电子电路第一章

合集下载

电工电子技术 第一章直流电路 第七节戴维宁定理

电工电子技术 第一章直流电路 第七节戴维宁定理

5
E
B
1A
U U 9V
S
ABO
R 57 0
R0 57 +
US _ 9V
33

三、戴维宁定理中等效电阻的求解方法
求简单二端网络的等效内阻时,用串、并联 的方法即可求出。如前例:
A
R1 C
R2 D R0
R3
R4
B
R R // R R // R
0
1
2
3
4
求某些二端网络的等效内阻时,用串、并联的方 法则不行。如下图:
二、戴维南定理应用举例
例1 R1
R2
I5
R5
等效电路
R3
R4
E
+_
R1 +
R2 _
I5
E
R5
已知:R1=20 、 R2=30 R3
R4
R3=30 、 R4=20
E=10V
求:当 R5=10 时,I5=?
有源二端 网络
第一步:求开端电压US
A
R1
R2
C +_ D
US
E
R3
R4
B
U U U
S
AD
R1 C
R3
A R2
R0 D
R4 B
串/并联方法?
R0
不能用简单 串/并联 方法 求解, 怎么办?
方法(1): 开路、短路法
有源 网络
有源
Uabo
网络
IS
求 开端电压 Uabo 与 短路电流 IS
等效 内阻
R 0
U abo
I
S
R + -E
R Uabo=E + E

徐淑华电工电子技术 第一章

徐淑华电工电子技术 第一章
5
1.1.2 电流和电压的参考方向
电流和电压的正方向: 实际正方向:
物理量 电流I 电动势E 电压U
实际正方向 假设正方向
物理中对电量规定的方向。
正方向 正电荷移动的方向 单位 A, kA, mA, A V, kV, mV, V V, kV, mV, V
6
电源驱动正电荷的方向
低电位 高电位 电位降落的方向
di dt
0
u 0
29
所以,在直流电路中电感相当于短路.
电感的储能
u L
di
dt 电感是一种储能元件, 储存的磁场能量为:
WL
t 0
uidt WL
i 0
Lidi
2
1 2
Li
2
1 2
Li

电感中的电流是直流时, 储 存的磁场能量是否为0?
否!W L
1 2
LI
2
30
5.电容 C
C
q = Cu
du dt
直流电 路中, 电容两 端的电 压是否 为0?
i
dq dt
C
i C
du
dt 1 u idt C
当u
U (直流) 时,
du dt
0
i0
33
所以,在直流电路中电容相当于开路。
电容的储能
i C
du dt
电容是一种储能元件, 储存的电场能量为:
WC
t 0
11
例2 假设: I R 与 UR 的方向一致
a
IR UR
(关联参考方向)
b
U R = I R· R
假设: I R 与 UR 的方向相反 a IR UR b

电工电子学课件_______第一章

电工电子学课件_______第一章

uab
b
13
关联参考方向与非关联参考方向 对一个元件,电流参考方向和电压参考方向 可以相互独立地任意确定,但为了方便起见,常 常将其取为一致,称关联参考方向;如不一致, 称非关联参考方向。 i
a
i u
b a
+

u
+
b
(a)关联参考方向
(b)非关联参考方向
如果采用关联参考方向,在标注时标出一种即可。 如果采用非关联参考方向,则必须全部标注。
b (b)
三、电路中的功率
定义: 单位时间内元件吸收(消耗)或发出(释 放)的电能。 dw 数学表达式: p dt 单位:瓦特 W 方向:在电压、电流取关联参考方向下,p=ui 表 示的是该元件吸收(消耗)功率的大小。即为:
i i
w
+ u
w
+ u
p>0
18
p<0
第一章 电路的基本概念、定律与分析方法
34
第一章 电路的基本概念、定律与分析方法
实际电压源 I + − Rs Us
U Us
RL
0 理想电压源 实际电压源
U
I
电源内阻,表 示内部损耗 U = Us – IRs
Rs越小 特性曲线越平坦
当Rs = 0 时,实际电压源模型就变成电压源模型
35
第一章 电路的基本概念、定律与分析方法
2.电流源
Uab
15
第一章 电路的基本概念、定律与分析方法
Uab是否表示a端的电位高 于b端的电位?
a
Uab 元件
b
Uab只表示a、b两端电位的参考 方向为由a指向b。实际两点电 位哪点高,要看是Uab>0,还是 Uab<0。若Uab>0,则a端电位高 于b端电位。反之, b 端电位高 于a端电位。

电子电路基础习题册参考答案-第一章

电子电路基础习题册参考答案-第一章

第一章常用半导体器件§1-1 晶体二极管一、填空题1、物质按导电能力的强弱可分为导体、绝缘体和半导体三大类,最常用的半导体材料是硅和锗。

2、根据在纯净的半导体中掺入的杂质元素不同,可形成 N 型半导体和 P 型半导体。

3、纯净半导体又称本征半导体,其内部空穴和自由电子数相等。

N型半导体又称电子型半导体,其内部少数载流子是空穴;P型半导体又称空穴型半导体,其内部少数载流子是电子。

4、晶体二极管具有单向导电性,即加正向电压时,二极管导通,加反向电压时,二极管截止。

一般硅二极管的开启电压约为 V,锗二极管的开启电压约为 V;二极管导通后,一般硅二极管的正向压降约为 V,锗二极管的正向压降约为V。

5.锗二极管开启电压小,通常用于检波电路,硅二极管反向电流小,在整流电路及电工设备中常使用硅二极管。

6.稳压二极管工作于反向击穿区,稳压二极管的动态电阻越小,其稳压性能好。

7在稳压电路中,必须串接限流电阻,防止反向击穿电流超过极限值而发生热击穿损坏稳压管。

8二极管按制造工艺不同,分为点接触型、面接触型和平面型。

9、二极管按用途不同可分为普通二极管、整流二极管、稳压二极管、开关、热敏、发光和光电二极管等二极管。

10、二极管的主要参数有最大整流电流、最高反向工作电压、反向饱和电流和最高工作频率。

11、稳压二极管的主要参数有稳定电压、稳定电流和动态电阻。

12、图1-1-1所示电路中,二极管V1、V2均为硅管,当开关S与M 相接时,A点的电位为无法确定 V,当开关S与N相接时,A点的电位为 0 V.13图1-1-2所示电路中,二极管均为理想二极管,当开关S打开时,A点的电位为 10V 、流过电阻的电流是 4mA ;当开关S闭合时,A点的电位为 0 V,流过电阻的电流为 2mA 。

14、图1-1-3所示电路中,二极管是理想器件,则流过二极管V1的电流为,流过V2的电流为 ,输出电压U0为 +5V。

15、光电二极管的功能是将光脉冲信号转换为电信号,发光二极管的功能是将电信号转换为光信号。

电路与电子技术基础 第1章

电路与电子技术基础 第1章

第一章 电路与元件
关联参考方向:电流参考方向与电压参 考方向一致(假定电流方向与假定电压 降方向一致)。
注意: 电压、电流的参 考方向可任意假定互 不相关,但为了分析 电路时方便,常常采 用关联参考方向。
第一章 电路与元件
关联参考方向举例 (associated reference direction)
第一章 电路与元件
第一章 电路与元件
主要内容: 1、电路变量(电流、电压、功率) 2、电路基本定律(欧姆定律、KCL、 KVL) 3、电阻、电源(独立源、受控源) 4、电路的三种状态(开路、短路、 带负载) 注意:电位(电势)
第一章 电路与元件
电路分析的主要任务在于求解电路物 理量,其中最基本的电路物理量就是 电流、电压和功率。
第一章 电路与元件
1.4 理 想 电 源 不管外部电路如何,其两端电压 总能保持定值或一定的时间函数的电 源定义为理想电压源。
图 1.4-1 理想电压源模型
第一章 电路与元件
(1) 对任意时刻t1, (直流)理想电压源 的端电压与输出电流的关系曲线(称伏安特 性)是平行于i轴、其值为us(t1)的直线,如图 1.4-2 所示。 理想电压源的内阻多大? 内阻=伏安曲线斜率
第一章 电路与元件
kW·h读作千瓦小时,它是计量电 能的一种单位。1000W的用电器具加电 使用1h,它所消耗的电能为1kW·h, 即 日常生活中所说的1度电。有了这一概 念,计算本问题就是易事。
第一章 电路与元件
开路和短路
• 开路:两点之间的电阻为无穷大。 根据i = u/R,开路时无论电压多大,电 流恒为零。 • 短路:两点之间的电阻为零。 根据u = i R,短路时无论电流多大,电 压恒为零。

电工电子 第1章 电路基本概念和定律

电工电子 第1章  电路基本概念和定律
37
1-3
电阻元件
有源器件 :需能(电)源的器件 。
有源器件一般用来信号放大、变换等。 IC、模块等都是有源器件 。 无源器件 :无需能(电)源的器件 。 无源器件用来进行信号传输,或者通过方向性 进行“信号放大” 。 容、阻、感都是无源器件 。
38
例1.3-1 阻值为2Ω的电阻上的电压电流参考方向关联, 已知电阻上电压 u(t)=4costV,求其上电流 i(t)、消耗的 功率p(t)。 解:因电阻上电压、电流参考方向关联,所以其 上电流
11
1-2
电路变量
若dq(t)/dt为常数, 即是直流电流,常用大写字母I
表示。电流强度的单位是安培(A), 简称“安”。
1kA 10 A
3
1mA 10 A 1uA 10 A
规定正电荷运动的方向为电流的实际方向。 12
6
3
1-2
1.2.2 电压
电路变量
两点之间的电位之差即是两点间的电压。从电
荷电场力所做的功为 1J。常用千伏(kV)、 毫伏(mV)、微伏(μV)作电压单位。 电路中,规定电位真正降低的方向为电 压的实际方向。(选定任意点为参考点,规定电位为0) 14
1-2
一、问题提出:
电路变量
在复杂的电路里,电流、电压的实际方向是
不易判别的,或在交流电路里,两点间电流、电
压的实际方向是经常改变的,这给实际电路问题 的分析计算带来困难。
c 点移动至 b 点,电场力做功应为-12J,所以计算 c 点电位
时算式中要用-12。应用电压等于电位之差关系,求得
U ab Va Vb 2 0 2V U bc Vb Vc 0 ( 3) 3V
23

(完整word版)电子电路基础版

(完整word版)电子电路基础版

通信电子电路基础第一章半导体器件§1-1 半导体基础知识一、什么是半导体半导体就是导电能力介于导体和绝缘体之间的物质。

(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物)二、半导体的导电特性本征半导体――纯净、晶体结构完整的半导体称为本征半导体。

硅和锗的共价键结构。

(略)1、半导体的导电率会在外界因素作用下发生变化•掺杂──管子•温度──热敏元件•光照──光敏元件等2、半导体中的两种载流子──自由电子和空穴•自由电子──受束缚的电子(-)•空穴──电子跳走以后留下的坑(+)三、杂质半导体──N型、P型(前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。

•N型半导体(自由电子多)掺杂为+5价元素。

如:磷;砷P──+5价使自由电子大大增加原理:Si──+4价P与Si形成共价键后多余了一个电子。

载流子组成:o本征激发的空穴和自由电子──数量少。

o掺杂后由P提供的自由电子──数量多。

o空穴──少子o自由电子──多子•P型半导体(空穴多)掺杂为+3价元素。

如:硼;铝使空穴大大增加原理:Si──+4价B与Si形成共价键后多余了一个空穴。

B──+3价载流子组成:o本征激发的空穴和自由电子──数量少。

o掺杂后由B提供的空穴──数量多。

o空穴──多子o自由电子──少子结论:N型半导体中的多数载流子为自由电子;P型半导体中的多数载流子为空穴。

§1-2 PN结一、PN结的基本原理1、什么是PN结将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。

2、PN结的结构分界面上的情况:P区:空穴多N区:自由电子多扩散运动:多的往少的那去,并被复合掉。

留下了正、负离子。

(正、负离子不能移动)留下了一个正、负离子区──耗尽区。

由正、负离子区形成了一个内建电场(即势垒高度)。

方向:N--> P大小:与材料和温度有关。

(很小,约零点几伏)漂移运动:由于内建电场的吸引,个别少数载流子受电场力的作用与多子运动方向相反作运动。

第一章-电路及基本元器件PPT课件

第一章-电路及基本元器件PPT课件
图1-7
.
电工电子技术基础 3、二极管的伏安特性曲线(硅管)
.
电工电子技术基础
五、半导体三极管
1、三极管的结构
图1-8
.
电工电子技术基础 2、三极管的电流放大作用 三极管工作在放大状态的条件是:发射结正偏,集电 结反偏。
.
电工电子技术基础
(1)电流分配关系:发射极电流等于基极电流和集电极电
流之和,即:
图1-9
.
电工电子技术基础
(1)输入特性 死区电压:硅管约为0.5V,锗管约为0.2V; 导通电压(发射结):硅管约为0.7V,锗管约为0.3V。 (2)输出特性
截止区: UBE小于死区电压,IC≈ 0,UCE ≈UCC,。
饱和区:集电结正向偏置 ,UCE<UBE, IC≈ UCC/RC 。
放大区:发射结正偏,集电结反偏 , IC≈βIB。
图1-2
.
图1-3
电工电子技术基础
三、电功率和电能
1、电功率
电流通过电路时传输或转换电能的速率称为电功率,
简称为功率,用符号p表示。
当电压与电流为关联参考方向时,功率的计算公
式为:
p dW ui dt
当电压与电流为非关联参考方向时,功率的计算
公式为:
pui
.
电工电子技术基础 2、电能 电路在一段时间内吸收的能量称为电能。在国际单 位制(SI)中,电能的单位是焦耳(J)。1J等于1W的用 电设备在1s内消耗的电能。电力工程中,电能常用“度” 作单位,它是千瓦小时(kWh)的简称,1度等于功率为 1kW的用电设备在1小时内消耗的电能。
图1-23
.
电工电子技术基础 在电子电路中,电源的一端通常是接地的,为了作

电路与电子学基础第一章

电路与电子学基础第一章

刻所带的电荷量q(t)为
t
q(t) i(t)dt q(0) Nhomakorabea0
电路中用来储存电荷的容器称为电容器。电容器由电介质隔开的 两金属电极片组成,电容器在电路中常用的符号是 “ ”。
表征电容器性质的物理量称为电容器的电容, 用字母C来表示。电容C的定义为:电容器上所 储存的电荷量Q与两极板的电位差Uab之比,即
IQ t
交流电流强度的表达式为
电流强度的单位为安培,简称安(A)。大
dq 型电力变压器中的电流可达几百到上千安培, i 而晶体管电路中的电流往往只有千分之几安
培,对于很小的电流可用毫安(mA)或微
dt
安(μA)来表示
2、电压
在物理学课程中已知,电荷在电场中移动时,电场力将对电荷 做功。描述电场力对电荷做功能力大小的物理量是电压。

电感线圈在电路中也是一个储能元件,
电感线圈内所储存的电能为
WL

1 LI 2 2
1.1.4 电流、电压和电动势的参考方向
中学物理在分析和计算电路问题的时候,电流、电压和电动势的 方向是统一约定的。即,电流I在外电路中从电源的正极出发,流 向负极;在内电路中从电源的负极出发流向正极。电压U的方向 是从电源的正极指向负极,电动势E的方向是从电源的负极指向 正极。这种约定的方向与电路中电流、电压和电动势的实际方向 相一致,在分析、计算简单电路(单电源电路)的问题时是可行 的,但在分析、计算复杂电路问题时却有困难。
电场中a,b两点间电压Uab的定义为:Uab在 数值上等于把单位正电荷从a点移到b点时,电场 力所作的功。电压的定义式为
W U ab Q
电压也常写成电位差的形式
U ab U a Ub

电子电路基础_课后习题答案

电子电路基础_课后习题答案

第一章 思考题与习题1.1. 半导体材料都有哪些特性?为什么电子有源器件都是由半导体材料制成的?1.2. 为什么二极管具有单向导电特性?如何用万用表判断二极管的好坏? 1.3. 为什么不能将两个二极管背靠背地连接起来构成一个三极管? 1.4. 二极管的交、直流等效电阻有何区别?它们与通常电阻有什么不同? 1.5. 三极管的放大原理是什么?三极管为什么存在不同的工作状态? 1.6. 如图P1-1(a)所示的三极管电路,它与图P1-1(b)所示的二极管有何异同?1.7.稳压二极管为何能够稳定电压?1.8.三极管的交、直流放大倍数有何区别?共射和共基电流放大倍数的关系是什么?1.9.三极管的输入特性和输出特性各是什么?1.10. 如图P1-2所示,设I S =10-11A ,U T =26mV ,试计算u i =0,0.3V ,0.5V ,0.7V 时电流I 的值,以及u i =0.7V 时二极管的直流和交流等效电阻。

解:由I= I S *(exp(U i / U T )-1) 当U i =0时,I=0;当U i =0.3V 时,I=1.026×10-6A ; 当U i =0.5V 时,I=2.248×10-3A ; 当U i =0.7V 时,I=4.927A ; 直流等效电阻R= U i /I = 0.7V/4.927A = 0.142 Ω∵exp(U i / U T )>>1∴交流等效电阻R d = 26/I = 26/4927 = 5.277×10-3 Ω(a)(b)图P1-1图P1-2+ -u i Di1.11. 电路如图P1-3所示,二极管导通电压U D =0.7V ,U T =26mV ,电源U =3.3V ,电阻R =1k Ω,电容C 对交流信号可视为短路;输入电压u i 为正弦波,有效值为10mV 。

试问二极管中流过的交流电流有效值为多少?解:U =3.3V>>100mV ,I =(U -U D )/R = (3.3-0. 7)/1k = 2.6 mA 交流等效电阻:R d = 26/I = 10 Ω 交流电流有效值:Id = Ui/Rd = 1 mA1.12. 图P1-4(a)是由二极管D 1、D 2组成的电路,二极管的导通电压U D =0.3V 、反向击穿电压足够大,设电路的输入电压u 1和u 1如图P1-4(b)所示,试画出输出u o 的波形。

电工电子技术基础第1章 电路的基本理论及基本分析方法

电工电子技术基础第1章 电路的基本理论及基本分析方法

-
电流源模型
实际电源可用一个电流为IS的理想电流源与电阻并 联的电路作为实际电源的电路模型,称为电流源模型。
其中
IS

U0 R0
称为短路电流
实际电源内阻R0越大,越接近于理想电流源。
第1章 电路的基本理论及基本分析方法
3.实际电源模型的等效变换
R0 + US -
等效电压源模型
IS

US R0
US R0IS
2.理想电流源:理想电流源是从实际电流源抽象出来的 理想二端元件,流过它的电流总保持恒定,与其端电压 无关。理想电流源简称电流源。 电流源的两个基本性质
①电流是给定值或给定的时间函数,与电压无关;
②电压是与相连的外电路共同决定的。
IS或iS
+ U或i

电流源的图形符号
电流源的伏安关系
i IS
o
u
直流电流源伏安特性
uR( i 关联u ) R( 或 i 非关联)
电阻参数R:表示电阻元件特性的参数。 线性非时变电阻:R为常数;简称为线性电阻。
第1章 电路的基本理论及基本分析方法
应当注意,非线性电阻不满足欧姆定律。
单位:SI单位是欧[姆](Ω)。计量大电阻时,以千欧 (KΩ)、兆欧(MΩ)为单位。
电阻的参数也可以用电导表示,其SI单位是西[门 子](S)。线性电阻用电导表示时,伏安关系为
②箭头,如图(a) i。
参考方向的意义:若电流的参考方向和实际方向一致, 则电流取正值,反之则取负值。如图(a)、(b)所示。
第1章 电路的基本理论及基本分析方法
二、电压、电位、电动势及其参考方向
1. 电压、电位、电动势
⑴电压

02电子线路《第一章第二节晶体二极管整流电路》(陈其纯主编)

02电子线路《第一章第二节晶体二极管整流电路》(陈其纯主编)

(2)v1负半周时,T次级A点电位低于B点电位,在v2b的 作用下,V2导通(V1截止),iV2自上而下流过RL; 可见,在v1一周期内,流过二极管的电流iV1 、iV2叠加形 成全波脉动直流电流 iL,于是RL两端产生全波脉动直流电压 vL。故电路称为全波整流电路。
3.负载和整流二极管上的电压和电流 (1)负载电压VL
3.负载和整流二极管上的电压和电流 (1)负载电压VL
VL = 0.45 V2
(2)负载电流IL
V L 0.45V 2 IL RL RL
(1.2.1)
( 1 .2.2)
(3)二极管正向电流IV和负载电流IZ 0.45V 2 (1.2.3) IV IL RL (4)二极管反向峰值电压VRM
(2)v1负半周时,T次级A点电位低于B点电位,在v2b的 作用下,V2导通(V1截止),iV2自上而下流过RL; 可见,在v1一周期内,流过二极管的电流iV1 、iV2叠加形 成全波脉动直流电流 iL,于是RL两端产生全波脉动直流电压 vL。故电路称为全波整流电路。
3.负载和整流二极管上的电压和电流 (1)负载电压VL
1.2.1 单相半波整流电路 1.电路 如图(a) V :整流二极管,把交流 电变成脉动直流电; T:电源变压器,把v1变成 整流电路所需的电压值v2。
动画 单相半波整流电路
2.工作原理 设v2为正弦波,波形如图1.2.1(b)所示。 (1)v2正半周时,A点电位高于B点电位,二极管V正偏 导通,则vL≈v2; (2)v2负半周时,A点电位低于B点电位,二极管V反偏截 止,则vL≈0。 由波形可见,v2一周期内,负载只用单方向的半个波形, 这种大小波动、方向不变的电压或电流称为脉动直流电。上述 过程说明,利用二极管单向导电性可把交流电v2变成脉动直流 电vL。由于电路仅利用v2的半个波形,故称为半波整流电路。

电工电子第1章电路与电路分析基础

电工电子第1章电路与电路分析基础

1.2 电路的基本物理量
其代数和即为该点的电位。从待求点参考点到参考点的路 径往往不止一条,但对同一参考点而言,某一点的电位值 具有唯一性。一般尽量选择简单的路径进行计算。 1.2.3 电动势
电动势反映了电源把其他形式的能量转换为电能本领 的大小。电源常用符号E或US表示。电动势的实际方向为 由电源负极经电源内部到电源正极,即电源内部电位升高 的方向。
1.2 电路的基本物理量
图1-8 例1-1图 例1-1 电路如图1-8所示,已知E1=6V,E2=4V,R1=4Ω, R2=2Ω。 如果以B点为参考点,求A、C点电位。
1.2 电路的基本物理量
解:各电阻中电流的参考方向如图1-8所示。通过观察,R1、R2、 E1形成一个简单的串联回路,R3没有形成回路。以B点为参考点,
P

U I

U
U R总

39.5
220 4.84 1.06

1.47kW
通过计算说明,线路长度仅仅为1km,导线截面已增 大到50平方毫米,线路上仍然有39.5V的电压降,负载端 电压降低到180.5V,造成了电能大量浪费的同时,负载甚 至将无法正常工作。
1.3 电路中的电阻 图1-14 线路的功率损耗
1.3.2 欧姆定律与电阻的串并联
1.一段电路的欧姆定律
I

Uቤተ መጻሕፍቲ ባይዱR
图1-12一段含有电阻的电路 图1-13线性元件的伏安特性曲线
1.3 电路中的电阻 伏安特性曲线:元件的电压与电流的关系曲线。 线性电阻的伏安特性曲线是一条过原点的直线。 线性电路:由线性元件构成的电路。 非线性电路:含有非线性元件的电路叫做。 2.全电路欧姆定律
则有 UB=0,I3=0

第1章 电路的基本知识

第1章  电路的基本知识
i u R
图1-17
非关联 放出功率
关联 吸收功率
电工电子技术基础
对于直流电或正弦交流电,电阻所吸收的功率可以写为
P IU U
2
I R
2
R
Байду номын сангаас
(1-7)
电功率P也可表述为:单位时间内电流所做的功,单位是 瓦(W),或KW、mW、μ W等。 二.电功〔电能) 定义为:电流通过负载所做的功,与电功率的关系为:
电工电子技术基础
例1-1 指出 图1-6 ( a ), ( b)中电流的真实方向,电流参考方向 已用箭头表示在图上。
a
i 2A a
b
a
图1-6
i 3 A b
b
解:
(a) 电流i为正值,说明实际电流方向与参考方向一致, 电流的真实方向为由a到b;
(b) 电流i为负值,说明实际方向与参考方向相反, 电流的真实方向为由b到a。
+

图1-4 电工电子技术基础
② 电流的参考方向
在较复杂的电路中,某支路ab其实际电流方 向在求解前往往很难判断.但描述电路元件性质 和连接方式规律的公式的列写都与电流的方向
有关。
电工电子技术基础
为此在进行分析之前,我们必须给各支路的电流 一个假定的正方向用箭头表示,称为电流的参考方向, 也称为假定方向。
储存的电场能

t
ui d t
0

u
Cu d u
1 2
Cu
2
0
C 是储能元件
电工电子技术基础
§ 1.5 电压源与电流源
一个电源可以用两种模型来表示。用电压的形式 表示称为电压源,用电流的形式表示称为电流源。

电工电子技术第1章

电工电子技术第1章

“电阻元件”是电阻器、电烙铁、电炉等实际电路元器 电阻元件”是电阻器、电烙铁、 电阻元件 件的理想元件,即模型。因为在低频电路中, 件的理想元件,即模型。因为在低频电路中,这些实 际元器件所表现的主要特征是把电能转化为热能。 际元器件所表现的主要特征是把电能转化为热能。用 “电阻元件”这样一个理想元件来反映消耗电能的特 电阻元件” 征。 “电感元件”是线圈的理想元件; 电感元件”是线圈的理想元件; 电感元件 “电容元件”是电容器的理想元件。 电容元件”是电容器的理想元件。
理想元件
为了便于对电路进行分析和计算, 为了便于对电路进行分析和计算,我们常把实际元件加以 近似化、理想化,在一定条件下忽略其次要性质, 近似化、理想化,在一定条件下忽略其次要性质,用足以 表征其主要特征的“模型”来表示,即用理想元件来表示。 表征其主要特征的“模型”来表示,即用理想元件来表示。

第一章 电路的基础知识
第一节 电路的组成及主要理量 第二节 第三节 第四节 电路的基本元件 基尔霍夫定律的应用 简单电阻电路的分析方法
返回主目录
第一节 电路和电路模型
一、电路的组成 电路的组成
电路是各种电气元器件按一定的方式连接起来的总体。 电路是各种电气元器件按一定的方式连接起来的总体。 电路的组成: 电路的组成: 1. 提供电能的部分称为电源; 提供电能的部分称为电源; 2. 消耗或转换电能的部分称为 负载; 负载; 3. 联接及控制电源和负载的部 分如导线、 分如导线、开关等称为中间环 节。
电路模型
由理想元件构成的电路,称为实际电路的“电路模型”。 由理想元件构成的电路,称为实际电路的“电路模型” 是图1-1a所示实际电路的电路模型。 所示实际电路的电路模型。 图1-1b是图 是图 所示实际电路的电路模型

电工电子学(全)

电工电子学(全)


对一完整的电路,发出的功率=消耗的功率
? P = U · I 或P =-U · I , 是否涉及到 U 、 I 的具体数值?
判断那个是吸收功率? 那个是供出功率?
I

U

I
U
供 出
I
U
供 出
+ U _
I

U

U = 10V I = 5A
(a)
U = 10V I = - 5A
(b)
U = 10V I = 5A
规定正电荷的运动方向为电流的实际方向
元件(导线)中电流流动的实际方向只有两种可能:
实际方向
A
B
实际方向
A
B
问题
复杂电路或电路中的电流随时间变化时, 电流的实际方向往往很难事先判断
参考方向
电流(代数量) 大小 方向
任意假定一个正电荷运动的方向即为电 流的参考方向。
i A
参考方向
B
电流的参考方向与实际方向的关系:
第一章 电路和电路元器件
本章内容摘要
学习电工电子技术中的——电路基本组成 及常用的电路元件,是学习以下各章节的基础。 介绍电阻元件,电感元件,电容元件,独立电 源元件,半导体二极管和三极管等器件的工作 原理、特性曲线和参数。
第一章 电路和电路元器件
§1.1 电路和电路基本物理量 §1.1.1 电路与电路模型
电路模型近似地描述实际电路的电气特性。根据实际 电路的不同工作条件以及对模型精确度的不同要求,应当 用不同的电路模型模拟同一实际电路。现在以线圈为例加 以说明。
图1-3 线圈的几种电路模型
(a)线圈的图形符号
(b)线圈通过低频交流的模型

电子线路_精品文档

电子线路_精品文档

电子线路第一章晶体二极管和二极管整流电路一、填空1、晶体二极管加一定的(正向)电压时导通,加(反向)电压时(截止)这一导电特性称为二极管的(单相导电)特性。

2、不加杂质的纯净半导体称为(本征半导体)。

3、P型半导体它又称为(空穴)型半导体,其内部(空穴)数量多于(自由电子)数量。

4、加在二极管两端的(电压)和流过二极管的(电流)间的关系称为二极管的(伏安特性)。

5、把(交流)电转换成(直流)电的过程称为整流。

6。

直流电的电路称为二极管单相整流电路,常用的有(单相半波整流)、(单相桥式整流)和(倍压整流)电路。

7。

三极管工作在放大区时,通常在它的发射结加(正向)电压,集电结加(反向)电压。

8。

三极管在电路中的三种基本连接方式是(共发射极接法)、(共基极接法)、(共集电极接法)。

9。

晶体二极管的主要参数有(最大整流电流IFm)、(最高反向工作电压VRm)、(反向漏电流IR)。

10。

导电能力介于(导体)和(绝缘体)之间物体称为半导体。

11、在半导体内部,只有(空穴)和(自由电子)两种载流子。

12、一般来说,硅晶体二极管的死区电压应(大于)锗晶体二极管的死区电压。

13、当晶体二极管的PN结导通后,则参加导电的是(既有少数载流子,又有多数载流子)。

14、用万用表测晶体二极管的正向电阻时,插在万用表标有+号插孔中的测试表笔(通常是红色表笔)所连接的二极管的管脚是二极管的(负)极,另一电极是(正)极。

15、面接触性晶体二极管比较适用(大功率整流)16。

晶体二极管的阳极电位是-10V,阴极电位是-5V,则晶体二极管处于(反偏)17。

用万用表欧姆档测量小功率晶体二极管性能好坏时,应把欧姆档拨到(R1K档)18。

当硅晶体二极管加上0。

3V正向电压时,该晶体管相当于(阻值很大的电阻)19。

晶体二极管加(反向)电压过大而(击穿),并且出现(烧毁)的现象称为热击穿20。

晶体二极管在反向电压小于反向击穿电压时,反向电流(极小);当反向电压大于反向击穿电压后,反向电流会急速(增大)21、二极管的正极又称(阳)极,负极又称(阴)极。

电工电子第1章

电工电子第1章

2
3
t/ms
1.2.4 电压源
1、理想电压源 、
e + – + E –
图形符号
i + E – + u – 外 电 路 E i u
O
理想电压源的伏安特性
+
+ R0 U
2、实际电压源模型 、
R0 u e – 或
+ E –

I RO
U E IR0 U I O
+
U
+ –
RL
E

U = E − IRo
伏安特性
b
E2
c
Va = − E1 = −5V, Vb = 0V, Vc = E 2 = 8V U ab = Va − Vb = (−5 − 0)V = −5V U bc = Vb − Vc = (0 − 8)V = −8V
电位计算补充例题
结论:从上述计算结果可以看到, 结论:从上述计算结果可以看到,电位与参考点的 选取有关,参考点不同,各点电位不同; 选取有关,参考点不同,各点电位不同;而电压与 参考点的选取无关,参考点不同, 参考点的选取无关,参考点不同,两点之间的电压 不变,但电压的参考方向不同,则符号不同。 不变,但电压的参考方向不同,则符号不同。
15
u(t ) / V
1 0.5 1.5 2 2.5 3 t/ms
(b)
u(t )

R
C
1 0 –15 0.5 1.5
2 2.5
3 t/ms
(a)
i C (t ) / m A
u (t ) iR (t ) = R
du ( t ) iC ( t ) = C dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遵循欧姆定律的电阻称为线性电阻,它表示该段 电路电压与电流的比值为常数。
电路端电压与电流的关系称为伏安特性。
线性电阻的伏安特性
I/A
是一条过原点的直线。
o
U/V
PPT文档演模板
线性电阻的伏安特性
电子电路第一章
1.5 电源有载工作、开路与短路
I
1.5.1 电源有载工作
+
开关闭合, 接通电源与负载 E
PPT文档演模板
电子电路第一章
1.4 欧姆定律
U、I 参考方向相同时 U、I 参考方向相反时
+
U=IR
+
U = – IR
U IR
U IR


表达式中有两套正负号:
(1) 式前的正负号由U、I 参考方向的关系确定;
(2) U、I 值本身的正负则说明实际方向与参考方向 之间的关系。
通常取 U、I 参考方向相同。
方向由负极指向正极;
电压U的参考方向与实际 方向相同, U = 2.8V, 方向由 指向;
电压U´的参考方向与实际 方向相反, U´= –2.8V;
即: U = – U´
I = 0.28A I = – 0.28A
+ E
+
3V
U U´
R0 2.8V – 2.8V
+
电流I的参考方向 与实际方向相同, I=0.28A,由流向, 反之亦然。
1. 2 电路模型
为了便于用数学方法分析电路, 一般要将实际电 路模型化,用足以反映其电磁性质的理想电路元件或
其组合来模拟实际电路中的器件,从而构成与实际电 路相对应的电路模型。
理想电路元件主要
I 开关
有电阻元件、电感元件、 + +
E
电容元件和电源元件等。
U
R
例:手电筒
R0
手电筒由电池、
干电池
导线 电珠
kA 、A、mA、 μA
kV 、V、mV、 μV
电动势E
低电位 高电位 (电位升高的方向)
kV 、V、mV、 μV
PPT文档演模板
电子电路第一章
2. 电路基本物理量的参考方向
I
(1) 参考方向
+
在分析与计算电路时,对 E
+
电量任意假定的方向。
3V
U
(2) 参考方向的表示方法
R0
_
电流: I
箭 标a R b
电炉
...
中间环节:传递、分 配和控制电能的作用
PPT文档演模板
电子电路第一章
2.电路的组成部分
信号处理:
信号源:
放大、调谐、检波等
提供信息 话筒
放 扬声器


直流电源:
负载
提供能源
直流电源
电源或信号源的电压或电流称为激励,它推动电路 工作;由激励所产生的电压和电流称为响应。
PPT文档演模板
电子电路第一章
灯泡、开关和筒体组成。
手电筒的电路模型
PPT文档演模板
电子电路第一章
手电筒的电路模型
I 开关
+ + E
U
R
R0
干电池 导线 电珠
今后分析的都是指电 路模型,简称电路。在 电路图中,各种电路元 件都用规定的图形符号 表示。
电池是电源元件,其 参数为电动势 E 和内阻 Ro;
灯泡主要具有消耗电能 的性质,是电阻元件,其 参数为电阻R;
电压:
正负极性 a + U –
b
双下标 Iab 注意:
双下标 Uab
在参考方向选定后,电流(或电压)值才有正负之分。
PPT文档演模板
电子电路第一章
(3) 实际方向与参考方向的关系
实际方向与参考方向一致,电流(或电压)值为正值; 实际方向与参考方向相反,电流(或电压)值为负值。
例: 电路如图所示。 电动势为E =3V
开关闭合,接通
+
电源与负载。
E
1. 电压电流关系

R0
I R
U = IR 负载端电压 或 U = E – IRo
2. 功率与功率平衡
UI = EI – I2Ro
P = PE – P
(3) 电源输出的功率由负载决定。
负载 电源 内阻 负载大小的概念:
取用 产生 消耗
负载增加指负载取用的
功率 功率 功率 电流和功率增加(电压一定)。
电子电路第一章
PPT文档演模板
2020/11/28
电子电路第一章
第1章 电路的基本概念与基本定律
1.1 电路的作用与组成部分 1.2 电路模型 1.3 电压和电流的参考方向 1.4 欧姆定律 1.5 电源有载工作、开路与短路 1.6 基尔霍夫定律 1.7 电路中电位的概念及计算
PPT文档演模板
电子电路第一章
PPT文档演模板
电子电路第一章
例: 应用欧姆定律对下图电路列出式子,并求电阻R。
+
UI 6V 2A
R
– (a)
+
U 6V
I R
– –2A
(b)
解: 对图(a)有, U = IR
对图(b)有, U = – IR
PPT文档演模板
电压与电流参 考方向相反
电流的参考方向 与实际方向相反
电子电路第一章
线性电阻的概念:
第1章 电路的基本概念与基本定律
本章要求: 1.理解电压与电流参考方向的意义; 2. 理解电路的基本定律并能正确应用; 3. 了解电路的有载工作、开路与短路状态,理解
电功率和额定值的意义; 4. 会计算电路中各点的电位。
PPT文档演模板
电子电路第一章的通路,是为了某种需要由电工设备 或电路元件按一定方式组合而成。
1. 电路的作用 (1) 实现电能的传输、分配与转换
发电机
升压 输电线 降压
变压器
变压器
(2)实现信号的传递与处理
电灯 电动机 电炉
...
话筒 放 扬声器 大 器
PPT文档演模板
电子电路第一章
2. 电路的组成部分
电源: 提供 电能的装置
发电机
升压 变压器
输电线
负载: 取用 电能的装置
降压 变压器
电灯 电动机
筒体用来连接电池和灯 泡,其电阻忽略不计,认 为是无电阻的理想导体。
开关用来控制电路的通 断。
PPT文档演模板
电子电路第一章
1.3 电压和电流的参考方向
1. 电路基本物理量的实际方向 物理中对基本物理量规定的方向
物理量 电流 I
电压 U
实际方向
正电荷运动的方向
高电位 低电位 (电位降低的方向)
单位

1. 电压电流关系
R0
R
(1) 电流的大小由负载决定。
U = IR 负载端电压 或 U = E – IR0
U
电源的外特性
(2) 在电源有内阻时,I U 。
E
当 R0<<R 时,则U E ,表明
当负载变化时,电源的端电压变
化不大,即带负载能力强。
0
I
PPT文档演模板
电子电路第一章
1.5.1 电源有载工作
PPT文档演模板
电子电路第一章
3. 电源与负载的判别
(1) 根据 U、I 的实际方向判别
电源:
U、I 实际方向相反,即电流从“+”端流出,
负载:
(发出功率)
U、I 实际方向相同,即电流从“-”端流出。
(2) 根据 U、I 的参考方向判别 (吸收功率)
相关文档
最新文档