函数图像问题高考试题完整版
高考数学函数的图像专题卷
高考数学函数的图像专题卷一、单选题(共28题;共56分)1. ( 2分) (2020高三上·兴宁期末)函数y=xcos x+sin x的图象大致为( ).A. B.C. D.2. ( 2分) (2021高三上·宝安月考)函数的图象大致为()A. B.C. D.3. ( 2分) (2021高三上·河南月考)函数的大致图象为()A. B.C. D.4. ( 2分) (2021高三上·河北期中)函数的图象大致为()A. B.C. D.5. ( 2分) (2021高三上·湖北期中)函数的图象大致为()A. B.C. D.6. ( 2分) (2021·芜湖模拟)函数的部分图象可能为()A. B.C. D.7. ( 2分) (2020高三上·天津月考)函数的图象大致是()A. B. C. D.8. ( 2分) 函数的图象大致为()A. B.C. D.9. ( 2分) (2020高三上·杭州期中)函数的部分图象大致为()A. B.C. D.10. ( 2分) (2021高三上·赣州期中)已知函数,则函数的大致图象为()A. B.C. D.11. ( 2分) (2021高三上·湖州期中)函数的图象可能是()A. B. C. D.12. ( 2分) (2021高三上·金华月考)已知,函数,,则图象为上图的函数可能是()A. B. C. D.13. ( 2分) (2021高三上·杭州期中)函数的图象可能是()A. B.C. D.14. ( 2分) (2021高三上·陕西月考)在同一直角坐标系中,函数,,(,且)的图像可能是()A. B.C. D.15. ( 2分) (2021高三上·贵州月考)函数f(x)= 的大致图象不可能是()A. B.C. D.16. ( 2分) (2020高三上·温州月考)函数的图像可能是()A. B.C. D.17. ( 2分) (2021·四川模拟)函数及,则及的图象可能为()A. B.C. D.18. ( 2分) 已知函数f(x)=ka x﹣a﹣x(a>0且a≠1)在R上是奇函数,且是增函数,则函数g(x)=log a (x﹣k)的大致图象是()A. B. C. D.19. ( 2分) (2021高三上·重庆月考)函数的大致图象如图所示,则a,b,c 大小顺序为()A. B. C. D.20. ( 2分) (2021·株洲模拟)若函数的大致图象如图所示,则()A. B. C. D.21. ( 2分) (2020高三上·浙江开学考)已知函数的图像如图所示,则下列判断正确的个数是()(1),(2),(3),(4)A. 1个B. 2个C. 3个D. 4个22. ( 2分) 如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A. B.C. D.23. ( 2分) (2021·新乡模拟)如图,在正方形中,点M从点A出发,沿向,以每2个单位的速度在正方形的边上运动;点N从点B出发,沿方向,以每秒1个单位的速度在正方形ABCD的边上运动.点M与点N同时出发,运动时间为t(单位:秒),的面积为(规定共线时其面积为零,则点M第一次到达点A 时,的图象为()A. B.C. D.24. ( 2分) (2017高三上·九江开学考)如图,圆C:x2+(y﹣1)2=1与y轴的上交点为A,动点P从A点出发沿圆C按逆时针方向运动,设旋转的角度∠ACP=x(0≤x≤2π),向量在=(0,1)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()A. B.C. D.25. ( 2分) 在边长为1的正方体中,E,F,G,H分别为A1B1,C1D1,AB,CD的中点,点P从G出发,沿折线GBCH匀速运动,点Q从H出发,沿折线HDAG匀速运动,且点P与点Q运动的速度相等,记E,F,P,Q四点为顶点的三棱锥的体积为V,点P运动的路程为x,在0≤x≤2时,V与x的图象应为()A. B. C. D.26. ( 2分) 如图,正△ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量在=(1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()A. B.C. D.27. ( 2分) (2013·江西理)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A. B.C. D.28. ( 2分) (2016高三上·崇明期中)如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成,它们的圆心分别为O,O1,O2.动点P从A点出发沿着圆弧按A→O→B→C→A→D→B的路线运动(其中A,O1,O,O2,B五点共线),记点P运动的路程为x,设y=|O1P|2,y与x的函数关系为y=f (x),则y=f(x)的大致图象是()A. B.C. D.答案解析部分一、单选题1.【答案】D【考点】函数的图象【解析】【解答】由于函数y=xcosx+sinx为奇函数,故它的图象关于原点对称,所以排除B,由当时,y=1>0,当x=π时,y=π×cosπ+sinπ=−π<0.由此可排除A和C,故正确的选项为D.故答案为:D.【分析】利用奇函数的定义证出函数为奇函数,再利用奇函数的图象关于原点对称的性质结合特殊值法及函数值与0的大小关系,再利用排除法得出函数y=xcos x+sin x的大致图象。
函数图像问题高考试题精选
函数图像问题高考试题精选一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A.B.C. D.2.函数y=x+cosx的大致图象是()A.B.C.D.3.函数y=的图象大致是()A.B. C.D.4.函数y=xln|x|的大致图象是()A. B.C.D.5.函数f(x)=x2﹣2|x|的图象大致是()A.B.C.D.6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.8.函数y=xln|x|的图象大致是()A.B.C.D.9.f(x)=的部分图象大致是()A.B.C.D.10.函数的图象大致为()A.B.C.D.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B.C.D.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A.B.C.D.13.函数的部分图象大致为()A.B.C.D.14.函数f(x)=的部分图象大致为()A.B.C.D.15.函数的部分图象大致为()A.B.C.D.16.函数y=x(x2﹣1)的大致图象是()A.B.C.D.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.18.函数f(x)=的部分图象大致是()A..B..C..D.. 19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B. C.D.20.函数的图象大致是()A.B.C.D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.22.函数的图象大致是()A.B.C.D.23.函数y=的大致图象是()A.B.C.D.24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A. B. C.D.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A.B.C.D.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A. B. C. D.27.函数y=1+x+的部分图象大致为()A.B.C.D.28.函数y=的部分图象大致为()A.B.C.D.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.30.函数f(x)=e ln|x|+的大致图象为()A.B. C.D.31.函数y=的一段大致图象是()A.B.C.D.32.函数的图象大致是()A.B.C.D.33.函数的大致图象是()A.B.C.D.34.函数的图象大致为()A.B.C.D.二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.36.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.函数图像问题高考试题精选参考答案与试题解析一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A.B.C. D.【解答】解:因为f(0)=(02﹣2×0)e0=0,排除C;因为f'(x)=(x2﹣2)e x,解f'(x)>0,所以或时f(x)单调递增,排除B,D.故选A.2.函数y=x+cosx的大致图象是()A.B.C.D.【解答】解:由于f(x)=x+cosx,∴f(﹣x)=﹣x+cosx,∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A、C;又当x=时,x+cosx=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.故选:B.3.函数y=的图象大致是()A.B. C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D4.函数y=xln|x|的大致图象是()A. B.C.D.【解答】解:令f(x)=xln|x|,易知f(﹣x)=﹣xln|﹣x|=﹣xln|x|=﹣f(x),所以该函数是奇函数,排除选项B;又x>0时,f(x)=xlnx,容易判断,当x→+∞时,xlnx→+∞,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x>0时,函数图象与x轴只有一个交点,所以C选项满足题意.故选:C.5.函数f(x)=x2﹣2|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=x2﹣2|x|,∴f(3)=9﹣8=1>0,故排除C,D,∵f(0)=﹣1,f()=﹣2=0.25﹣<﹣1,故排除A,故选:B当x>0时,f(x)=x2﹣2x,∴f′(x)=2x﹣2x ln2,故选:B6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.【解答】解:根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C不正确故选:A8.函数y=xln|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=xln|x|,可得f(﹣x)=﹣f(x),f(x)是奇函数,其图象关于原点对称,排除A,D,当x→0时,f(x)→0,故排除B又f′(x)=lnx+1,令f′(x)>0得:x>,得出函数f(x)在(,+∞)上是增函数,故选:C.9.f(x)=的部分图象大致是()A.B.C.D.【解答】解:∵f(﹣x)=f(x)∴函数f(x)为奇函数,排除A,∵x∈(0,1)时,x>sinx,x2+x﹣2<0,故f(x)<0,故排除B;当x→+∞时,f(x)→0,故排除C;故选:D10.函数的图象大致为()A.B.C.D.【解答】解:函数是非奇非偶函数,排除A、B,函数的零点是x=e﹣1,当x=e时,f(e)=,排除选项D.故选:C.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B.C.D.【解答】解:f(﹣x)====f(x),∴f(x)是偶函数,故f(x)图形关于y轴对称,排除B,D;又x→0时,e x+1→2,x(e x﹣1)→0,∴→+∞,排除C,故选A.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A.B.C.D.【解答】解:当x∈[0,5]时,f(x)=(2x﹣2﹣x)cosx=0,可得函数的零点为:0,,,排除A,B,当x=π时,f(π)=﹣2π+2﹣π,<0,对应点在x轴下方,排除选项C,故选:D.13.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选C.14.函数f(x)=的部分图象大致为()A.B.C.D.【解答】解:函数f(x)==﹣,当x=0时,可得f(0)=0,f(x)图象过原点,排除A.当﹣<x<0时;sin2x<0,而|x+1|>0,f(x)图象在上方,排除C.当x<﹣1,x→﹣1时,sin(﹣2)<0,|x+1|→0,那么f(x)→∞,当x=﹣时,sin2x=﹣,y=﹣=,对应点在第二象限,排除D,B满足题意.故选:B.15.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选C.16.函数y=x(x2﹣1)的大致图象是()A.B.C.D.【解答】解:∵函数y=x(x2﹣1),令f(x)=x(x2﹣1),则f(﹣x)=﹣x(x2﹣1)=﹣f(x),故函数f(x)为奇函数,又当0<x<1时,f(x)<0,综上所述,函数y=x(x2﹣1)的大致图象是选项A.故选:A.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣x+2sinx=﹣(x﹣2sinx)=﹣f(x),所以函数为奇函数,故函数的图象关于原点对称,只有CD适合,y′=1﹣2cosx,由y′=0解得x=,∴当x=时,函数取极值,故D适合,故选:D.18.函数f(x)=的部分图象大致是()A..B..C..D..【解答】解:由x2+|x|﹣2=0,解得x=﹣1或x=1,∴函数的定义域为(﹣∞,﹣1)∪(﹣1,1)∪(1,+∞),∵f(﹣x)==﹣f(x),∴f(x)为奇函数,∴f(x)的图象关于原点对称,故排除A,令f(x)=0,解得x=0,故排除C,当x=时,f()=<0,故排除B,故选:D19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B. C.D.【解答】解:由y=﹣2x2+2|x|知函数为偶函数,即其图象关于y轴对称,故可排除B,D.又当x=2时,y=﹣2•(﹣2)2+22=﹣4.所以,C是错误的,故选:A.20.函数的图象大致是()A.B.C.D.【解答】解:解:定义域为(﹣∞,0)∪(0,+∞),f(x)=)=﹣,∴f(﹣x)=f(x),f(x)为偶函数,.∴其图象关于y轴对称,可排除A、C,;又当x→0时,cos(πx)→1,x2→0,∴f(x)→﹣∞.故可排除B;而D均满足以上分析.故选:D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.【解答】解:函数f(x)=(x∈[﹣2,2])满足f(﹣x)=﹣f(x)是奇函数,排除D,x=1时,f(1)=>0,对应点在第一象限,x=2时,f(2)=<0,对应点在第四象限;所以排除B,C;故选:A.22.函数的图象大致是()A.B.C.D.【解答】解:函数满足f(﹣x)=﹣f(x),故函数图象关于原点对称,排除A、B,当x∈(0,)时,,故排除D,故选:C23.函数y=的大致图象是()A.B.C.D.【解答】解:函数y=的导数为,令y′=0,得x=,时,y′<0,时,y′>0,时,y′<0.∴函数在(﹣),()递减,在()递增.且x=0时,y=0,故选:C24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A. B. C.D.【解答】解:函数y=sinx(1+cos2x),定义域为[﹣2,2]关于原点对称,且f(﹣x)=sin(﹣x)(1+cosx)=﹣sinx(1+cosx)=﹣f(x),则f(x)为奇函数,图象关于原点对称,排除D;由0<x<1时,y=sinx(1+cos2x)=2sinxcos2x>0,排除C;又2sinxcos2x=0,可得x=±(0<x≤2),则排除A,B正确.故选B.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A.B.C.D.【解答】解:函数f(x)=(x2﹣3)•ln|x|是偶函数;排除选项A,D;当x→0时,f(x)→+∞,排除选项B,故选:C.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A. B. C. D.【解答】解:函数f(x)=﹣e﹣ln|x|+x是非奇非偶函数,排除A,D;当x>0时,f(x)=﹣e﹣lnx+x=x﹣,函数是增函数,排除C;故选:B.27.函数y=1+x+的部分图象大致为()A.B.C.D.【解答】解:函数y=1+x+,可知:f(x)=x+是奇函数,所以函数的图象关于原点对称,则函数y=1+x+的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,点x=π时,y=1+π,排除B.故选:D.28.函数y=的部分图象大致为()A.B.C.D.【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()==,排除A,x=π时,f(π)=0,排除D.故选:C.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.【解答】解:函数f(x)=x•ln|x|是奇函数,排除选项A,C;当x=时,y=,对应点在x轴下方,排除B;故选:D.30.函数f(x)=e ln|x|+的大致图象为()A.B. C.D.【解答】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.31.函数y=的一段大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣=﹣f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=﹣<0,故选:A.32.函数的图象大致是()A.B.C.D.【解答】解:由题意,函数在(﹣1,1)上单调递减,在(﹣∞,﹣1),(1,+∞)上单调递减,故选A.33.函数的大致图象是()A.B.C.D.【解答】解:f(﹣x)===﹣f(x),∴f(x)是奇函数,图象关于原点对称,故A,C错误;又当x>1时,ln|x|=lnx>0,∴f(x)>0,故D错误,故选B.34.函数的图象大致为()A.B.C.D.【解答】解:f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.36.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=﹣2+ky②;联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,∴其普通方程为:x+y ﹣=0,联立得:,∴ρ2=x2+y2=+=5.∴l3与C的交点M的极径为ρ=.第31页(共31页)。
高三数学函数图像试题答案及解析
高三数学函数图像试题答案及解析1.函数在上的图像大致为()【答案】A【解析】函数是奇函数,所以C,D被排除;当时,,,由此判断,函数原点右侧开始时应该是正数,所以选A.【考点】函数的图像与性质2.如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )【答案】B【解析】通过圆心角α将弧长x与时间t联系起来.圆半径为1,设弧长x所对的圆心角为α,则α=x,如图所示,cos=1-t,即cos=1-t,则y=cos x=2cos2-1=2(1-t)2-1=2(t-1)2-1(0≤t≤1).其图象为开口向上,在[0,1]上的一段抛物线.3.若函数的图像如右图所示,则下列函数图像正确的是()【答案】B【解析】由题意可得.所以函数是递减的即A选项不正确.B正确. 是递减,所以C不正确. 图象与关于y轴对称,所以D不正确.故选B.【考点】函数的图象.4.已知函数f(x)=|lgx|,若a≠b,且f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【答案】C【解析】函数f(x)=|lgx|的图象如图所示,由图象知a,b一个大于1,一个小于1,不妨设a>1,0<b<1.∵f(a)=f(b),∴f(a)=|lga|=lga=f(b)=|lgb|=-lgb=lg.∴a=.∴a+b=b+>2=2.5.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为________.【答案】【解析】由题意知,y=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y=m与y=x2-5x+4(x∈[0,3])的图像如图所示,结合图像可知,当x∈[2,3]时,y=x2-5x+4∈,故当m∈时,函数y=m与y=x2-5x+4(x∈[0,3])的图像有两个交点.6.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.7.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.8.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.9.已知,则函数的零点个数为()A.1B.2C.3D.4【答案】D【解析】由题意可知,要研究函数的零点,只要研究函数与函数的交点个数,画出两个函数的图象,如图,很明显是4个交点.【考点】1.函数的零点;2.函数的图象.10.函数的图象大致是().【答案】C【解析】不难知道,函数是奇函数,故排除A;又,令得,而此方程有无穷个解,且在每个解的两边函数值不同号,所以函数有无穷多个极值点,故可排除B,D.11.已知,点在曲线上,若线段与曲线相交且交点恰为线段的中点,则称为曲线关于曲线的一个关联点.记曲线关于曲线的关联点的个数为,则( ) A.B.C.D.【答案】B【解析】设则的中点为所以有,因此关联点的个数就为方程解得个数,由于函数在区间上分别单调增及单调减,所以只有一个交点,即.【考点】函数图像12.如图,不规则四边形ABCD中,AB和CD是线段,AD和BC是圆弧,直线于E,当从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设,左侧部分面积为,则关于的图像大致为( )【答案】C【解析】由直线的变化可知,开始时圆弧那段变化较慢,所以排除A,B选项,由于左边的面积始终在增大,所以D选项不正确.【考点】1.图形的变化规律.2.关注局部图形的变化.13.已知函数y=f(x)的图象如图所示,请根据已知图象作出下列函数的图象:①y=f(x+1);②y=f(x)+2;【答案】【解析】(1)将函数y=f(x)的图象向左平移一个单位得到y=f(x+1)的图象(如图①所示),将函数y=f(x)的图象向上平移两个单位得到y=f(x)+2的图象(如图②所示).14.已知函数,,若在区间内,函数与轴有3个不同的交点,则实数的取值范围是()A.B.C.D.【答案】C【解析】∵,∴,∴,∴,∴,∴当时,,∵函数与x轴有3个不同交点,∴函数与有3个不同的交点,函数的图像如图所示,直线与相切是一个边界情况,直线过时是一个边界情况,符合题意的直线需要在这2条直线之间,∵,∴,∴,所以切线方程为,与相同,即,当过点时,,综上可得:,故选C.【考点】1.导数的运算;2.函数图像;3.曲线的切线.15.函数y=lnx-1的图象关于直线y=x对称的图象大致是 ( )A. B. C. D.【答案】A【解析】因为关于直线y=x对称点的关系为,所以函数y=lnx-1的关于直线y=x对称的函数的解析式为.即相当于将函数的图像向左平移一个单位,显然B,D不正确,C 选项中的图像在y轴的交点过低,所以不正确.故选A.【考点】1.函数的对称性.2.指数函数的图像.3.函数图像的平移知识.16.下列函数图象与x轴均有公共点,其中能用二分法求零点的是().【答案】C【解析】只有零点两侧的函数值符号相反且在零点附近连续时才可用二分法.17.函数y=的图象大致是().【答案】D【解析】由y=知为奇函数,排除A,B.根据函数有两个零点x=±1,排除C.18.函数y=-2sin x的图象大致是 ().【答案】C【解析】当x=0时,y=0-2sin 0=0,故函数图象过原点,可排除A.又∵y′=-2cos x,当x在y轴右侧趋向0时,f′(x)<0,此时函数为减函数;当x=2 π时,f′(2 π)=-2 cos 2 π=-<0,所以x=2 π应在函数的减区间上,故选C19.函数的图象大致是( )【答案】D【解析】因为的定义域为,且,故可排除,所以应选D.【考点】1、函数的定义域;2、函数的性质;函数的图象.20.函数的图象大致是( )【答案】A【解析】,故此函数在上为增函数,在为减函数;且只有一个根,故只有一个零点.所以选A.【考点】函数的性质与图像.21.随着生活水平的提高,私家车已成为许多人的代步工具。
高考专题 《函数图像问题》考题归纳及详解
高考专题《函数图像问题》考题归纳及详解一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A. B.C.D.2.函数y=x+cosx的大致图象是()A.B.C.D.3.函数y=的图象大致是()A. B.C.D.4.函数y=xln|x|的大致图象是()A.B.C.D.5.函数f(x)=x2﹣2|x|的图象大致是()A. B.C.D.6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B. C.D.8.函数y=xln|x|的图象大致是()A.B.C.D.9.f(x)=的部分图象大致是()A.B.C. D.10.函数的图象大致为()A. B. C. D.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A. B.C.D.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A. B.C.D.13.函数的部分图象大致为()A.B.C.D.14.函数f(x)=的部分图象大致为()A.B.C.D.15.函数的部分图象大致为()A.B.C.D.16.函数y=x(x2﹣1)的大致图象是()A.B. C. D.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.18.函数f(x)=的部分图象大致是()A.. B..C..D..19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B.C.D.20.函数的图象大致是()A.B.C.D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.22.函数的图象大致是()A.B.C.D.23.函数y=的大致图象是()A.B.C.D.24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A.B.C.D.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A. B. C. D.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A.B.C.D.27.函数y=1+x+的部分图象大致为()A.B.C.D.28.函数y=的部分图象大致为()A.B.C.D.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.30.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.31.函数y=的一段大致图象是()A. B.C.D.32.函数的图象大致是()A.B.C.D.33.函数的大致图象是()A.B.C.D.34.函数的图象大致为()A.B.C.D.二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB 面积的最大值.36.在直角坐标系xOy中,曲线C1的参数方程为(t 为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P 的直角坐标.38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.函数图像问题高考试题精选参考答案与试题解析一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A. B.C.D.【解答】解:因为f(0)=(02﹣2×0)e0=0,排除C;因为f'(x)=(x2﹣2)e x,解f'(x)>0,所以或时f(x)单调递增,排除B,D.故选A.2.函数y=x+cosx的大致图象是()A.B.C.D.【解答】解:由于f(x)=x+cosx,∴f(﹣x)=﹣x+cosx,∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A、C;又当x=时,x+cosx=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.故选:B.3.函数y=的图象大致是()A. B.C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D4.函数y=xln|x|的大致图象是()A.B.C.D.【解答】解:令f(x)=xln|x|,易知f(﹣x)=﹣xln|﹣x|=﹣xln|x|=﹣f(x),所以该函数是奇函数,排除选项B;又x>0时,f(x)=xlnx,容易判断,当x→+∞时,xlnx→+∞,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x>0时,函数图象与x轴只有一个交点,所以C选项满足题意.故选:C.5.函数f(x)=x2﹣2|x|的图象大致是()A. B.C.D.【解答】解:∵函数f(x)=x2﹣2|x|,∴f(3)=9﹣8=1>0,故排除C,D,∵f(0)=﹣1,f()=﹣2=0.25﹣<﹣1,故排除A,故选:B当x>0时,f(x)=x2﹣2x,∴f′(x)=2x﹣2x ln2,故选:B6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B. C.D.【解答】解:根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C 不正确故选:A8.函数y=xln|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=xln|x|,可得f(﹣x)=﹣f(x),f(x)是奇函数,其图象关于原点对称,排除A,D,当x→0时,f(x)→0,故排除B又f′(x)=lnx+1,令f′(x)>0得:x>,得出函数f(x)在(,+∞)上是增函数,故选:C.9.f(x)=的部分图象大致是()A.B.C. D.【解答】解:∵f(﹣x)=f(x)∴函数f(x)为奇函数,排除A,∵x∈(0,1)时,x>sinx,x2+x﹣2<0,故f(x)<0,故排除B;当x→+∞时,f(x)→0,故排除C;故选:D10.函数的图象大致为()A. B. C. D.【解答】解:函数是非奇非偶函数,排除A、B,函数的零点是x=e﹣1,当x=e时,f(e)=,排除选项D.故选:C.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A. B.C.D.【解答】解:f(﹣x)====f(x),∴f(x)是偶函数,故f(x)图形关于y轴对称,排除B,D;又x→0时,e x+1→2,x(e x﹣1)→0,∴→+∞,排除C,故选A.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A. B.C.D.【解答】解:当x∈[0,5]时,f(x)=(2x﹣2﹣x)cosx=0,可得函数的零点为:0,,,排除A,B,当x=π时,f(π)=﹣2π+2﹣π,<0,对应点在x轴下方,排除选项C,故选:D.13.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f (x)单调递增,排除D,故选C.14.函数f(x)=的部分图象大致为()A.B.C.D.【解答】解:函数f(x)==﹣,当x=0时,可得f(0)=0,f(x)图象过原点,排除A.当﹣<x<0时;sin2x<0,而|x+1|>0,f(x)图象在上方,排除C.当x<﹣1,x→﹣1时,sin(﹣2)<0,|x+1|→0,那么f(x)→∞,当x=﹣时,sin2x=﹣,y=﹣=,对应点在第二象限,排除D,B满足题意.故选:B.15.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f (x)单调递增,排除D,故选C.16.函数y=x(x2﹣1)的大致图象是()A.B. C. D.【解答】解:∵函数y=x(x2﹣1),令f(x)=x(x2﹣1),则f(﹣x)=﹣x(x2﹣1)=﹣f(x),故函数f(x)为奇函数,又当0<x<1时,f(x)<0,综上所述,函数y=x(x2﹣1)的大致图象是选项A.故选:A.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣x+2sinx=﹣(x﹣2sinx)=﹣f(x),所以函数为奇函数,故函数的图象关于原点对称,只有CD适合,y′=1﹣2cosx,由y′=0解得x=,∴当x=时,函数取极值,故D适合,故选:D.18.函数f(x)=的部分图象大致是()A.. B..C..D..【解答】解:由x2+|x|﹣2=0,解得x=﹣1或x=1,∴函数的定义域为(﹣∞,﹣1)∪(﹣1,1)∪(1,+∞),∵f(﹣x)==﹣f(x),∴f(x)为奇函数,∴f(x)的图象关于原点对称,故排除A,令f(x)=0,解得x=0,故排除C,当x=时,f()=<0,故排除B,故选:D19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:由y=﹣2x2+2|x|知函数为偶函数,即其图象关于y 轴对称,故可排除B,D.又当x=2时,y=﹣2•(﹣2)2+22=﹣4.所以,C是错误的,故选:A.20.函数的图象大致是()A.B.C.D.【解答】解:解:定义域为(﹣∞,0)∪(0,+∞),f(x)=)=﹣,∴f(﹣x)=f(x),f(x)为偶函数,.∴其图象关于y轴对称,可排除A、C,;又当x→0时,cos(πx)→1,x2→0,∴f(x)→﹣∞.故可排除B;而D均满足以上分析.故选:D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.【解答】解:函数f(x)=(x∈[﹣2,2])满足f(﹣x)=﹣f(x)是奇函数,排除D,x=1时,f(1)=>0,对应点在第一象限,x=2时,f(2)=<0,对应点在第四象限;所以排除B,C;故选:A.22.函数的图象大致是()A.B.C.D.【解答】解:函数满足f(﹣x)=﹣f(x),故函数图象关于原点对称,排除A、B,当x∈(0,)时,,故排除D,故选:C23.函数y=的大致图象是()A.B.C.D.【解答】解:函数y=的导数为,令y′=0,得x=,时,y′<0,时,y′>0,时,y′<0.∴函数在(﹣),()递减,在()递增.且x=0时,y=0,故选:C24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A.B.C.D.【解答】解:函数y=sinx(1+cos2x),定义域为[﹣2,2]关于原点对称,且f(﹣x)=sin(﹣x)(1+cosx)=﹣sinx(1+cosx)=﹣f(x),则f(x)为奇函数,图象关于原点对称,排除D;由0<x<1时,y=sinx(1+cos2x)=2sinxcos2x>0,排除C;又2sinxcos2x=0,可得x=±(0<x≤2),则排除A,B正确.故选B.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A. B. C. D.【解答】解:函数f(x)=(x2﹣3)•ln|x|是偶函数;排除选项A,D;当x→0时,f(x)→+∞,排除选项B,故选:C.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A.B.C.D.【解答】解:函数f(x)=﹣e﹣ln|x|+x是非奇非偶函数,排除A,D;当x>0时,f(x)=﹣e﹣lnx+x=x﹣,函数是增函数,排除C;故选:B.27.函数y=1+x+的部分图象大致为()A.B.C.D.【解答】解:函数y=1+x+,可知:f(x)=x+是奇函数,所以函数的图象关于原点对称,则函数y=1+x+的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,点x=π时,y=1+π,排除B.故选:D.28.函数y=的部分图象大致为()A.B.C.D.【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()==,排除A,x=π时,f(π)=0,排除D.故选:C.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.【解答】解:函数f(x)=x•ln|x|是奇函数,排除选项A,C;当x=时,y=,对应点在x轴下方,排除B;故选:D.30.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.【解答】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.31.函数y=的一段大致图象是()A. B.C.D.【解答】解:f(﹣x)=﹣=﹣f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=﹣<0,故选:A.32.函数的图象大致是()A.B.C.D.【解答】解:由题意,函数在(﹣1,1)上单调递减,在(﹣∞,﹣1),(1,+∞)上单调递减,故选A.33.函数的大致图象是()A.B.C.D.【解答】解:f(﹣x)===﹣f(x),∴f(x)是奇函数,图象关于原点对称,故A,C错误;又当x>1时,ln|x|=lnx>0,∴f(x)>0,故D错误,故选B.34.函数的图象大致为()A.B.C.D.【解答】解:f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB 面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.36.在直角坐标系xOy中,曲线C1的参数方程为(t 为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P 的直角坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a ﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d 的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=﹣2+ky②;联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,∴其普通方程为:x+y﹣=0,联立得:,∴ρ2=x2+y2=+=5.∴l3与C的交点M的极径为ρ=.。
高中数学函数的图象与性质考试题(含答案解析)
函数的图象与性质试题课程名称高考数学二轮复习模拟考试教研室___________________ 高三数学组_________________复习时间年月日时分至适用专业班级成绩开卷A卷闭卷_±B卷班级_______________________ 姓名______________________ 学号___________________ 考生注童:舞弊万莫償,那祥要退学,自爱当守诺,最怕錯上第,若真不及格,努力下次过。
答案耳在答题娥上,耳在试题妖上无效。
一、选择题一、选择题1. (2017-高考山东卷)设函数y=\/4二x2的定义域为A,函数y=\n(\~x)的定义域为b则AHB=()A・(1, 2) B. (1, 2C・(一2, 1) D. -2, 1)[log4 工.工>0 •2・(2017-沈阳模拟)已知函数f(x)= \则师4))的值为()A. —£B. —99D.3. (2017-湖南东部六校联考)函数y=\M()A・是偶函数,在区间0)上单调递增B.是偶函数,在区间(一8, 0)上单调递减C.是奇函数,在区间(0, +8)上单调递增 D ・是奇函数,在区间(0, +8)上单调递减5. (2017-西安模拟)对于函数y=f(x),部分x 与y 的对应关系如下表:上,则 Xl+X2~\ ----- X2 017 = ( ) A. 7 554B. 7 540C. 7 561D. 7 5646. 已知/(x)是定义在R 上的奇函数,且在[0, +8)上单调递增,若/(lgx)<0, 则x 的取值范围是() A. (0, 1) B ・(1, 10) C. (1, +8)D. (10, +8)7. (2016-福州质检)已知偶函数/⑴满足:当xi, x 2e(0, +8)时,(x!-x2)[/(xi) -Ax2)]>0 恒成立.设 “=/(一4), b=/(l), c=/(3),则 d, h, c 的大小关系为( ) A. a<b<c B ・ h<a<c C. b<c<aD. c<b<a8. 函数/W 的定义域为R.若/(x+2)为偶函数,且血)=1,则/⑻+/(9)=( )A. —2B. —1C. 0试 题 共页 第页.V1 2 3 4 5 6 7 8 9 y375961824D. 1数列{忌}满足:xi = 1,且对于任B 点3,亦1)都在函数y=f(x)的图象9. (2017-高考山东卷)设/⑴=心,0<x<l, 1 U H),Q.若何%+】)'©=()A. 2 C. 6B. 4 D. 810. (2017•山西四校联考)已知函数/W满足:①定义域为R;®VxeR,都有/U+2)=/U);③当A-G[-1, 1]时,/W=—Lrl+1.则方程/W=*log2lxl在区间[一3, 5]内解的个数是()A. 5 C. 7B. 6 D. 811.(2017.天津模拟)已知函数爪)的图象如图所示,则/⑴的解析式可能是()A. x2cos xC. xsin x12・已知定义在R上的奇函数几兀)满足/(A—4)=-/«,且在区间[0, 2]上是增函数,贝|J()A.X-25)<All)</(80)B./(80)</(ll)</(-25)C.几11)勺(80)勺(一25)D・人一25)彳80)今(11)二、填空题13. (2017-高考全国卷II)已知函数/(x)是定义在R上的奇函数,当兀丘(一8, 0)时,X A)=2A3+A2,则f(2)= _____________ ・试题共页第页14.若函数f(x) = 2x+a^x为奇函数,则实数4= ____________ ・215・已知函数几丫)=苑丁+sin卅则人一2 017)+几一2 016)+用))土A2 016)+/(2 017)= ________ .16.已知定义在R上的函数/U)满足:①函数y=f(x-V)的图象关于点(1, 0)对称;②VxeR,石一"=石+寸:③当炸(一扌,一弓时,_/W = log2( — 3卄1).则/(2 017)= _______ ・(-log., T>0,且何一厶则曲「) = ()B.-扌5C・-42.(2017-高考北京卷)已知函数妙=3'—(分,则金)()A. 是奇函数, 且在R上是增函数B. 是偶函数, 且在R上是增函数C.D.3.4.A.C.是奇函数,是偶函数,且在R上是减函数且在R上是减函数函数劝2站的图象大致是(函数y=kl(l—x)在区间4上是增函数,那么区间4是()B •卜 I](―°°,0)[0, +oo) D.伶 +8)A. — log377D・_4函数/(x)的上确界.则函数用・)=是奇函数,则实数。
高三数学函数图像试题答案及解析
高三数学函数图像试题答案及解析1.函数的图像大致是()【答案】A【解析】因为分子分母分别为奇函数,所以原函数为偶函数,排除C、D,而当x取很小的正数时,sin6x>0,2x-2-x>0,故y>0,排除B,选A【考点】函数的图象及其性质2.已知函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是()A.0<<b<1B.0<b<<1C.0<<a<1D.0<<<1【答案】A【解析】由图象知函数单调递增,所以a>1.又-1<f(0)<0,f(0)=loga (20+b-1)=logab,即-1<logab<0,所以0<<b<1,故选A.3.已知f(x)=x2+sin(+x),f′(x)为f(x)的导函数,则f′(x)的图象是()【答案】A【解析】f(x)=x2+sin(+x)=x2+cosx,f′(x)=x-sinx.易知该函数为奇函数,所以排除B、D.当x=时,f′()=×-sin=-<0,可排除C.选A.4.(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.【答案】B【解析】由导数的图象可得,导函数f′(x)的值在[﹣1,0]上的逐渐增大,故函数f(x)在[﹣1,0]上增长速度逐渐变大,故函数f(x)的图象是下凹型的.导函数f′(x)的值在[0,1]上的逐渐减小,故函数f(x)在[0,1]上增长速度逐渐变小,图象是上凸型的,故选B.5.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.6.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.7.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.8.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.9.如图:正方体的棱长为,分别是棱的中点,点是的动点,,过点、直线的平面将正方体分成上下两部分,记下面那部分的体积为,则函数的大致图像是()【答案】C【解析】由题意可得下面那部分的是一个高为AB的三棱柱或四棱柱,当时.所以函数在大致图像是C、D选项.当时,令.所以上面的体积为.所以下面体积.所以函数的图象大致为C所示.故选C.【考点】1.空间几何.2.函数及图象.3.函数与立几交汇.10.对实数a和b,定义运算“”:,设函数.若函数的图象与x轴恰好有两个共公点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】若即时,.若即或时,.画出的图象(如图)∵函数的图象与x轴恰好有两个共公点方程有两解函数与函数有两个不同的交点∴由图象可知或.11.为了得到函数的图像,只需把函数的图像上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【答案】C【解析】A.,B.,C.,D..12.已知函数,若关于的方程有三个不同的实根,则实数的取值范围是_.【答案】【解析】如图,直线y=x-a与函数的图象在处有一个切点,切点坐标为(0,0),此时;直线与函数的图象在处有两个切点,切点坐标分别是和,此时相应的,,观察图象可知,方程有三个不同的实根时,实数的取值范围是。
高考数学专题《函数的图象》习题含答案解析
专题3.7 函数的图象1.(2021·全国高三专题练习(文))已知图①中的图象是函数()y f x =的图象,则图②中的图象对应的函数可能是( )A .(||)y f x =B .|()|y f x =C .(||)y f x =-D .(||)y f x =--【答案】C【解析】根据函数图象的翻折变换,结合题中条件,即可直接得出结果.【详解】图②中的图象是在图①的基础上,去掉函数()y f x =的图象在y 轴右侧的部分,然后将y 轴左侧图象翻折到y 轴右侧,y 轴左侧图象不变得来的,∴图②中的图象对应的函数可能是(||)y f x =-.故选:C.2.(2021·浙江高三专题练习)函数()lg 1y x =-的图象是( )A .B.练基础C .D .【答案】C【解析】将函数lg y x =的图象进行变换可得出函数()lg 1y x =-的图象,由此可得出合适的选项.【详解】将函数lg y x =的图象先向右平移1个单位长度,可得到函数()lg 1y x =-的图象,再将所得函数图象位于x 轴下方的图象关于x 轴翻折,位于x 轴上方图象不变,可得到函数()lg 1y x =-的图象.故合乎条件的图象为选项C 中的图象.故选:C.3.(2021·全国高三专题练习(理))我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,经常用函数的图象来研究函数的性质,也经常用函数的解析式来研究函数图象的特征.若函数()y fx =在区间[],a b 上的图象如图,则函数()y f x =在区间[],a b 上的图象可能是( )A .B .C .D .【答案】D【解析】先判断出函数是偶函数,根据偶函数的图像特征可得选项.【详解】函数()y f x =是偶函数,所以它的图象是由()y f x =把0x ≥的图象保留,再关于y 轴对称得到的.结合选项可知选项D 正确,故选:D .4.(2021·全国高三专题练习(文))函数()5x f x x x e =-⋅的图象大致是( ).A .B .C .D .【答案】B【解析】由()20f >和()20f -<可排除ACD ,从而得到选项.【详解】由()()2223222160f e e =-=->,可排除AD ;由()()2223222160f e e ---=-+=-<,可排除C ;故选:B.5.(2021·陕西高三三模(理))函数x y b a =⋅与()log a y bx =的图像在同一坐标系中可能是( )A .B .C .D .【答案】C【解析】根据指数函数和对数函数的单调性,以及特殊点函数值的范围逐一判断可得选项.【详解】令()x f x b a =×,()()log a g x bx =,对于A 选项:由()x f x b a =×得>1a ,且()00>1f b a b ==⋅,所以log >0a b ,而()1log 0a g b =<,所以矛盾,故A 不正确;对于B 选项:由()x f x b a =×得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,而()1log >0a g b =,所以矛盾,故B 不正确;对于C 选项:由()x f x b a =×得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,又()1log 0a g b =<,故C 正确;对于D 选项:由()x f x b a =×得>1a ,且()00>1f b a b ==⋅,而()()log a g x bx =中01a <<,所以矛盾,故D 不正确;故选:C .6.(2021·宁夏吴忠市·高三其他模拟(文))已知函数()()()ln 2ln 4f x x x =-+-,则().A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】先求出函数的定义域.A :根据函数图象关于直线对称的性质进行判断即可;B :根据函数图象关于点对称的性质进行判断即可;C :根据对数的运算性质,结合对数型函数的单调性进行判断即可;D :结合C 的分析进行判断即可.【详解】()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+-函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增,在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A7.(2021·安徽高三二模(理))函数()n x f x x a =,其中1a >,1n >,n 为奇数,其图象大致为( )A .B .C .D .【答案】B【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n n x x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.8.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A .B .C .D .【答案】D【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.【详解】因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩,所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩,当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .9.【多选题】(2021·浙江高一期末)如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =.关于下列法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过280mD .若浮萍蔓延到22m 、24m 、28m 所经过的时间分别是1t 、2t 、3t ,则2132t t t =+【答案】AD【解析】根据图象过点求出函数解析式,根据四个选项利用解析式进行计算可得答案.【详解】由图象可知,函数图象过点(1,3),所以3a =,所以函数解析式为3t y =,所以浮萍每月的增长率为13323233t t tt t +-⨯==,故选项A 正确;浮萍第一个月增加的面积为10332-=平方米,第二个月增加的面积为21336-=平方米,故选项B 不正确;第四个月时,浮萍面积为438180=>平方米,故C 不正确;由题意得132t =,234t =,338t =,所以13log 2t =,23log 4t =,33log 8t =,所以2133333332log 2log 8log (28)log 16log 42log 42t t t +=+=⨯====,故D 正确.故选:AD10.(2020·全国高一单元测试)函数()2x f x =和()3g x x =的图象如图所示,设两函数的图象交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出图中曲线1C ,2C 分别对应的函数;(2)结合函数图象,比较(3)f ,(3)g ,(2020)f ,(2020)g 的大小.【答案】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =;(2)(2020)(2020)(3)(3)f g g f >>>.【解析】(1)根据指数函数和一次函数的函数性质解题;(2)结合函数的单调性及增长快慢进行比较.【详解】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =.(2)(0)1f = ,(0)0g =,(0)(0)f g ∴>,又(1)2f = ,(1)3g =,(1)(1)f g ∴<,()10,1x ∴∈;(3)8f = ,(3)9g =,(3)(3)f g ∴<,又(4)16f = ,(4)12g =,(4)(4)f g ∴>,()23,4x ∴∈.当2x x >时,()()f x g x >,(2020)(2020)f g ∴>.(2020)(2020)(3)(3)f g g f ∴>>>.1.(2021·湖南株洲市·高三二模)若函数()2()mx f x e n =-的大致图象如图所示,则( )A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B 练提升【解析】令()0f x =得到1ln x n m=,再根据函数图象与x 轴的交点和函数的单调性判断.【详解】令()0f x =得mx e n =,即ln mx n =,解得1ln x n m=,由图象知1l 0n x mn =>,当0m >时,1n >,当0m <时,01n <<,故排除AD ,当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C故选:B2.(2021·甘肃高三二模(理))关于函数()ln |1|ln |1|f x x x =++-有下列结论,正确的是( )A .函数()f x 的图象关于原点对称B .函数()f x 的图象关于直线1x =对称C .函数()f x 的最小值为0D .函数()f x 的增区间为(1,0)-,(1,)+∞【答案】D 【解析】A.由函数的奇偶性判断;B.利用特殊值判断;C.利用对数函数的值域求解判断;D.利用复合函数的单调性判断.【详解】2()ln |1|ln |1|ln |1|f x x x x =++-=-,由1010x x ⎧+>⎪⎨->⎪⎩,解得1x ≠±,所以函数的定义域为{}|1x x ≠±,因为()ln |1|ln |1|ln |1|ln |1|()f x x x x x f x -=-++--=++-=,所以函数为偶函数,故A 错误. 因为(0)ln |1|0,(3)ln 8f f =-==,所以(0)(3)f f ≠,故B 错误;因为 ()2|1|0,x -∈+∞,所以()f x ∈R ,故C 错误;令2|1|t x =-,如图所示:,t 在(),1,[0,1)-∞-上递减,在()(1,0],1,-+∞上递增,又ln y t =在()0,∞+递增,所以函数()f x 的增区间为(1,0)-,(1,)+∞,故D 正确;故选:D3.(2021·吉林长春市·东北师大附中高三其他模拟(理))函数ln xy x=的图象大致为( )A .B .C .D .【答案】C 【解析】求出函数ln xy x=的定义域,利用导数分析函数的单调性,结合排除法可得出合适的选项.【详解】对于函数ln xy x =,则有0ln 0x x >⎧⎨≠⎩,解得0x >且1x ≠,所以,函数ln xy x=的定义域为()()0,11,+∞ ,排除AB 选项;对函数ln x y x=求导得()2ln 1ln x y x -'=.当01x <<或1x e <<时,0y '<;当x e >时,0y '>.所以,函数ln xy x=的单调递减区间为()0,1、()1,e ,单调递增区间为(),e +∞,当01x <<时,0ln xy x =<,当1x >时,0ln x y x=>,排除D 选项.故选:C.4.(2021·海原县第一中学高三二模(文))函数2xx xy e+=的大致图象是( )A .B .C .D .【答案】D 【解析】利用导数可求得2xx xy e+=的单调性,由此排除AB ;根据0x >时,0y >可排除C ,由此得到结果.【详解】由题意得:()()222211x xxxx e x x e x x y e e +-+-++'==,令0y '=,解得:1x =,2x =∴当x ∞∞⎛⎫∈-⋃+ ⎪ ⎪⎝⎭时,0y '<;当x ∈时,0y '>;2x x x y e +∴=在⎛-∞ ⎝,⎫+∞⎪⎪⎭上单调递减,在上单调递增,可排除AB ;当0x >时,0y >恒成立,可排除C.故选:D.5.(2021·天津高三三模)意大利画家列奥纳多·达·芬奇的画作《抱银鼠的女子》(如图所示)中,女士颈部的黑色珍珠项链与她怀中的白貂形成对比.光线和阴影衬托出人物的优雅和柔美.达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,形成的曲线是什么?这就是著名的“悬链线问题”.后人研究得出,悬链线并不是抛物线,而是与解析式为2x xe e y -+=的“双曲余弦函数”相关.下列选项为“双曲余弦函数”图象的是()A .B .C .D .【答案】C 【解析】分析函数2x xe e y -+=的奇偶性与最小值,由此可得出合适的选项.【详解】令()e e 2x x f x -+=,则该函数的定义域为R ,()()2x xe ef x f x -+-==,所以,函数()e e 2x xf x -+=为偶函数,排除B 选项.由基本不等式可得()112f x ≥⨯=,当且仅当0x =时,等号成立,所以,函数()f x 的最小值为()()min 01f x f ==,排除AD 选项.故选:C.6.(2021·浙江高三月考)函数()3log 01a y x ax a =-<<的图象可能是()A .B .C .D .【解析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可.【详解】根据题意,()3log a f x x ax =-,必有30x ax -≠,则0x ≠且x ≠,即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =,当x >时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间⎛ ⎝上,()0g x '<,则()g x在区间⎛ ⎝上为减函数,在区间⎫+∞⎪⎪⎭上,()0g x '>,则()g x在区间⎫+∞⎪⎪⎭上为增函数,0g=,则()g x存在极小值3g a =-=,此时()g x存在极大值()0,1,此时()0f x >,排除A ,故选:B.7.(2019·北京高三高考模拟(文))当x∈[0,1]时,下列关于函数y=的图象与图象交点个数说法正确的是( )A .当时,有两个交点B .当时,没有交点C .当时,有且只有一个交点D .当时,有两个交点【答案】B2(1)mx -y =[]m 0,1∈(]m 1,2∈(]m 2,3∈()m 3,∞∈+设f (x )=,g (x ),其中x∈[0,1]A .若m=0,则与在[0,1]上只有一个交点,故A 错误.B .当m∈(1,2)时,即当m∈(1,2]时,函数y=的图象与x∈[0,1]无交点,故B 正确,C .当m∈(2,3]时,,时,此时无交点,即C 不一定正确.D .当m∈(3,+∞)时,g (0)>1,此时f (1)>g (1),此时两个函数图象只有一个交点,故D 错误,故选:B .8.(2021·浙江高三专题练习)若关于x 的不等式34log 2xax -≤在10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则实数a 的取值范围是()A .1,14⎡⎫⎪⎢⎣⎭B .10,4⎛⎤ ⎥⎝⎦C .3,14⎡⎫⎪⎢⎣⎭D .30,4⎛⎤ ⎥⎝⎦【答案】A 【解析】转化为当10,2x ⎛⎤∈ ⎥⎝⎦时,函数342xy =-的图象不在log a y x =的图象的上方,根据图象列式可解得结果.2(1)mx -()1f x =()g x =(1,1)111()(0)1,()(0)1()()2f x f g x g f x g x m<<∴≤=≥=>∴<2(1)mx -y =2111()(1)(1),()(1)32f x f mg x g m <<∴≤=-≤=2(1)m >-()()f x g x <由题意知关于x 的不等式34log 2xa x -≤在10,2x ⎛⎤∈ ⎥⎝⎦恒成立,所以当10,2x ⎛⎤∈ ⎥⎝⎦时,函数342xy =-的图象不在log a y x =的图象的上方,由图可知0111log 22a a <<⎧⎪⎨≥⎪⎩,解得114a ≤<.故选:A9.对、,记,函数.(1)求,.(2)写出函数的解析式,并作出图像.(3)若关于的方程有且仅有个不等的解,求实数的取值范围.(只需写出结论)【答案】见解析.【解析】解:(1)∵,函数,∴,.a b ∈R {},max ,,a a b a b b a b⎧=⎨<⎩≥{}2()max ||,24()f x x x x x =--+∈R (0)f (4)f -()fx x ()f x m =3m {},max ,,a a b a b b a b⎧=⎨<⎩≥{}2()max ||,24f x x x x =--+{}(0)max 0,44f =={}(4)max 4,44f -=-=(2)(3)或10.(2021·全国高一课时练习)函数()2xf x =和()()30g x x x =≥的图象,如图所示.设两函数的图象交于点()11A x y ,,()22B x y ,,且12x x <.(1)请指出示意图中曲线1C ,2C 分别对应哪一个函数;(2)结合函数图象,比较()8f ,()8g ,()2015f ,()2015g 的大小.【答案】(1)1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =;(2)()()()()2015201588f g g f >>>.【解析】(1)根据图象可得结果;(2)通过计算可知1282015x x <<<,再结合题中的图象和()g x 在()0+∞,上的单调性,可比较()8f ,()8g ,()2015f ,()2015g 的大小.【详解】5m =m =(1)由图可知,1C 的图象过原点,所以1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =.(2)因为11g =(),12f =(),28g =(),24f =(),()9729g =,()9512f =,()101000g =,()101024f =,所以11f g >()(),22f g <()(),()()99f g <,()()1010f g >.所以112x <<,2910x <<.所以1282015x x <<<.从题中图象上知,当12x x x <<时,()()f x g x <;当2x x >时,()()f x g x >,且()g x 在()0+∞,上是增函数,所以()()()()2015201588f g g f >>>.1. (2020·天津高考真题)函数241xy x =+的图象大致为( )A .B .C .D .【答案】A 【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误.故选:A.2.(2019年高考全国Ⅲ卷理)函数在的图像大致为()3222x xx y -=+[]6,6-练真题A .B .C .D .【答案】B【解析】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C .又排除选项D ;,排除选项A ,故选B .3.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩…若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是( )A.1,)2⎛⎫-∞-+∞ ⎪⎝⎭ B.1,(0,2⎛⎫-∞- ⎪⎝⎭C.(,0)(0,-∞ D.(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根32()22x x x y f x -==+332()2()()2222x x x x x x f x f x ----==-=-++()f x 34424(4)0,22f -⨯=>+36626(6)722f -⨯=≈+即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0))-∞+∞ .故选:D.4.(2019年高考全国Ⅱ卷理)设函数的定义域为R ,满足,且当时,()f x (1) 2 ()f x f x +=(0,1]x ∈.若对任意,都有,则m 的取值范围是A .B . C . D .【答案】B【解析】∵,.∵时,;∴时,,;∴时,,,如图:当时,由解得,,若对任意,都有,则.则m 的取值范围是.故选B.5.(2017·天津高考真题(文))已知函数f (x )=|x|+2,x <1x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f (x )≥|x 2+a |在R 上恒成立,则a 的取值范围是A .[―2,2]B .[―23,2]C .[―2,23]D .[―23,23]【答案】A ()(1)f x x x =-(,]x m ∈-∞8()9f x ≥-9,4⎛⎤-∞ ⎥⎝⎦7,3⎛⎤-∞ ⎥⎝⎦5,2⎛⎤-∞ ⎥⎝⎦8,3⎛⎤-∞ ⎥⎝⎦(1) 2 ()f x f x +=()2(1)f x f x ∴=-(0,1]x ∈1()(1)[,0]4f x x x =-∈-(1,2]x ∈1(0,1]x -∈1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦(2,3]x ∈1(1,2]x -∈()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-(2,3]x ∈84(2)(3)9x x --=-173x =283x =(,]x m ∈-∞8()9f x ≥-73m ≤7,3⎛⎤-∞ ⎥⎝⎦【解析】满足题意时f (x )的图象恒不在函数y =|x 2+a |下方,当a =23时,函数图象如图所示,排除C,D 选项;当a =―23时,函数图象如图所示,排除B 选项,本题选择A 选项.6.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .。
高三数学函数图像试题答案及解析
高三数学函数图像试题答案及解析1.设函数f(x)=x+的图象为C1,C1关于点A(2,1)对称的图象为C2,C2对应的函数为g(x).(1)求g(x)的解析式;(2)若直线y=m与C2只有一个交点,求m的值和交点坐标.【答案】(1)g(x)=x-2+.(2)当m=0时,经检验合理,交点为(3,0);当m=4时,经检验合理,交点为(5,4).【解析】解:(1)设点P(x,y)是C2上的任意一点,则P(x,y)关于点A(2,1)对称的点为P′(4-x,2-y),代入f(x)=x+,可得2-y=4-x+,即y=x-2+,∴g(x)=x-2+.(2)由消去y得x2-(m+6)x+4m+9=0,Δ=[-(m+6)]2-4(4m+9),∵直线y=m与C2只有一个交点,∴Δ=0,解得m=0或m=4.当m=0时,经检验合理,交点为(3,0);当m=4时,经检验合理,交点为(5,4).2.如图,是张大爷晨练时所走的离家距离(y)与行走时间(x)之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是()【答案】D【解析】根据图象可知在第一段时间张大爷离家距离随时间的增加而增加,在第二段时间内,张大爷离家的距离不变,第三段时间内,张大爷离家的距离随时间的增加而减少,最后回到始点位置,对比各选项,只有D正确.3.已知函数f(x)=x1,x2,x3,x4,x5是方程f(x)=m的五个不等的实数根,则x1+x2+x3+x4+x5的取值范围是()A.(0,π)B.(-π,π)C.(lg π,1)D.(π,10)【答案】D【解析】函数f(x)的图象如图所示,结合图象可得x1+x2=-π,x3+x4=π,若f(x)=m有5个不等的实数根,需lg π<lg x5<1,得π<x5<10,又由函数f(x)在[-π,π]上对称,所以x1+x2+x3+x4=0,故x1+x2+x3+x4+x5的取值范围为(π,10).4.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.5.已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是.【答案】【解析】由题意得函数为偶函数,因此当有4个零点时,在上有且仅有两个零点,所以即【考点】二次函数的图象与性质,零点问题6.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】由于函数的最小正周期为,所以.所以函数.所以将函数向右平移即可得到.故选B.【考点】1.函数的平移.2.函数的诱导公式.7.已知函数f(x)=,若,则a的取值范围是()A.B.C.[-2,1]D.[-2,0]【答案】D【解析】由题意作出的图象(如图)当a>0时直线y=ax过一、三象限(如图),必与y=ln(x+1)相交,所以a≤0当a≤0时,直线y=ax过三、四象限对x>0,|f(x)|=ln(x+1)> ax成立;对x<0,由|f(x)|=x2-2x≥ax a≥x-2,而当x<0时x-2<-2,所以a≥-2综合知-2≤a≤08.已知函数f(x)=若|f(x)|≥ax,则a的取值范围是________.【答案】[-2,0]【解析】作出函数y=|f(x)|的图象,当|f(x)|≥ax时,必有k≤a≤0,其中k是y=x2-2x(x≤0)在原点处的切线斜率,显然k=-2.所以a的取值范围是[-2,0].9.若函数f(x)=的图象如图,则m的取值范围是________.【答案】(1,2)【解析】∵函数f(x)的定义域为R,∴x2+m恒不等于零,∴m>0.由题图知,当x>0时,f(x)>0,∴2-m>0⇒m<2.又∵在(0,+∞)上函数f(x)在x=x0(x>1)处取得最大值,而f(x)=,∴x=>1⇒m>1.综上,1<m<2.10.若函数满足,且时,,函数,则函数在区间内的零点的个数为____.【答案】9【解析】因为,所以函数是周期为2函数.因为时,,所以作出它的图象,利用函数是周期为2函数,可作出在区间上的图象,如图所示:故函数在区间内的零点的个数为9,故答案为9.【考点】函数的零点;函数的周期性.11.已知函数,则不等式的解集为.【答案】【解析】函数的图象如图,由不等式知,,从而得到不等式的解集为.【考点】函数的图象和性质的综合运用..12.设D={(x,y)|(x-y)(x+y)≤0},记“平面区域D夹在直线y=-1与y=t(t∈[-1,1])之间的部分的面积”为S,则函数S=f(t)的图象的大致形状为()【答案】C【解析】由题意,有二次函数图像可得,答案选C.【考点】函数的图象与图象变化.13.已知函数,若方程有且只有两个不相等的实数根,则实数a的取值范围为()A、 B、C、 D、。
高中数学函数的图象与性质考试题(含答案解析)
---------------------------------------------------------------装--------------------订--------------------线-------------------------------------------------------------函数的图象与性质试题成绩课程名称高考数学二轮复习模拟考试开卷闭卷√教研室高三数学组A卷√B卷复习时间年月日时分至时分适用专业班级班级姓名学号考生注意:舞弊万莫做,那样要退学,自爱当守诺,最怕错上错,若真不及格,努力下次过。
答案写在答题纸上,写在试题纸上无效。
A组一、选择题一、选择题1.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1) D.[-2,1)2.(2017·沈阳模拟)已知函数f(x)=则f(f(4))的值为() A.-19B.-9C.19D.93.(2017·湖南东部六校联考)函数y=lg|x|()A.是偶函数,在区间(-∞,0)上单调递增B.是偶函数,在区间(-∞,0)上单调递减试题共页第页C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减4.函数f(x)=2|log2x|-⎪⎪⎪⎪⎪⎪x-1x的图象为()5.(2017·西安模拟)对于函数y=f(x),部分x与y的对应关系如下表:x 123456789y 37596182 4数列{x n}满足:x1=1,且对于任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,则x1+x2+…+x2 017=()A.7 554 B.7 540C.7 561 D.7 5646.已知f(x)是定义在R上的奇函数,且在[0,+∞)上单调递增,若f(lg x)<0,则x的取值范围是()A.(0,1) B.(1,10)C.(1,+∞) D.(10,+∞)7.(2016·福州质检)已知偶函数f(x)满足:当x1,x2∈(0,+∞)时,(x1-x2)[f(x1)-f(x2)]>0恒成立.设a=f(-4),b=f(1),c=f(3),则a,b,c的大小关系为() A.a<b<c B.b<a<cC.b<c<a D.c<b<a8.函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=() A.-2 B.-1C.0 D.1---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 9.(2017·高考山东卷)设f(x)=⎩⎨⎧x,0<x<1,2(x-1),x≥1.若f(a)=f(a+1),f(1a)=() A.2 B.4C.6 D.810.(2017·山西四校联考)已知函数f(x)满足:①定义域为R;②∀x∈R,都有f(x+2)=f(x);③当x∈[-1,1]时,f(x)=-|x|+1.则方程f(x)=12log2|x|在区间[-3,5]内解的个数是()A.5 B.6C.7 D.811.(2017·天津模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.x2cos x B.sin x2C.x sin x D.x2-16x412.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则()A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)二、填空题13.(2017·高考全国卷Ⅱ)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=________.试题共页第页---------------------------------------------------------------装--------------------订--------------------线-------------------------------------------------------------B组1.已知函数f(x)=⎩⎨⎧2x-2,x≤0,-log3x,x>0,且f(a)=-2,则f(7-a)=() A.-log37 B.-34C.-54D.-742.(2017·高考北京卷)已知函数f(x)=3x-(13)x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数3.函数y=(x3-x)2|x|的图象大致是()4.函数y=|x|(1-x)在区间A上是增函数,那么区间A是() A.(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12C.[0,+∞) D.⎝⎛⎭⎪⎫12,+∞试题共页第页5.若函数f(x)=⎩⎨⎧x2-5x,x≥0,-x2+ax,x<0是奇函数,则实数a的值是()A.-10 B.10C.-5 D.56.(2017·贵阳模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=e1-x2 B.f(x)=e x2-1C.f(x)=e x2-1 D.f(x)=ln(x2-1)7.定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)时,f(x)=2x+15,则f(log220)=()A.1 B.45C.-1 D.-458.(2017·陕西宝鸡中学第一次月考)已知函数f(x)=⎩⎨⎧(3a-1)x+4a,x<1,log a x,x≥1满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则实数a的取值范围是()A.⎝⎛⎭⎪⎫0,13 B.⎝⎛⎭⎪⎫13,1C.⎣⎢⎡⎭⎪⎫17,13 D.⎣⎢⎡⎭⎪⎫17,19.对于函数f(x),使f(x)≤n成立的所有常数n中,我们把n的最小值G叫做函数f(x)的上确界.则函数f(x)=的上确界是()试题共页第页A组答案解析1.解析:∵4-x2≥0,∴-2≤x≤2,∴A=[-2,2].∵1-x>0,∴x<1,∴B=(-∞,1),∴A∩B=[-2,1).故选D.答案:D2.解析:因为f(x)=所以f(f(4))=f(-2)=19.答案:C3.解析:因为lg|-x|=lg|x|,所以函数y=lg|x|为偶函数,又函数y=lg|x|在区间(0,+∞)上单调递增,由其图象关于y轴对称,可得y=lg|x|在区间(-∞,0)上单调递减,故选B.答案:B4.解析:由题设条件,当x≥1时,f(x)=2log2x-⎝⎛⎭⎪⎫x-1x=1x;当0<x<1时,f(x)=2-log2x-⎝⎛⎭⎪⎫1x-x=1x-⎝⎛⎭⎪⎫1x-x=x.故f(x)=⎩⎪⎨⎪⎧1x,x≥1,x,0<x<1.故选D.答案:D5.解析:∵数列{x n}满足x1=1,且对任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,∴x n+1=f(x n),∴由图表可得x2=f(x1)=3,x3=f(x2)=5,x4=f(x3)=6,x5=f(x4)=1,…,∴数列{x n}是周期为4的周期数列,∴x1+x2+…+x2 017=504(x1+x2+x3+x4)+x1=504×15+1=7 561.故选C.答案:C6.答案:A7.解析:因为f(x)为偶函数,故f(-4)=f(4).因为(x1-x2)·[f(x1)-f(x2)]>0,故函数f(x)在(0,+∞)上单调递增,故f(-4)=f(4)>f(3)>f(1),即a>c>b,故选C.---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 答案:C8.答案:D9.解析:若0<a<1,由f(a)=f(a+1)得a=2(a+1-1),∴a=14,∴f(1a)=f(4)=2×(4-1)=6.若a≥1,由f(a)=f(a+1)得2(a-1)=2(a+1-1),无解.综上,f(1a)=6.故选C.答案:C10.解析:画出y1=f(x),y2=12log2|x|的图象如图所示,由图象可得所求解的个数为5.答案:A11.解析:由图象可得f ⎝⎛⎭⎪⎫π2>0,故可排除A选项.由于函数f(x)在区间⎝⎛⎭⎪⎫0,π2上先增后减,而函数y=x sin x在⎝⎛⎭⎪⎫0,π2上单调递增(因为y=x及y=sin x均在⎝⎛⎭⎪⎫0,π2上单调递增,且函数取值恒为正),故排除C选项.对函数y=x2-16x4而言,y′=2x-23x3=23x(3-x2),当x∈⎝⎛⎭⎪⎫0,π2时,y′=23x(3-x2)>0,故y=x2-16 x4在区间⎝⎛⎦⎥⎤0,π2上单调递增,与图象不符,故排除D选项.故选B. 答案:B12.解析:由f(x-4)=-f(x)得f(x+2-4)=f(x-2)=-f(x+2),由f(-x)=-f(x)试题共页第页---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 1.解析:当a≤0时,2a-2=-2无解;当a>0时,由-log3a=-2,解得a =9,所以f(7-a)=f(-2)=2-2-2=-74,故选D.答案:D2.解析:∵函数f(x)的定义域为R,f(-x)=3-x-(13)-x=(13)x-3x=-f(x),∴函数f(x)是奇函数.∵函数y=(13)x在R上是减函数,∴函数y=-(13)x在R上是增函数.又∵y=3x在R上是增函数,∴函数f(x)=3x-(13)x在R上是增函数.故选A.答案:A3.解析:易判断函数为奇函数,由y=0得x=±1或x=0.且当0<x<1时,y<0;当x>1时,y>0,故选B.答案:B4.解析:y=|x|(1-x)=⎩⎨⎧x(1-x),x≥0,-x(1-x),x<0=⎩⎨⎧-x2+x,x≥0,x2-x,x<0=⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫x-122+14,x≥0,⎝⎛⎭⎪⎫x-122-14,x<0.试题共页第页试题共页第页。
高考数学真题09 三角函数的图象与性质问题(学生版)
专题09 三角函数的图象与性质问题【高考真题】1.(2022·北京)已知函数f (x )=cos 2x -sin 2x ,则( )A .f (x )在(-π2,-π6)上单调递减B .f (x )在(-π4,π12)上单调递增C .f (x )在(0,π3)上单调递减D .f (x )在(π4,7π12)上单调递增2.(2022·浙江) 为了得到函数y =2sin3x 的图象,只要把函数y =2sin ⎝⎛⎭⎫3x +π5图象上所有的点( ) A .向左平移π5个单位长度 B .向右平移π5个单位长度C .向左平移π15个单位长度D .向右平移π15个单位长度3.(2022·全国甲文) 将函数f (x )=sin(ωx +π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y轴对称,则ω的最小值是( )A .16B .14C .13D .124.(2022·全国乙理) 记函数f (x )=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f (T )=32,x =π9为f (x ) 的零点,则ω的最小值为____________.5.(2022·新高考Ⅰ)记函数f (x )=sin(ωx +π4)+b (ω>0),的最小正周期为T .若2π3<T <π,且y =f (x )的图象关于点(3π2,2)中心对称,则f (π2)=( )A .1B .32C .52D .36.(2022·全国甲理)设函数f (x )=sin(ωx +π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A .[53,136)B .[53,196)C .(136,83]D .(136,196]【知识总结】1.三种三角函数的图象和性质2.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. (3)图象变换y =sin x ―――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位长度y =sin(x +φ) ――――――――――――→横坐标变为原来的1ω(ω>0) 倍纵坐标不变y =sin(ωx +φ) ――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 【同类问题】题型一 三角函数的性质1.(2017·山东)函数y =3sin 2x +cos 2x 的最小正周期为( )A .π2B .2π3 C .π D .2π2.函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( )A .π2B .πC .3π2D .2π3.(2018·全国Ⅰ)函数f (x )=tan x1+tan 2x的最小正周期为( )A .π4B .π2C .πD .2π4.已知函数f (x )=3sin ωx -cos ωx (ω>0)的最小正周期为2π,则f (x )的单调递增区间是( )A .⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤2k π-π3,2k π+2π3(k ∈Z ) C .⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎡⎦⎤2k π-π6,2k π+5π6(k ∈Z ) 5.(2018·全国Ⅰ)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.已知函数f (x )=sin ωx +3cos ωx (ω>0),f (π6)+f (π2)=0,且f (x )在区间(π6,π2)上递减,则ω=( )A .3B .2C .6D .57.(2019·全国Ⅰ)函数f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x 的最小值为________. 8.(2017·全国Ⅰ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 9.(2013·全国Ⅰ)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________. 10.已知ω>0,函数f (x )=sin ωx cos ωx +3cos 2ωx -32的最小正周期为π,则下列结论正确的是( ) A .函数f (x )的图象关于直线x =π3对称B .函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递增C .将函数f (x )的图象向右平移π6个单位长度可得函数g (x )=cos2x 的图象D .当x ∈⎣⎡⎦⎤0,π2时,函数f (x )的最大值为1,最小值为-32题型二 三角函数的图象变换11.(2021·全国乙)把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝⎛⎭⎫x -π4的图象,则f (x )等于( ) A .sin ⎝⎛⎭⎫x 2-7π12 B .sin ⎝⎛⎭⎫x 2+π12 C .sin ⎝⎛⎭⎫2x -7π12 D .sin ⎝⎛⎭⎫2x +π12 12.(2016·四川)为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图象,只需把函数y =sin2x 的图象上所有的点( ) A .向左平行移动π3个单位长度 B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度13.(2017·全国Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 214.(2018·天津)将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( ) A .在区间⎣⎡⎦⎤3π4,5π4上单调递增 B .在区间⎣⎡⎦⎤3π4,π上单调递减 C .在区间⎣⎡⎦⎤5π4,3π2上单调递增 D .在区间⎣⎡⎦⎤3π2,2π上单调递减 15.函数y =3sin 2x -cos 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位长度后,得到函数g (x )的图象,若函数g (x ) 为偶函数,则φ的值为( )A .π12B .π6C .π4D .π315.将函数f (x )=tan ⎝⎛⎭⎫ωx +π3(0<ω<10)的图象向右平移π6个单位长度后与函数f (x )的图象重合,则ω=( ) A .9 B .6 C .4 D .817.若函数f (x )=cos ⎝⎛⎭⎫2x -π6,为了得到函数g (x )=sin2x 的图象,则只需将f (x )的图象( ) A .向右平移π6个单位长度 B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度18.(2019·天津)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,且f (x )的最小正周期为π,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g ⎝⎛⎭⎫π4=2,则f ⎝⎛⎭⎫3π8=( )A .-2B .-2C .2D .219.(2016·全国)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z )B .x =k π2+π6(k ∈Z )C .x =k π2-π12(k ∈Z )D .x =k π2+π12(k ∈Z )20.将函数f (x )的图象向右平移π6个单位长度,再将所得函数图象上的所有点的横坐标缩短到原来的23,得到函数g (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象.已知函数g (x )的部分图象如图所示,则函数A .最小正周期为23π,最大值为2 B .最小正周期为π,图象关于点⎝⎛⎭⎫π6,0中心对称 C .最小正周期为23π,图象关于直线x =π6对称 D .最小正周期为π,在区间⎣⎡⎦⎤π6,π3上单调递减 题型三 关于ω的取值范围21.已知函数()sin (0)f x x ωω=>在3[,]44ππ-上单调递增,则ω的取值范围是( )A .[2,)+∞B .(0,2]C .2[,)3+∞D .2(0,]322.将函数()cos()(0)4f x x πωω=+>的图象向右平移4π个单位长度后得到函数()g x 的图象,若()g x 在5(,)44ππ上单调递减,则ω的最大值为( ) A .14 B .34 C .12D .1 23.函数()sin()(0)6f x x πωω=+>图象向右平移4π个单位后所得函数图象与函数()f x 的图象关于x 轴对称,则ω最小值为( )A .2B .3C .4D .624.已知函数()3sin()f x x ωϕ=+,(0,0)2πωϕ><<,()03f π-=,2()()3f x f x π-=,且函数()f x 在区间(,)124ππ上单调,则ω的最大值为( ) A .274 B .214 C .154 D .9425.已知函数()sin()f x x ωϕ=+,0ω>,若()19f π=,(449)0f π=,()f x 在(,)93ππ上单调递减,那么ω的取值个数是( )A .2019B .2020C .2021D .202226.已知函数()sin()(0)6f x x πωω=->,若函数()f x 在区间(0,)π上有且只有两个零点,则ω的取值范围为( )A .713(,)66B .713(,]66C .611(,)56D .611(,]5627.已知函数()2sin()sin()(0)63f x x x ππωωω=-+>,若函数3()()2g x f x =+在[0,]2π上有且只有三个零点,则ω的取值范围为( ) A .[2,11)3 B .11(2,)3 C .710[,)33 D .710(,)3328.已知函数()3sin cos (0)f x x x ωωω=+>在区间[,]43ππ-上恰有一个最大值点和最小值点,则实数ω的 取值范围为( )A .8[,7)3B .8[,4)3C .20[4,)3D .20(,7)329.已知函数1()sin (sin cos )(0)2f x x x x ωωωω=+->在区间(0,)π上恰有1个最大值点和1个最小值点,则ω的取值范围是( )A .711(,)88B .711(,]88C .79(,]88D .79(,)8830.已知函数3()sin()sin()(0)21472xxf x ωππωω=+->在[0,)π上恰有6个零点,则ω的取值范围是 ( ) A .4148(,]77B .3441(,]77C .4148[,)77D .3441[,)77。
高一上学期函数专题:函数的图像(含答案解析)
高一上学期函数专题:函数的图像学校:___________姓名:___________班级:___________考号:___________一、单选题 1.函数241xy x =+的图象大致为( ) A . B .C .D .2.函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .3.如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其 中,注满为止.用下面对应的图象显示该容器中水面的高度h 和时间t 之间的关系,其中不正确的有( )A.1个B.2个C.3个D.4个4.如图所示,单位圆上一定点A与坐标原点重合.若单位圆从原点出发沿x轴正向滚动一周,则A点形成的轨迹为()A.B.C.D.5.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦6.已知定义在()(),00,-∞⋃+∞上的奇函数()f x 在(),0-∞上单调递增,且满足()12f -=-,则关于x 的不等式()2sin f x x xπ<+的解集为( ). A .()(),11,-∞-+∞B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()()1,00,1-7.已知定义在R 上的函数()[)[)222,0,12,1,0x x f x x x ⎧+∈⎪=⎨-∈-⎪⎩,且()()2f x f x +=,若方程()20f x kx --=有三个不相等的实数根,则实数k 的取值范围是A .1,13⎛⎫⎪⎝⎭B .11,34⎛⎫-- ⎪⎝⎭C .111,,133⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭D .1111,,3443⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭8.已知定义在R 上的奇函数,满足(2)()0f x f x -+=,当(]0,1x ∈时,2()log f x x =-,若函数()()()sin π=-F x f x x ,在区间[]1-,m 上有10个零点,则m 的取值范围是( )A .[)3.54,B .(]3.5,4C .(]5,5.5D .[)55.5,9.函数()218x f x +⎛⎫= ⎪⎝⎭的部分图象大致为A .B .C .D .10.设函数21,2()5,2x x f x x x ⎧-⎪=⎨-+>⎪⎩,若互不相等的实数,,a b c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( ) A .(16,32) B .(18,34) C .(17,35) D .(6,7)二、多选题11.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是 A .122x x += B .122x x e e e +>C .1221ln ln 0x x x x +<D .12x x >三、填空题12.设方程24x x +=的根为m ,方程2log 4x x +=的根为n ,则m n +=________;参考答案1.A 【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象. 【详解】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 2.A 【分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象. 【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误. 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、3.A 【分析】结合几何体的结构和题意知,容器的底面积越大水的高度变化慢、反之变化的快,再由图象越平缓就是变化越慢、图象陡就是变化快来判断. 【详解】A 、因正方体的底面积是定值,故水面高度的增加是均匀的,即图象是直线型的,故A 不对;B 、因几何体下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越平缓,故B 正确;C 、球是个对称的几何体,下半球因下面窄上面宽,所以水的高度增加的越来越慢;上半球恰相反,所以水的高度增加的越来越快,则图象先平缓再变陡;故C 正确;D 、图中几何体两头宽、中间窄,所以水的高度增加的越来越慢后再越来越慢快,则图象先平缓再变陡,故D 正确. 故选A . 【点睛】本题考查了数形结合思想,对于此题没有必要求容器中水面的高度h 和时间t 之间的函数解析式,因此可结合几何体和图象作定性分析,即充分利用数形结合思想. 4.A 【分析】分析当单位圆向x 轴正向滚动π个单位长度时A 的纵坐标,由此判断出A 点形成的轨迹. 【详解】如图所示,记,,B C D 为圆上的三个四等分圆周的点,由题意可知:圆是逆时针滚动的,因为圆的周长为2π,所以2AB BC CD AD π====,且圆上点的纵坐标最大值为2,当圆逆时针滚动π单位长度时,此时,A C 的相对位置互换,所以A 的纵坐标为2,排除BCD , 故选:A.关键点点睛:解答本题的关键是通过特殊位置(向右滚动π个单位长度)分析对应A 点的纵坐标,通过排除法判断出轨迹. 5.B 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力. 6.C 【分析】令()()2g x f x x=-,利用奇偶性定义可知()g x 为奇函数,并可确定()g x 在(),0-∞,()0,∞+上单调递增,由()10g -=知()10g =,结合55sin 22g π⎛⎫< ⎪⎝⎭不成立可确定()g x 与sin y x =π大致图象,由图象可确定解集. 【详解】()f x 为()(),00,-∞⋃+∞上的奇函数,()()f x f x ∴-=-, 令()()2g x f x x =-,则()()()()22g x f x f x g x x x-=-+=-+=-,()g x ∴为()(),00,-∞⋃+∞上奇函数;()f x 在(),0-∞上单调递增,2y x=-在(),0-∞上单调递增,()g x ∴在(),0-∞上单调递增,由奇函数性质知:()g x 在()0,∞+上单调递增;()12f -=-,()()1120g f ∴-=-+=,则()10g =,又()()51122f f f ⎛⎫>=--= ⎪⎝⎭,当52x =时,2459sin sin525x x ππ+=+=, ∴当52x =时,()2sin f x x x π<+不成立,即55sin 22g π⎛⎫< ⎪⎝⎭不成立,由此可在坐标系中画出()g x 与sin y x =π大致图象如下图所示:由图象可知:当()(),10,1x ∈-∞-时,()sin g x x π<,即当()(),10,1x ∈-∞-时,()2sin f x x xπ<+. 故选:C. 【点睛】关键点点睛:本题考查函数不等式的求解,解题关键是能够通过构造函数的方式,结合奇偶性和单调性的知识确定函数的大致图象,利用数形结合的方式求得结果.7.C 【分析】由()()2f x f x +=可得函数周期为2,结合函数在[]1,1-上的解析式,利用周期作出()f x 的函数图象,根据()y f x =和2y kx =+图象交点个数判断k 的范围. 【详解】方程()20f x kx --=有三个不相等的实数根, 等价于()y f x =和2y kx =+图象有三个不同交点, 因为()()2f x f x +=,所以()f x 的周期为2,由函数()[)[)222,0,12,1,0x x f x x x ⎧+∈⎪=⎨-∈-⎪⎩,利用周期性作出()f x 的函数图象,如图所示: 不妨设0,k >当直线2y kx =+过()()3,1,1,1--时,k 的值分别为13与1,由图可知,113k <<时直线2y kx =+与()f x 的图象有三个交点,113k ∴<<时, 方程()20f x kx --=有三个不相等的实数根, 同理,若0k <,可得113k -<<-时,方程()20f x kx --=有三个不相等的实数根,所以实数k 的取值范围是111,,133⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,故选C.【点睛】本题主要考查函数的周期与函数图象的应用,考查了函数零点与方程根的关系,同时考查了转化思想与数形结合思想的应用,属于难题. 函数零点的几种等价形式:函数()()y f x g x =-的零点⇔函数()()y f x g x =-在x 轴的交点⇔方程()()0f x g x -=的根⇔函数()y f x =与()y g x =的交点.8.A 【分析】由()()20f x f x -+=得出函数()y f x =的图象关于点()1,0成中心对称以及函数()y f x =的周期为2,由函数()y f x =为奇函数得出()00f =,并由周期性得出()2f = ()40f =,然后作出函数()y f x =与函数()sin y x π=的图象,列举前10个交点的横坐标,结合第11个交点的横坐标得出实数m 的取值范围. 【详解】由()()20f x f x -+=可知函数()y f x =的图象关于点()1,0成中心对称, 且()()()2f x f x f x -=-=-,所以,()()2f x f x +=, 所以,函数()y f x =的周期为2,由于函数()y f x =为奇函数,则()00f =,则()()240f f ==, 作出函数()y f x =与函数()sin y x π=的图象如下图所示:211log 122f ⎛⎫=-= ⎪⎝⎭,则11122f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,于是得出7311222f f f ⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,51122f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,由图象可知,函数()y f x =与函数()sin y x π=在区间[]1,m -上从左到右10个交点的横坐标分别为1-、12-、0、12、1、32、2、52、3、72,第11个交点的横坐标为4, 因此,实数m 的取值范围是[)3.5,4,故选A .【点睛】本题考查方程的根与函数的零点个数问题,一般这类问题转化为两个函数图象的交点个数问题,在画函数的图象时,要注意函数的奇偶性、对称性、周期性对函数图象的影响,属于难题.9.B【分析】根据函数的定义域以及单调性求解.【详解】由题意得,()f x 的定义域为R ,排除C,D ;当2x ≥-时,()218x f x +⎛⎫= ⎪⎝⎭,∵1018<<,∴()f x 在[)2,-+∞上单调递减,排除A , 故选B.【点睛】 本题考查了已知函数表达式,识别函数图象,涉及了函数的定义域以及指数函数的单调性;从函数的定义域可以判断函数图象的“左右”位置,以及是否有断点;单调性可以判断函数的变化趋势.10.B【分析】画出函数()f x 的图象,不妨令a b c <<,则222a b +=.结合图象可得45c <<,从而可得结果.【详解】画出函数()f x 的图象如图所示.不妨令a b c <<,则1221a b -=-,则222a b +=.结合图象可得45c <<,故16232c <<.∴1822234a b c <++<.故选:B .【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质. 11.ABC【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C.【详解】函数x y e =与ln y x =互为反函数,则x y e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1,对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B,122x x e e e ≥=+=,因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与x y e =联立可得2x x e -+=,即20x e x +-=,设()2x f x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭, 故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<, 122112211ln ln ln ln x x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D,由12x x +≥,解得121x x ≤,由于12x x ≠,则121x x <,故D 错误;故选:ABC【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.12.4【详解】由题意,方程24x x +=的根为m ,方程2log 4x x +=的根为n ,24m m ∴+=……①,24n log n += …… ②由①得24m m =-,24m log m ∴=-( )令4t m =- ,代入上式得24t log t -=24t log t ∴+= 与②式比较得t n =于是44m n m n -=∴+= 故答案为4.【点睛】本题主要考查方程的根,即为相应函数图象交点的横坐标,解题的关键是利用设而不求的思想,充分利用题设条件得到m n +的值.。
函数图形高考试题及答案
函数图形高考试题及答案一、选择题1. 函数y=f(x)的图像是一条直线,且通过点(1,2),则f(2)的值为()。
A. 3B. 4C. 5D. 6答案:B2. 已知函数y=x^2-6x+8,下列哪个点不在该函数图像上?()A. (1,3)B. (2,0)C. (3,1)D. (4,0)答案:C二、填空题3. 函数y=2x-3的图像与x轴交点的坐标是()。
答案:(3/2, 0)4. 如果函数y=3x+1的图像向上平移2个单位,新的函数表达式为()。
答案:y=3x+3三、解答题5. 已知函数y=x^3-3x+1,求该函数的单调区间。
答案:函数y=x^3-3x+1的导数为y'=3x^2-3。
令y'>0,解得x>1或x<-1;令y'<0,解得-1<x<1。
因此,函数在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减。
6. 函数y=x^2-4x+c的图像与x轴有两个交点,求c的取值范围。
答案:要使函数y=x^2-4x+c与x轴有两个交点,需要判别式Δ=(-4)^2-4*1*c>0,解得c<4。
四、证明题7. 证明:函数y=x^3+3x^2-9x+1在(-2,1)上单调递增。
答案:首先求导数y'=3x^2+6x-9。
令y'>0,解得x<-3或x>1。
由于函数定义域为实数集,且-3<-2<1,所以函数在(-2,1)上单调递增。
8. 证明:函数y=x^2+2x+3的图像关于直线x=-1对称。
答案:函数y=x^2+2x+3可以写成y=(x+1)^2+2,这是一个顶点在(-1,2)的抛物线,因此其图像关于直线x=-1对称。
五、应用题9. 已知函数y=-2x^2+4x+1,求该函数的最大值。
答案:函数y=-2x^2+4x+1可以写成y=-2(x-1)^2+3,这是一个开口向下的抛物线,其顶点为(1,3),因此函数的最大值为3。
高中函数图像考试题及答案
高中函数图像考试题及答案一、选择题1. 函数 \( f(x) = x^2 \) 的图像是一个:A. 直线B. 抛物线C. 双曲线D. 正弦曲线答案:B2. 函数 \( y = |x| \) 的图像在 \( x = 0 \) 处的切线斜率是:A. 0B. 1C. -1D. 不存在答案:A3. 函数 \( y = \sin(x) \) 的图像是:A. 线性的B. 周期性的C. 单调的D. 常数的答案:B二、填空题4. 如果函数 \( f(x) \) 在 \( x = a \) 处取得极值,那么\( f'(a) \) 等于 _______ 。
答案:05. 函数 \( y = x^3 \) 的图像是关于 \( x \) 轴的 _______ 对称。
答案:不三、简答题6. 解释函数 \( y = \ln(x) \) 的图像为什么在 \( x = 0 \) 处没有定义。
答案:函数 \( y = \ln(x) \) 是自然对数函数,其定义域为\( x > 0 \)。
当 \( x = 0 \) 时,没有实数可以作为对数的底数,因为对数函数的底数不能为1,也不能为负数或0。
因此,\( x = 0 \) 处没有定义。
7. 描述函数 \( y = 1/x \) 的图像在第一象限和第三象限的行为。
答案:函数 \( y = 1/x \) 的图像在第一象限和第三象限都是递减的。
当 \( x \) 增大时,\( y \) 减小;当 \( x \) 减小时,\( y \) 增大。
这是因为当 \( x \) 的值增加时,其倒数 \( 1/x \) 的值会减少,反之亦然。
四、计算题8. 给定函数 \( f(x) = 2x^2 + 3x - 5 \),求导数 \( f'(x) \) 并找到函数的极值点。
答案:导数 \( f'(x) = 4x + 3 \)。
令 \( f'(x) = 0 \) 解得\( x = -3/4 \)。
高三数学函数图像试题
高三数学函数图像试题1.设表示不超过实数的最大整数,则在直角坐标平面上满足的点所形成的图形的面积为()A.10B.12C.10D.12【答案】B【解析】首先对任意的,满足的点组成的图形是单位正方形(,),面积为1,而椭圆上整点有,,,共12个,因此所求图形面积为12.选B.【考点】函数图象,图形面积.2.函数的大致图象为 ( )【答案】D【解析】∵,∴,∴,又∵,∴,∴,∴选D.【考点】函数图象.3. [2013·四川高考]函数y=的图象大致是()【答案】C【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A;取x=-1,y==>0,故再排除B;当x→+∞时,3x-1远远大于x3的值且都为正,故→0且大于0,故排除D,选C.4.已知函数是周期为2的周期函数,且当时,,则函数的零点个数是()A.9B.10C.11D.18【答案】B【解析】由于函数是周期为2的周期函数,所以.因为的零点个数等价于方程的根的个数.即函数与函数的个数.又时,.如图所示.共有10个交点,即选B.【考点】1.函数的周期性.2.函数与方程的关系.3.对数指数函数的图象.5.函数的所有零点之和为.【答案】8【解析】设,则,原函数可化为,其中,因,故是奇函数,观察函数与在的图象可知,共有4个不同的交点,故在时有8个不同的交点,其横坐标之和为0,即,从而.【考点】1.函数零点;2.正弦函数、反比例函数.6.已知函数,则的图象大致为()【答案】A【解析】,令,则,在同一坐标系下作出两个函数的简图,根据函数图象的变化趋势可以发现与共有三个交点,横坐标从小到大依次设为,在区间上有,即;在区间有,即;在区间有,即;在区间有,即.故选【考点】1转化思想;2函数图像。
7.函数的图象大致是( )【答案】A【解析】分析函数性质可知:函数为偶函数,当时,.故排除C和D.可知:但开始时,函数应该是增函数,排除B,故选A.【考点】函数的图像8.设函数则______;若函数存在两个零点,则实数的取值范围是______.【答案】;【解析】;令,得,等价于的图象和直线有两个不同的交点,在直角坐标系中画出的图象,如图所示,.【考点】1、分段函数;2、函数的图象和性质.9.已知且,函数,在同一坐标系中的图象可能是()【答案】C【解析】是直线的纵截距.根据指数函数、对数函数的性质,时,函数的图象同时上升;时图象同时下降.对照选项可知,A,B,D均矛盾,C中,选C.【考点】一次函数、指数函数、对数函数的图象和性质.10.函数的图像可能是( )【答案】B【解析】因为函数,所以函数是奇函数,排除选项A和选项C.当时,在区间是增函数,所以选B.【考点】1.分段函数的图像与性质;2.函数奇偶性的判断;3.对数函数的图像与性质11.已知函数和的图象关于轴对称,且.(1)求函数的解析式;(2)解不等式.【答案】(1);(2)不等式的解集是.【解析】(1)先利用两个函数图象关于轴对称的关系,得出函数上的点与其关于轴对称点在函数,进而通过坐标之间的关系得出函数的解析式;(2)方法一是去绝对值,将问题转化为二次不等式,从而解出相应的不等式;方法二是由于等于或,由成立可知,小于或,从而将原不等式等价转化为或,最终求解出原不等式.试题解析:试题解析:(1)设函数图象上任意一点,由已知点关于轴对称点一定在函数图象上,代入,得;(2)方法1或,或,或,不等式的解集是;方法2:等价于或,解得或,所以解集为.【考点】1.函数图象的对称性;2.含绝对值的不等式12.已知二次函数,则函数图像可能是()【答案】C【解析】时,开口向下,因为,所以同号,对于A、由图象可知,则,∴,选项A不符合题意, 由B图可知,故,∴,即函数对称轴在y轴左侧,选项B不符合题意,当时,因为,所以异号,由C,D图可知,故,∴,即函数对称轴在y轴左侧,选项D不符合题意,C符合.故选C.【考点】二次函数的图像.13.若函数的图象与函数的图象至多有一个公共点,则实数的取值范围是( )A.B.C.D.【答案】D【解析】函数是将函数的图像先向下平移个单位,然后将轴下方的图像向上翻折得到的,如图所示:由图可知,函数与轴的右交点只要在函数与轴交点的右边即可.当时,已知两函数没有交点;当时,,解得.所以实数的取值范围是.【考点】1.含绝对值函数的图像与性质;2.数形结合思想14.已知函数,若互不相等,且,则的取值范围是________________.【答案】【解析】先作出函数的图像,知关于对称.互不相等,且不妨设则又.【考点】函数图象及其性质.15.已知函数的图象如图所示,则函数的大致图象是(A)(B)(C)(D)【答案】D【解析】先将的图象的图像沿轴翻折,得到的图像,然后再将的图像向右平移1个单位长度,即可得到的图像,观察比较个选项,只有合题意.【考点】函数图像的对称和平移.16.函数的图像可能是()【答案】B【解析】显然函数为定义域上的奇函数,可排除A、C,而当时,,所以答案选B.【考点】函数的图像与性质.17.已知函数f(x)满足f(x+1)=﹣f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x2,若在区间[﹣1,3]内,函数g(x)=f(x)﹣kx﹣k有4个零点,则实数k的取值范围是()A.B.C.D.【答案】C【解析】根据f(x+1)=﹣f(x),可得f(x)是周期为2的周期函数.再由f(x)是偶函数,当x∈[0,1]时,f(x)=x2,可得函数在[﹣1,3]上的解析式.根据题意可得函数y=f(x)的图象与直线y="kx+k" 有4个交点,数形结合可得实数k的取值范围.∵函数f(x)满足f(x+1)=﹣f(x),故有f(x+2)=f(x),故f(x)是周期为2的周期函数.再由f(x)是偶函数,当x∈[0,1]时,f(x)=x2,可得当x∈[﹣1,0]时,f(x)=x2,故当x∈[﹣1,1]时,f(x)=x2,当x∈[1,3]时,f(x)=(x ﹣2)2.由于函数g(x)=f(x)﹣kx﹣k有4个零点,故函数y=f(x)的图象与直线y="kx+k" 有4个交点,如图所示:把点(3,1)代入y=kx+k,可得k=,数形结合可得实数k的取值范围是(0,],故选C.【考点】根的存在性及根的个数判断点评:本题主要考查函数的周期性的应用,函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题18.已知,函数是它的反函数,则函数的大致图象是( )【答案】D【解析】由对数函数与指数函数互为反函数得,,从而,;由特殊点(0,2)与(1,1)即可验证.也可以利用图像变换画出.【考点】1.指数函数与对数函数 2.图像变换19.设是定义在R上的周期为3的周期函数,如图表示该函数在区间上的图像,则+=( )A.3B.2C.1D.0【答案】A【解析】由于是定义在上的周期为3的周期函数,所以,而由图像可知,,所以.【考点】1.函数的周期性;2.函数图像.20.函数,其中,若动直线与函数的图像有三个不同的交点,它们的横坐标分别为,(1)的取值范围是_______________.(2)是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”_______________.【答案】(1);(2)1.【解析】如图,由得即,解得,或,所以,由图象可知要使直线与函数的图像有三个不同的交点,则有,即实数的取值范围是.不妨设,则由题意可知,所以,由得,,当取最大值1时,.【考点】1.分段函数;2.函数的图象.21.(5分)函数的图象大致是()A.B.C.D.【答案】A【解析】当x<0时,x3<0,3x﹣1<0,∴,故排除B;对于C,由于函数值不可能为0,故可以排除C;∵y=3x﹣1与y=x3相比,指数函数比幂函数,随着x的增大,增长速度越大,∴x→+∞,→0,∴D不正确,A正确,22.函数的图象大致是【答案】A【解析】根据题意,由于函数,变量不能为零,且为偶函数,排除B,C,对于A,D,则根据当x=时,函数值为零,故选A.【考点】函数图象点评:主要是考查了函数图象的运用,属于基础题。
函数图像问题高考试题精选
函数图像问题高考试题精选一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A.B.C.D.2.函数y=x+cosx的大致图象是()A.B.C.D.3.函数y=的图象大致是()A.B. C.D.4.函数y=xln|x|的大致图象是()A. B.C.D.5.函数f(x)=x2﹣2|x|的图象大致是()A.B.C.D.6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.8.函数y=xln|x|的图象大致是()A.B.C.D.9.f(x)=的部分图象大致是()A.B.C.D.10.函数的图象大致为()A.B.C.D.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B.C.D.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A.B.C.D.13.函数的部分图象大致为()A.B.C.D.14.函数f(x)=的部分图象大致为()A.B.C. D.15.函数的部分图象大致为()A.B.C.D.16.函数y=x(x2﹣1)的大致图象是()A.B.C.D.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.18.函数f(x)=的部分图象大致是()A..B..C..D..19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B. C.D.20.函数的图象大致是()A.B.C.D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.22.函数的图象大致是()A.B.C.D.23.函数y=的大致图象是()A.B.C.D.24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A. B.C. D.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A.B.C.D.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A. B. C.D.27.函数y=1+x+的部分图象大致为()A.B.C.D.28.函数y=的部分图象大致为()A.B.C.D.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.30.函数f(x)=e ln|x|+的大致图象为()A.B. C.D.31.函数y=的一段大致图象是()A.B.C.D.32.函数的图象大致是()A.B.C.D.33.函数的大致图象是()A.B.C.D.34.函数的图象大致为()A.B.C.D.二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.36.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.函数图像问题高考试题精选参考答案与试题解析一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A.B.C.D.【解答】解:因为f(0)=(02﹣2×0)e0=0,排除C;因为f'(x)=(x2﹣2)e x,解f'(x)>0,所以或时f(x)单调递增,排除B,D.故选A.2.函数y=x+cosx的大致图象是()A.B.C.D.【解答】解:由于f(x)=x+cosx,∴f(﹣x)=﹣x+cosx,∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A、C;又当x=时,x+cosx=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.故选:B.3.函数y=的图象大致是()A.B. C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D4.函数y=xln|x|的大致图象是()A. B.C.D.【解答】解:令f(x)=xln|x|,易知f(﹣x)=﹣xln|﹣x|=﹣xln|x|=﹣f(x),所以该函数是奇函数,排除选项B;又x>0时,f(x)=xlnx,容易判断,当x→+∞时,xlnx→+∞,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x>0时,函数图象与x轴只有一个交点,所以C选项满足题意.故选:C.5.函数f(x)=x2﹣2|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=x2﹣2|x|,∴f(3)=9﹣8=1>0,故排除C,D,∵f(0)=﹣1,f()=﹣2=0.25﹣<﹣1,故排除A,故选:B当x>0时,f(x)=x2﹣2x,∴f′(x)=2x﹣2x ln2,故选:B6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.【解答】解:根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C不正确故选:A8.函数y=xln|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=xln|x|,可得f(﹣x)=﹣f(x),f(x)是奇函数,其图象关于原点对称,排除A,D,当x→0时,f(x)→0,故排除B又f′(x)=lnx+1,令f′(x)>0得:x>,得出函数f(x)在(,+∞)上是增函数,故选:C.9.f(x)=的部分图象大致是()A.B.C.D.【解答】解:∵f(﹣x)=f(x)∴函数f(x)为奇函数,排除A,∵x∈(0,1)时,x>sinx,x2+x﹣2<0,故f(x)<0,故排除B;当x→+∞时,f(x)→0,故排除C;故选:D10.函数的图象大致为()A.B.C.D.【解答】解:函数是非奇非偶函数,排除A、B,函数的零点是x=e﹣1,当x=e时,f(e)=,排除选项D.故选:C.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B.C.D.【解答】解:f(﹣x)====f(x),∴f(x)是偶函数,故f(x)图形关于y轴对称,排除B,D;又x→0时,e x+1→2,x(e x﹣1)→0,∴→+∞,排除C,故选A.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A.B.C.D.【解答】解:当x∈[0,5]时,f(x)=(2x﹣2﹣x)cosx=0,可得函数的零点为:0,,,排除A,B,当x=π时,f(π)=﹣2π+2﹣π,<0,对应点在x轴下方,排除选项C,故选:D.13.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选C.14.函数f(x)=的部分图象大致为()A.B.C. D.【解答】解:函数f(x)==﹣,当x=0时,可得f(0)=0,f(x)图象过原点,排除A.当﹣<x<0时;sin2x<0,而|x+1|>0,f(x)图象在上方,排除C.当x<﹣1,x→﹣1时,sin(﹣2)<0,|x+1|→0,那么f(x)→∞,当x=﹣时,sin2x=﹣,y=﹣=,对应点在第二象限,排除D,B满足题意.故选:B.15.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选C.16.函数y=x(x2﹣1)的大致图象是()A.B.C.D.【解答】解:∵函数y=x(x2﹣1),令f(x)=x(x2﹣1),则f(﹣x)=﹣x(x2﹣1)=﹣f(x),故函数f(x)为奇函数,又当0<x<1时,f(x)<0,综上所述,函数y=x(x2﹣1)的大致图象是选项A.故选:A.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣x+2sinx=﹣(x﹣2sinx)=﹣f(x),所以函数为奇函数,故函数的图象关于原点对称,只有CD适合,y′=1﹣2cosx,由y′=0解得x=,∴当x=时,函数取极值,故D适合,故选:D.18.函数f(x)=的部分图象大致是()A..B..C..D..【解答】解:由x2+|x|﹣2=0,解得x=﹣1或x=1,∴函数的定义域为(﹣∞,﹣1)∪(﹣1,1)∪(1,+∞),∵f(﹣x)==﹣f(x),∴f(x)为奇函数,∴f(x)的图象关于原点对称,故排除A,令f(x)=0,解得x=0,故排除C,当x=时,f()=<0,故排除B,故选:D19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B. C.D.【解答】解:由y=﹣2x2+2|x|知函数为偶函数,即其图象关于y轴对称,故可排除B,D.又当x=2时,y=﹣2•(﹣2)2+22=﹣4.所以,C是错误的,故选:A.20.函数的图象大致是()A.B.C.D.【解答】解:解:定义域为(﹣∞,0)∪(0,+∞),f(x)=)=﹣,∴f(﹣x)=f(x),f(x)为偶函数,.∴其图象关于y轴对称,可排除A、C,;又当x→0时,cos(πx)→1,x2→0,∴f(x)→﹣∞.故可排除B;而D均满足以上分析.故选:D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.【解答】解:函数f(x)=(x∈[﹣2,2])满足f(﹣x)=﹣f(x)是奇函数,排除D,x=1时,f(1)=>0,对应点在第一象限,x=2时,f(2)=<0,对应点在第四象限;所以排除B,C;故选:A.22.函数的图象大致是()A.B.C.D.【解答】解:函数满足f(﹣x)=﹣f(x),故函数图象关于原点对称,排除A、B,当x∈(0,)时,,故排除D,故选:C23.函数y=的大致图象是()A.B.C.D.【解答】解:函数y=的导数为,令y′=0,得x=,时,y′<0,时,y′>0,时,y′<0.∴函数在(﹣),()递减,在()递增.且x=0时,y=0,故选:C24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A. B.C. D.【解答】解:函数y=sinx(1+cos2x),定义域为[﹣2,2]关于原点对称,且f(﹣x)=sin(﹣x)(1+cosx)=﹣sinx(1+cosx)=﹣f(x),则f(x)为奇函数,图象关于原点对称,排除D;由0<x<1时,y=sinx(1+cos2x)=2sinxcos2x>0,又2sinxcos2x=0,可得x=±(0<x≤2),则排除A,B正确.故选B.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A.B.C.D.【解答】解:函数f(x)=(x2﹣3)•ln|x|是偶函数;排除选项A,D;当x→0时,f(x)→+∞,排除选项B,故选:C.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A. B. C.D.【解答】解:函数f(x)=﹣e﹣ln|x|+x是非奇非偶函数,排除A,D;当x>0时,f(x)=﹣e﹣lnx+x=x﹣,函数是增函数,排除C;27.函数y=1+x+的部分图象大致为()A.B.C.D.【解答】解:函数y=1+x+,可知:f(x)=x+是奇函数,所以函数的图象关于原点对称,则函数y=1+x+的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,点x=π时,y=1+π,排除B.故选:D.28.函数y=的部分图象大致为()A.B.C.D.【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()==,排除A,x=π时,f(π)=0,排除D.故选:C.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.【解答】解:函数f(x)=x•ln|x|是奇函数,排除选项A,C;当x=时,y=,对应点在x轴下方,排除B;故选:D.30.函数f(x)=e ln|x|+的大致图象为()A.B. C.D.【解答】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.31.函数y=的一段大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣=﹣f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=﹣<0,故选:A.32.函数的图象大致是()A.B.C.D.【解答】解:由题意,函数在(﹣1,1)上单调递减,在(﹣∞,﹣1),(1,+∞)上单调递减,故选A.33.函数的大致图象是()A.B.C.D.【解答】解:f(﹣x)===﹣f(x),∴f(x)是奇函数,图象关于原点对称,故A,C错误;又当x>1时,ln|x|=lnx>0,∴f(x)>0,故D错误,故选B.34.函数的图象大致为()A.B.C.D.【解答】解:f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.36.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=﹣2+ky②;联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,∴其普通方程为:x+y﹣=0,联立得:,∴ρ2=x2+y2=+=5.∴l3与C的交点M的极径为ρ=.。
专题3.1 高考中的图像问题(解析版)
第三部分 专项提能优化训练 专题3.1 高考中的图像问题目录一、运动学图像问题 .................................................................................................................................................. 1 二、动力学图像问题 .................................................................................................................................................. 4 三、功能关系与图像 .................................................................................................................................................. 7 四、电场中的图像 .................................................................................................................................................... 10 五、恒定电流中的图像问题 .................................................................................................................................... 13 六、电磁感应中的图像问题 .................................................................................................................................... 15 七、专题跟踪检测 . (19)一、运动学图像问题高考试题中常涉及的运动学图像有三种,分别是x t 图像、v t 图像、a t 图像,由图像分析计算物体运动的位移、速度、加速度、间距变化及追及相遇问题。
三角函数图象高考题(1)学生专用
三角函数图象高考题(1)一、选择题(每题5分,共计60分)1.函数y =sin x +cos x 的最小值和最小正周期分别是( ) A .-2,2π B .-2,2πC .-2,π D .-2,π2.函数y =sin x |cos xsin x|(0<x <π)的图象大致是( )3.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为( ) A .1B.2C. 3D .24.已知函数y =sin x 的定义域为[a ,b ],值域为[-1,12],则b -a 的值不可能是( )A.π3B.2π3C .πD.4π35.已知函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则ω的最小值为( )A.23B.32C .2D .36.设函数f (x )=sin(2x +π4)+cos(2x +π4),则( )A .y =f (x )在(0,π2)单调递增,其图象关于直线x =π4对称B .y =f (x )在(0,π2)单调递增,其图象关于直线x =π2对称C .y =f (x )在(0,π2)单调递减,其图象关于直线x =π4对称D .y =f (x )在(0,π2)单调递减,其图象关于直线x =π2对称7.(2009浙江文)已知是实数,则函数的图象不可能...是( )a ()1sin f x a ax =+8.(2009山东卷理)将函数的图象向左平移个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A. B. C. D.9、(2009安徽卷理)已知函数,的图像与直线的两个相邻交点的距离等于,则的单调递增区间是A. B.C. D.10.(2009安徽卷文)设函数,其中,则导数的取值范围是() A.B.C.D.11.(2009江西卷理)若函数,,则的最大值为A .1B .CD12.(2009湖北卷理)函数的图象按向量平移到,的函数解析式为当为奇函数时,向量可以等于二、填空题(每题5分,共计20分)13.如果函数y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为________.14.设函数y =sin(π2x +π3),若对任意x ∈R ,存在x 1,x 2使f (x 1)≤f (x )≤f (x 2)恒成立,则|x 1-x 2|的最小值是_____.15.设函数y =sin(ωx +φ)(ω>0,φ∈(-π2,π2))的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论:①图象关于点(π4,0)对称;②图象关于点(π3,0)对称;③在[0,π6]上是增函数;④在[-π6,0]上sin 2y x =4πcos 2y x =22cos y x =)42sin(1π++=x y 22sin y x =()cos (0)f x x x ωωω+>()y f x =2y =π()f x 5[,],1212k k k Z ππππ-+∈511[,],1212k k k Z ππππ++∈[,],36k k k Z ππππ-+∈2[,],63k k k Z ππππ++∈()(1)cos f x x x =02x π≤<()f x 212cos(2)26y x π=+-F a 'F 'F (),y f x =()y f x =a .(,2)6A π--.(,2)6B π-.(,2)6C π-.(,2)6D π是增函数中,所有正确结论的编号为________.16.(2009江苏卷)函数(为常数,)在闭区间上的图象如图所示,则=.三、解答题(每题10分,共计70分) 17.已知函数f (x )=4cos x sin(x +π6)-1.(1)求f (x )的最小正周期;(2)求f (x )在区间[-π6,π4]上的最大值和最小值.18.设a =(sin 2π+2x4,cos x +sin x ),b =(4sin x ,cos x -sin x ),f (x )=a ·b .(1)求函数f (x )的解析式;(2)已知常数ω>0,若y =f (ωx )在区间[-π2,2π3]上是增函数,求ω的取值范围;sin()y A x ωϕ=+,,A ωϕ0,0A ω>>[,0]π-ω19.已知a =(53cos x ,cos x ),b =(sin x,2cos x ),函数f (x )=a ·b +|b |2.(1)求函数f (x )的最小正周期; (2)求函数f (x )的单调减区间; (3)当π6≤x ≤π2时,求函数f (x )的值域.20.(2009江苏卷)设向量(1)若与垂直,求的值;(2)求的最大值;(3)若,求证:∥.21.(2009山东卷理)设函数f (x )=cos(2x +)+sin x . (1) 求函数f(x)的最大值和最小正周期. (2) 设A ,B ,C 为ABC 的三个内角,若cos B =,,且C 为锐角,求sin A .(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-a 2bc -tan()αβ+||b c +tan tan 16αβ=a b3π2∆311()24c f =-22.(2009山东卷文)设函数f(x)=2在处取最小值.(1).求.的值;(2).在ABC 中,分别是角A,B,C 的对边,已知,求角C..23.(2009陕西卷理)已知函数(其中)的图象与x 轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为. (Ⅰ)求的解析式;(Ⅱ)当,求的值域.)0(sin sin cos 2cos sin 2πϕϕϕ<<-+x x x π=x ϕ∆c b a ,,,2,1==b a 23)(=A f ()sin(),f x A x x R ωϕ=+∈0,0,02A πωϕ>><<2π2(,2)3M π-()f x [,]122x ππ∈()f x。
三角函数图像部分高考试题选
三角函数图像部分高考试题选
(一)选择题:
1.(安徽卷理9)动点A(x,y)₄在圆x²+y²=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一
周。
已知时间1=0时,点A的坐标是(1
2,√3
2
),则当0≤t≤12时,动点A的纵坐标y关于'(单位:秒)的
函数的单调递增区间是( )
A、[0,1]
B、[1,7]c、[7,12]D、[0,1]和[7,12]
【解析】画出图形,设动点A与x轴正方向夹角为a,则t=0时α=,每秒钟旋转右t∈[0,1],α∈[π3,π2],在[7,12]上α∈[,],动点A的纵坐标y关于'都是单调递增的。
【答案】D
2.(福建卷文10) 将函数f(x)=sin(ωx+φ)的图像向左平移个单位。
若所得图象与原图象重合,则①的值不可能等于( )
A.4
B.6
C.8
D.12
【解析】因为将函数f(x)=sin(ωx+φ)的图像向左平移个单位。
若所得图象与原图象重合,所
以是已知函数周期的整数倍,即k⋅=(k∈Z),解得ω=4k(k∈Z),故选B.
3.(湖北卷文2)函数f(x)=√3sin(x
2−π
4
),x∈R的最小正周期为( )
A.π
2
B.π
C.2π
D.4π
4. (江西卷文6)函数y=sin²x+sinx-1 的值域为( )
A. [-1,1]
B.[−5
4,−1][−5
4
,1]D.[−1,5
4
]
T=|2π
1
2
|=4π,
【解析】由故D正确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图像问题高考试题 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】函数图像问题高考试题精选一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A.B.C.D.2.函数y=x+cosx的大致图象是()A.B.C.D.3.函数y=的图象大致是()A.B.C.D.4.函数y=xln|x|的大致图象是()A. B.C.D.5.函数f(x)=x2﹣2|x|的图象大致是()A.B.C.D.6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.8.函数y=xln|x|的图象大致是()A.B.C.D.9.f(x)=的部分图象大致是()A.B.C.D.10.函数的图象大致为()A.B.C.D.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B.C.D.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A.B.C.D.13.函数的部分图象大致为()A.B.C.D.14.函数f(x)=的部分图象大致为()A.B. C.D.15.函数的部分图象大致为()A.B.C.D.16.函数y=x(x2﹣1)的大致图象是()A.B.C.D.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.18.函数f(x)=的部分图象大致是()A..B..C..D.. 19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A. B. C.D.20.函数的图象大致是()A.B.C.D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.22.函数的图象大致是()A.B.C.D.23.函数y=的大致图象是()A.B.C.D.24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A.B.C.D.25.函数f(x)=(x2﹣3)ln|x|的大致图象为()A.B.C.D.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A.B.C.D.27.函数y=1+x+的部分图象大致为()A.B.C.D.28.函数y=的部分图象大致为()A.B.C.D.29.函数f(x)=x?ln|x|的图象可能是()A.B.C.D.30.函数f(x)=e ln|x|+的大致图象为()A.B. C.D.31.函数y=的一段大致图象是()A.B.C.D.32.函数的图象大致是()A.B.C.D.33.函数的大致图象是()A.B.C.D.34.函数的图象大致为()A.B.C.D.二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM||OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.36.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α,其中α满足tanα=2,若曲线C1与C2的公共点都在C3上,求a.37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C 的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.函数图像问题高考试题精选参考答案与试题解析一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A.B.C.D.【解答】解:因为f(0)=(02﹣2×0)e0=0,排除C;因为f'(x)=(x2﹣2)e x,解f'(x)>0,所以或时f(x)单调递增,排除B,D.故选A.2.函数y=x+cosx的大致图象是()A.B.C.D.【解答】解:由于f(x)=x+cosx,∴f(﹣x)=﹣x+cosx,∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A、C;又当x=时,x+cosx=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.故选:B.3.函数y=的图象大致是()A.B.C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D4.函数y=xln|x|的大致图象是()A. B.C.D.【解答】解:令f(x)=xln|x|,易知f(﹣x)=﹣xln|﹣x|=﹣xln|x|=﹣f(x),所以该函数是奇函数,排除选项B;又x>0时,f(x)=xlnx,容易判断,当x→+∞时,xlnx→+∞,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x>0时,函数图象与x轴只有一个交点,所以C 选项满足题意.故选:C.5.函数f(x)=x2﹣2|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=x2﹣2|x|,∴f(3)=9﹣8=1>0,故排除C,D,∵f(0)=﹣1,f()=﹣2=0.25﹣<﹣1,故排除A,故选:B当x>0时,f(x)=x2﹣2x,∴f′(x)=2x﹣2x ln2,故选:B6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B.C.D.【解答】解:根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C不正确故选:A8.函数y=xln|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=xln|x|,可得f(﹣x)=﹣f(x),f(x)是奇函数,其图象关于原点对称,排除A,D,当x→0时,f(x)→0,故排除B又f′(x)=lnx+1,令f′(x)>0得:x>,得出函数f(x)在(,+∞)上是增函数,故选:C.9.f(x)=的部分图象大致是()A.B.C.D.【解答】解:∵f(﹣x)=f(x)∴函数f(x)为奇函数,排除A,∵x∈(0,1)时,x>sinx,x2+x﹣2<0,故f(x)<0,故排除B;当x→+∞时,f(x)→0,故排除C;故选:D10.函数的图象大致为()A.B.C.D.【解答】解:函数是非奇非偶函数,排除A、B,函数的零点是x=e﹣1,当x=e时,f(e)=,排除选项D.故选:C.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A.B.C.D.【解答】解:f(﹣x)====f(x),∴f(x)是偶函数,故f(x)图形关于y轴对称,排除B,D;又x→0时,e x+1→2,x(e x﹣1)→0,∴→+∞,排除C,故选A.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A.B.C.D.【解答】解:当x∈[0,5]时,f(x)=(2x﹣2﹣x)cosx=0,可得函数的零点为:0,,,排除A,B,当x=π时,f(π)=﹣2π+2﹣π,<0,对应点在x轴下方,排除选项C,故选:D.13.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选C.14.函数f(x)=的部分图象大致为()A.B. C.D.【解答】解:函数f(x)==﹣,当x=0时,可得f(0)=0,f(x)图象过原点,排除A.当﹣<x<0时;sin2x<0,而|x+1|>0,f(x)图象在上方,排除C.当x<﹣1,x→﹣1时,sin(﹣2)<0,|x+1|→0,那么f(x)→∞,当x=﹣时,sin2x=﹣,y=﹣=,对应点在第二象限,排除D,B满足题意.故选:B.15.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f(x)单调递增,排除D,故选C.16.函数y=x(x2﹣1)的大致图象是()A.B.C.D.【解答】解:∵函数y=x(x2﹣1),令f(x)=x(x2﹣1),则f(﹣x)=﹣x(x2﹣1)=﹣f(x),故函数f(x)为奇函数,又当0<x<1时,f(x)<0,综上所述,函数y=x(x2﹣1)的大致图象是选项A.故选:A.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣x+2sinx=﹣(x﹣2sinx)=﹣f(x),所以函数为奇函数,故函数的图象关于原点对称,只有CD适合,y′=1﹣2cosx,由y′=0解得x=,∴当x=时,函数取极值,故D适合,故选:D.18.函数f(x)=的部分图象大致是()A..B..C..D..【解答】解:由x2+|x|﹣2=0,解得x=﹣1或x=1,∴函数的定义域为(﹣∞,﹣1)∪(﹣1,1)∪(1,+∞),∵f(﹣x)==﹣f(x),∴f(x)为奇函数,∴f(x)的图象关于原点对称,故排除A,令f(x)=0,解得x=0,故排除C,当x=时,f()=<0,故排除B,故选:D19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A. B. C.D.【解答】解:由y=﹣2x2+2|x|知函数为偶函数,即其图象关于y轴对称,故可排除B,D.又当x=2时,y=﹣2(﹣2)2+22=﹣4.所以,C是错误的,故选:A.20.函数的图象大致是()A.B.C.D.【解答】解:解:定义域为(﹣∞,0)∪(0,+∞),f(x)=)=﹣,∴f(﹣x)=f(x),f(x)为偶函数,.∴其图象关于y轴对称,可排除A、C,;又当x→0时,cos(πx)→1,x2→0,∴f(x)→﹣∞.故可排除B;而D均满足以上分析.故选:D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.【解答】解:函数f(x)=(x∈[﹣2,2])满足f(﹣x)=﹣f(x)是奇函数,排除D,x=1时,f(1)=>0,对应点在第一象限,x=2时,f(2)=<0,对应点在第四象限;所以排除B,C;故选:A.22.函数的图象大致是()A.B.C.D.【解答】解:函数满足f(﹣x)=﹣f(x),故函数图象关于原点对称,排除A、B,当x∈(0,)时,,故排除D,故选:C23.函数y=的大致图象是()A.B.C.D.【解答】解:函数y=的导数为,令y′=0,得x=,时,y′<0,时,y′>0,时,y′<0.∴函数在(﹣),()递减,在()递增.且x=0时,y=0,故选:C24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A.B.C.D.【解答】解:函数y=sinx(1+cos2x),定义域为[﹣2,2]关于原点对称,且f(﹣x)=sin(﹣x)(1+cosx)=﹣sinx(1+cosx)=﹣f(x),则f(x)为奇函数,图象关于原点对称,排除D;由0<x<1时,y=sinx(1+cos2x)=2sinxcos2x>0,排除C;又2sinxcos2x=0,可得x=±(0<x≤2),则排除A,B正确.故选B.25.函数f(x)=(x2﹣3)ln|x|的大致图象为()A.B.C.D.【解答】解:函数f(x)=(x2﹣3)ln|x|是偶函数;排除选项A,D;当x→0时,f(x)→+∞,排除选项B,故选:C.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A.B.C.D.【解答】解:函数f(x)=﹣e﹣ln|x|+x是非奇非偶函数,排除A,D;当x>0时,f(x)=﹣e﹣lnx+x=x﹣,函数是增函数,排除C;故选:B.27.函数y=1+x+的部分图象大致为()A.B.C.D.【解答】解:函数y=1+x+,可知:f(x)=x+是奇函数,所以函数的图象关于原点对称,则函数y=1+x+的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,点x=π时,y=1+π,排除B.故选:D.28.函数y=的部分图象大致为()A.B.C.D.【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()==,排除A,x=π时,f(π)=0,排除D.故选:C.29.函数f(x)=x?ln|x|的图象可能是()A.B.C.D.【解答】解:函数f(x)=x?ln|x|是奇函数,排除选项A,C;当x=时,y=,对应点在x轴下方,排除 B;故选:D.30.函数f(x)=e ln|x|+的大致图象为()A.B. C.D.【解答】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.31.函数y=的一段大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣=﹣f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=﹣<0,故选:A.32.函数的图象大致是()A.B.C.D.【解答】解:由题意,函数在(﹣1,1)上单调递减,在(﹣∞,﹣1),(1,+∞)上单调递减,故选A.33.函数的大致图象是()A.B.C.D.【解答】解:f(﹣x)===﹣f(x),∴f(x)是奇函数,图象关于原点对称,故A,C错误;又当x>1时,ln|x|=lnx>0,∴f(x)>0,故D错误,故选B.34.函数的图象大致为()A.B.C.D.【解答】解:f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM||OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|(2+)=2+.36.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α,其中α满足tanα=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α,其中α满足tanα=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3,∴1﹣a2=0,∴a=1(a>0).37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C 的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l的参数方程为,(m为参数),2的普通方程为:x=﹣2+ky②;同理可得,直线l2联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;的极坐标方程为ρ(cosθ+sinθ)﹣=0,(2)∵l3∴其普通方程为:x+y﹣=0,联立得:,∴ρ2=x2+y2=+=5.∴l与C的交点M的极径为ρ=.3。