循环、土壤和微生物等的影响也不同。

通过遥感技术可以获取到不同类型的植被信息,通过遥感图像处理软件对遥感图像进行分类,可以准确地测定出某个区域的植被类型和分布。

第三部分:遥感技术的优势遥感技术在植被监测中的应用,主要具有以下几个优势:1.高效性:遥感技术能够快速、准确地获取遥感信息,从而实现对植被的快速监测和评估。

2.可靠性:通过遥感技术获取的遥感信息具有高度的可靠性和准确性,从而为决策者提供了科学的参考依据。

植被覆盖度遥感监测研究

植被覆盖度遥感监测研究

植被覆盖度遥感监测研究一、绪论随着人类活动的不断扩张,自然环境遭到了越来越严重的破坏。

其中,植被覆盖度的变化直接反映了人类活动对自然环境的影响程度。

因此,对植被覆盖度进行遥感监测,对于掌握生态保护与可持续发展的相关信息具有重要的意义。

二、植被覆盖度的遥感监测1.植被覆盖度的概念植被覆盖度是指在某一土地面积上被植被所覆盖的面积与该土地面积之比,通常以百分数表示。

2.植被覆盖度的遥感监测方法(1)常规遥感监测方法常规的遥感监测方法主要是利用卫星遥感影像,对其进行数字处理、图像提取等技术,从而得到植被覆盖度等相关信息。

(2)高光谱遥感监测方法高光谱遥感技术可以获取更为详细的信息,因此在植被覆盖度监测中,也被广泛应用。

通过高光谱遥感图像的分析,可以得到植被覆盖度、类型、健康状况等信息。

(3)激光遥感监测方法激光遥感技术可以获取高精度的地形信息和植被高度信息,因此通过激光遥感数据可以得到植被覆盖度等更加详细的信息。

三、植被覆盖度遥感监测的应用实例1.生态环境监测植被覆盖度是生态环境质量的重要指标之一。

利用植被覆盖度的遥感监测方法,可以及时掌握地表植被的生长状况和变化情况,为生态环境保护提供科学依据。

2.农业生产监测农业生产对于植被的要求相对较高,因此植被覆盖度的监测对于农业生产的发展具有重要的作用。

利用植被覆盖度监测技术,可以实时掌握农田植被的生长状态,为农业生产提供精准的决策支持。

3.土地利用评价植被覆盖度是土地利用评价的重要指标之一。

利用植被覆盖度的遥感监测方法,可以准确地评价土地的利用状况和变化情况,为土地利用规划提供重要的参考。

4.自然灾害监测和预警植被覆盖度的变化可以反映自然灾害的发生和进展情况。

通过监测植被覆盖度的变化,可以及时发现自然灾害的迹象,提前预警和采取防范措施。

四、植被覆盖度遥感监测存在的问题和挑战1.地面不同类型植被的识别问题不同类型的植被在遥感图像中表现不同,因此需要针对不同类型的植被,对遥感图像进行不同的识别和处理。

植被遥感检测的原理与方法

植被遥感检测的原理与方法

植被遥感检测的原理与方法
植被遥感检测是利用遥感技术获取地面植被信息的过程。

其原理和方法主要包括以下几个方面:
1. 光谱特征:植被具有不同的光谱特征,不同类型的植被在不同波段的反射率存在差异。

利用遥感传感器获取地面反射光谱信息,可以判断植被的类型和状态。

2. 植被指数:植被指数是通过计算不同波段反射率之间的比值或差值来反映植被状态的指标。

常用的植被指数包括NDVI(归一化植被指数)、EVI(增强型植被指数)等。

通过计算植被指数可以评估地表植被的覆盖度、生长情况等。

3. 形状特征:植被在不同生长阶段和环境条件下具有不同的形状特征。

通过遥感图像的形态学处理方法,可以提取植被的边界、形状和空间分布等信息。

4. 纹理特征:植被表面的纹理信息可以反映植被的结构和生长状况。

纹理特征分析方法包括协方差矩阵、灰度共生矩阵等。

通过提取植被纹理特征,可以评估植被的密度、分布等。

在植被遥感检测中,常用的方法包括单波段阈值法、多波段指数法、分类方法等。

单波段阈值法是利用一个波段的反射率或亮度信息,通过设置合适的阈值来划分植被和非植被区域。

多波段指数法是通过计算不同波段的植被指数,根据指数的阈值或变化趋势来区分植被类型。

分类方法是使用统计学、机器学习等技术,将
遥感影像像素分为植被和非植被两类,并实现植被类型的自动识别和分类。

常用的分类方法包括最大似然法、支持向量机、深度学习等。

植被遥感检测的原理和方法可以根据具体应用需求和数据资源来选择和应用,从而实现对不同区域和不同尺度的植被信息的提取和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4. 植被覆盖度
一般而言,植 被覆盖程度越 大,光谱特征 形态受背景下 垫面的影响越 小
二、不同类型植被区分
植被具有典型的波谱特征,将其余其它典型地 物,如人工建筑、裸土、水域等区分容易,但 对植被类型划分却有一定难度。
不同植被类型,因组织结构、季相、生态条件 等不同而具有不同的光谱特征和冠层形态特征。 如:
植物群落
山地草甸 云松、红桦 华北落叶松、云杉、白桦、杨树 刺槐、蒙古栎、辽东栎、杨 杨、栎树
4. 根据植被冠层形态区分植被
在高分辨率的遥感影像上,根据植被顶部及部 分侧面形状、阴影、群落结构等区分植被类型。
草本植物表现为大片均匀的色调,因其低矮无 阴影;
灌木呈不均匀细颗粒结构,灌木一般不高,阴 影不明显;
在高覆盖度时提高了敏感性。
MODIS—EVI改善表现在:(1)大气 校正包括大气分子、气溶胶、薄云、 水汽和臭氧。而AVHRR—NDVI仅 对瑞利散射和臭氧吸收做了校正; 这样MODIS—EVI可以不采用基于 比值的方法。因为比值算式是以植
被指数饱和为代价来减少大气影响; (2)根据蓝光和红光对气溶胶散射存 在差异的原理。采用“抗大气植被 指数(ARVl)对残留气溶胶做进一步 的处理;(3)采用“土壤调节植;波 指数(SAVl)”减弱了树冠背景土壤变 化对植被指数的影响;(4)综合 ARVI和SAVI的理论基础。形成 “增强型植被指数(EVI)”。它可以 同时减少来自大气和土壤噪音的影 响。
山地阴坡---易生长适应温度变化不大,湿度较大的环 境的生物
山地阳坡---易生长适应温度变化不大,湿度要求不高 的环境的生物
同一地理环境植被的垂直分带性
(以山西省太原以南地区植物的垂直分带性为例)
海拔
2500m以上 2200~2500m 1600m~2200m 1200m~1600m 700m~1200m
景影响的缺点,一种新型的植被指数——增强性植被指 数(Enhanced Vegetation Index,EVI)被发展,该植被 指数引入了蓝光波段降低了大气的影响。
EVI

G

NIR

NIR R C1R C2 B


L

C1: 红光波段的大气纠正因子;C2:蓝光波段的大气纠正 因子;L: 冠层背景纠正因子;G: 增益因子。 根据经验,参数C1 =6.0,C2 =7.5和L=1.0,G=2.5
正常针叶林为红到品红,枯萎为暗红色,即将枯死时 为青色。
故可根据植被光谱、季相、生态环境、冠层形 态进行植被类型识别。
1. 根据植被光谱划分
不同植物由于叶子的组 织结构和所含色素的不 同,具有不同的光谱特 征。
在近红外光区,草本植 物的反射高于阔叶树, 阔叶树高于针叶树
2. 根据植物的物候差异来区分植物
2. 归一化植被指数(NDVI)
计算公式
NDVI DNIR DR 或NDVI NIR R
DNIR DR
NIR R
➢ NDVI介于-1和1之间,负值表示地面覆盖为云、水、 雪等,对可见光高反射;0表示岩石或裸土等,
NIR和R近似相等;正值表示有植被覆盖,且随覆
盖度增大而增大
1. 叶绿素 植被叶子中含有 多种色素,如叶 青素、叶红素、 叶绿素等,在可 见光范围内,其 反射峰值落在相 应的波长范围内 。
叶绿素a和叶绿素b导致以0.45μm和0.67μm为中心形成两 个强烈的吸收带。
不同生长状态的橡树叶子
不同橡树叶子的反射特性
2. 叶子的组织构造
绿色植物的叶子是由上表皮、叶绿素颗粒组成的栅 栏组织和多孔薄壁细胞组织(海绵组织)构成的。
(一)单张叶片光谱特性
单张叶片分为表皮 、叶脉和叶肉组成
单张叶片的反射、吸收和透射特性
反射辐射
入射辐射-散射辐射=吸收辐射,用于增加植物体温和光合作用
植物叶片的反射、透射和吸 收特性随种类、生长期、病 害及入射波长不同而变化, 故可依据此识别植被、诊断
病害及估产。
(二)影响植被叶片光谱的因素
植被指数类型
在植被指数中,通常选用对绿色植物强吸收的可见光红 波段和对绿色植物高反射的近红外波段构建。
植被指数类型
比值植被指数(RVI) 归一化植被指数(NDVI) 土壤修正植被指数(SAVI) 转换土壤调整植被指数(TSAVI) 修改型二次土壤调节植被指数 (MSAVI) 差值植被指数(DVI) 绿度植被指数(GVI) 垂直植被指数(PVI)
Dபைடு நூலகம்I—差值植被指数
差值植被指数(DVI)又称环境植被指数( EVI),被定义为近红外波段与可见光红波段 数值之差。即:
差值植被指数的应用远不如RVI、NDVI。它对土壤 背景的变化极为敏感,有利于对植被生态环境的监 测。另外,当植被覆盖浓密(≥80%)时,它对植 被的灵敏度下降,适用于植被发育早-中期,或低 -中覆盖度的植被检测。
(1)针叶林(云杉、松树林)
在比例尺为1:1万或1:15000的影片上,针叶林一般 是深灰色颗粒状图型,随比例尺进一步变小,表现为 暗色调均匀的细粒状影纹
(2)阔叶林(山杨、白桦)
其影像色调比针叶林浅,一般呈灰色或浅灰色颗粒状 或粗圆粒状图型,在秋季影片上,不同树种的树冠颜 色有较大差异,因而形成色调混杂的影像。
比值植被指数可提供植被反射的重要信息,是植被长 势、丰度的度量方法之一
同理,可见光绿波段(叶绿素引起的反射)与红波段 之比G/R,也是有效的。
比值植被指数可从多种遥感系统中得到。
但主要用于Landsat的MSS、TM和气象卫星的 AVHRR。
RVI是绿色植物的一个灵敏指示参数
它与叶面积指数(LAI)、叶干生物量(DM)、叶绿素 含量相关性高,被广泛用于估算和监测绿色植物生物量。
随着人们对于全球变化研究的深入,以遥感信息 推算区域尺度乃至全球尺度的植被指数日益成为 令人关注的问题。
植被指数的概念
遥感图像上的植被信息,主要通过绿色植物叶子 和植被冠层的光谱特性及其差异、变化而反映的, 不同光谱通道所获得的植被信息可与植被的不同 要素或某种特征状态有各种不同的相关性,
根据叶子的结构可分为结构稀疏(典型的双子叶 植物)和结构紧凑(典型的单子叶植物)。
苹果、棉花、向日葵 小麦、水稻、竹子
近红外波段的变化
不同类型植物光谱曲线的差异
叶子年龄的增长
随着叶龄的增长,背腹性叶子的叶肉间空隙增多
新叶
成熟叶片
衰老叶片
近红外波段反射率的变化
3. 叶片含水量
叶子在1.45μm、1.95μm和2.6~2.7μm处各有一 个吸收谷,这主要是由于叶子的细胞液、细胞膜 及吸收水分子所形成的。
4)评价生长期和变干期的长短
NDVI的局限性
NDVI 对土壤背景的变化较为敏感。 实验证明:
低植被覆盖度时(<15%),植被NDVI值高于裸土NDVI 值,植被可被检测出来,但因植被覆盖度很低(如干旱、 半干旱地区),其 NDVI很难指示区域生物量;
中植被覆盖度时(25—80%), NDVI值 随生物量的增 加呈线性迅速增加;
遥感地学分析
Geography Analysis for Remote Sensing
第5章 植被遥感
主要内容
一、植被遥感原理 二、植被分类 三、植被生态参数 四、植被指数与地表参数的关系 五、中国及中亚地区荒漠化遥感监测研究
一、植被遥感原理
植被遥感不仅依赖于对单张植物叶片的光谱特性的 认识,还需要进一步认识植被冠层的光谱特性。
1. 比值植被指数
根据可见光红波段(R)和近红外波段(NIR)对绿 色植物的光谱响应的不同,且具有倒转关系。两者 的数值比能充分表达两反射率之间的差异

对于绿色植物叶绿素引起的红光吸收和叶肉组织引起的 近红外强反射,RVI值高(一般大于2)。而对于无植被 的地面包括裸土、人工特征物、水体以及枯死或受胁迫 植被,因不显示这种特殊的光谱响应,则RVI值低(一 般等于1)。因此,比值植被指数能增强植被与土壤背 景之间的辐射差异。
在Landsat 7快速格式产品的头文件辐射记录段中含有与辐射校正有关的 参数,用户可利用这些参数将图象象元的亮度值转换成地物的辐射值或 反射率。 辐射记录段以“gains and biases in ascending band number order” 开始,逐行、按波段顺序记录了辐射校正有关的参数,每行中按bias、 gain的顺序排列,其中bias的单位是W/m2 . ster .μm,gain的单位是 (W/m2 . ster .μm)/DN。
高植被覆盖度时(>80%), NDVI值 增加延缓而呈现 饱和状态,对植被检测灵敏度下降。
实验表明,作物生长初期NDVI将过高估计植被覆盖 度,而作物生长结束季节,NDVI值偏低。
NDVI 更适用于植被发育中期或中等覆盖度植被检测。
增强型植被指数(EVI)
为了克服NDVI高植被区易饱和、低植被区易受土壤背
它用一种简单有效的形式来实现对植物状态信 息的表达,以定性和定量地评价植被覆盖、生 长活力及生物量等。
以美国陆地卫星Landsat TM传感器获取的遥 感数据为例,植被指数就是由第三波段的红 光波段(Red)和第四波段的近红外波段进行 运算而得到可以表征植被状况的植被指数。
植被指数的类型
如叶子光谱特性中,可见光谱段受叶子叶绿素含量的 控制
近红外谱段受叶内细胞结构的控制 中红外谱段受叶细胞内水分含量的控制
但是,对于复杂的植被遥感,仅用个别波段或 多个单波段数据分析对比来提取植被信息是相 当局限的。因而往往选用多光谱遥感数据经分 析运算(加、减、乘、除等线性或非线性组合 方式),产生某些对植被长势、生物量等有一 定指示意义的数值——即所谓的“植被指数”。
相关文档
最新文档