高二数学排列与组合复习

合集下载

高中数学 排列组合复习资料 新人教A版必修5-新人教A版高二必修5数学素材

高中数学 排列组合复习资料 新人教A版必修5-新人教A版高二必修5数学素材

排列 组合1.理解排列、组合的概念.2.能利用计数原理推导排列数公式、组合数公式.3.能解决简单的实际问题1.排列与组合的概念2.排列数与组合数(1)从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数.(2)从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫从n 个不同元素中取出m 个元素的组合数.3.排列数、组合数的公式及性质 公式(1)A m n =n (n -1)(n -2)…(n -m +1)=n !n -m ! (2)C mn =A m n A m m =n n -1n -2…n -m +1m !=n !m !n -m !(n ,m ∈N *,且m ≤n ).特别地C 0n =1. 性质(1)0!=1;A nn =n !.(2)C m n =C n -m n ;C m n +1=C m n +C m -1n .排列组合的计算(1)解方程3A =4A ;(2)解方程C =C +C +C.名称定义 排列从n 个不同元素中取出m (m ≤n )个不同元素按照一定的顺序排成一列组合合成一组(1)解方程:3A=2A+6A;(2)计算:C+C+C+…+C.排列应用题7位同学站成一排照相.(1)甲站在中间,共有多少种不同的排法?(2)甲、乙只能站在两端的排法共有多少种?(3)甲不排头、乙不排尾的排法共有多少种?(4)甲、乙两同学必须相邻的排法共有多少种?(5)甲、乙两同学不能相邻的排法共有多少种?(6)甲必须站在乙的左边的不同排法共有多少种?4个男同学,3个女同学站成一排.(1)3个女同学必须排在一起,有多少种不同的排法?(2)任何两个女同学彼此不相邻,有多少种不同的排法?(3)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?用0,1,2,3,4,5组成无重复数字四位数(1)可以组成多少个四位数(2)可以组成多少个偶数(3)可以组成多少个比2000大的奇数(4)可以组成多少个百位比十位大的偶数1)有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.(1)全体排成一行,其中甲只能在中间或者两边位置.(2)全体排成一行,其中甲不在最左边,乙不在最右边.(3)全体排成一行,其中男生必须排在一起.(4)全体排成一行,男、女各不相邻.(5)全体排成一行,男生不能排在一起.(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.(7)排成前后二排,前排3人,后排4人.(8)全体排成一行,甲、乙两人中间必须有3人.(2)(2014·某某质检)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ).A.3×3! B.3×(3!)3C.(3!)4 D.9!(3)(2013·某某卷)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( ).A.9 B.10 C.18 D.20组合为题课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有1名女生;(2)两队长当选;(3)至少有1名队长当选;(4)至多有2名女生当选;(5)既要有队长,又要有女生当选.如4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?从7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种?(1)A,B必须当选;(2)A,B不全当选;(3)选取3名男生和2名女生分别担任班长、体育委员等5种不同的工作,但体育委员必须由男生担任,班长必须由女生担任.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ).A.60种 B.63种 C.65种 D.66种2)甲乙两人从4门课程中各选修2门(1)甲乙所选的课程中恰有1门课程相同(2)甲乙所选课程中至少有一门不同的选法有多少种3)四面体的顶点与各棱中点共有10个点,在其中取四个不共面的点,不同的取法有4)同事4人各写一X贺卡,先集中在一起,然后每人从中拿一X别人送来的贺卡,则四X贺年卡不同的分配方式有排列、组合的综合应用问题4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?现有6本不同的书:(1)甲、乙、丙三人每人两本,有多少种不同的分配方法?(2)分成三堆,每堆2本,有多少种分堆方法?(3)分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本,有多少种不同的分配方法?(5)甲、乙、丙三人中,一人分4本,另两人每人分1本,有多少种不同的分配方法?教育局将11个夏令营指标分配给8所不同的学校,要求每校至少分到1个名额,共有多少种不同的分配结果(2012·某某卷改编)现有16X不同的卡片,其中红色、黄色、蓝色、绿色卡片各4X.从中任取3X,要求这3X卡片不能是同一种颜色,且红色卡片至多1X,不同取法的种数为( ).A.232 B.256 C.472 D.484(1)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有______种.(2)甲乙两位兽医对动物园的三头老虎,两头狮子进行体检.若要求每位兽医至少检查两种动物各一头,则不同的体检任务分配方案有________种.(3)四个不同的小球放入编号为1,2,3,4的四个盒子,则恰有一个空盒子的方法有(4)要排一X有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不相邻,有种不同的排法。

高二数学排列和组合知识点

高二数学排列和组合知识点

高二数学排列和组合知识点排列与组合是高中数学中的重要内容,它们在解决实际问题时具有广泛的应用。

本文将详细介绍排列和组合的基本概念、公式以及解题方法,帮助学生掌握这一知识点。

基本概念排列和组合都是从一组元素中选择一定数量的元素进行分析的数学方法。

排列强调元素的顺序,而组合则不考虑元素的顺序。

排列1. 排列数公式:从n个不同元素中取出m个元素的所有排列的个数,记作A_{n}^{m},计算公式为:\[ A_{n}^{m} = \frac{n!}{(n-m)!} \]其中n!表示n的阶乘,即从1乘到n。

2. 举例说明:假设有5本不同的书,我们要选出2本来阅读。

如果考虑阅读的顺序,那么第一天读哪本书,第二天读哪本书是有区别的。

这里就有A_{5}^{2}种不同的排列方式。

组合1. 组合数公式:从n个不同元素中取出m个元素的所有组合的个数,记作C_{n}^{m},计算公式为:\[ C_{n}^{m} = \frac{n!}{m!(n-m)!} \]同样,这里的n!表示n的阶乘。

2. 举例说明:继续上述的例子,如果我们只关心选出哪2本书来阅读,而不关心阅读的顺序,那么这就是一个组合问题。

计算方法为C_{5}^{2}。

解题方法1. 区分排列与组合:首先要明确问题是要求排列还是组合。

如果问题中涉及到元素的顺序,那么就是排列问题;如果不涉及顺序,则是组合问题。

2. 公式运用:根据问题的具体要求,选择合适的排列或组合公式进行计算。

3. 实际应用:排列和组合的知识可以应用于许多实际问题,如概率计算、统计分析等。

在解题时,要结合实际情况,灵活运用所学知识。

练习题1. 有7个人排队,其中甲必须排在乙的前面,问有多少种排队的排列方式?2. 一个班级有10个男生和5个女生,从中选出3个代表,其中至少有1个女生的组合有多少种?通过以上介绍和练习题,相信学生可以更好地理解和掌握排列与组合的概念、公式及解题方法。

在实际解题过程中,要注意区分排列和组合的不同,并正确运用公式,这样才能有效地解决问题。

高中排列组合知识点 高二数学选修2-3排列组合易错知识点总结

高中排列组合知识点 高二数学选修2-3排列组合易错知识点总结

《高中排列组合知识点高二数学选修2-3排列组合易错知识点总结》摘要:()()()(+)!()!(规定0!),()()!!(()!!);()();,()(+);!()!(!是阶乘);(两分别上标和下标)!;0!;(下标上标)排列组合是高二数学选修3教学重要容了助高二学生掌握排列组合容下面编给带高二数学选修3排列组合易错知识希望对你有助高二数学排列组合错知识排列组合问题依据是分类相加分步相乘有序排列无序组合排列组合问题规律是相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排排法;至多至少问题接法二项式系数与展开式某项系数易混r+项二项式系数二项式系数项与展开式系数项易混二项式系数项项或两项;展开式系数项法要用不等式组确定r3你掌握了三种常见概率公式吗?(①等可能事件概率公式;②斥事件有发生概率公式;③相独立事件发生概率公式)分布列答题你能把步骤写全吗?5如何对总体分布进行估计?(用样估计总体是研究统计问题基思想方法般地样容量越这种估计就越精确要能画出频率分布表和频率分布直方图;理频率分布直方图矩形面积几何义)6你还记得般正态总体如何化标准正态总体吗?(对任正态总体说取值x概率其表示标准正态总体取值概率)高二数学选修3知识排列及计算公式从不元素任取()元素按照定顺序排成列叫做从不元素取出元素排列;从不元素取出()元素所有排列数叫做从不元素取出元素排列数用()表示()()()(+)!()!(规定0!)组合及计算公式从不元素任取()元素并成组叫做从不元素取出元素组合;从不元素取出()元素所有组合数叫做从不元素取出元素组合数用()表示()()!!(()!!);()();3其他排列与组合公式从元素取出r元素循环排列数(r)r!r(r)!元素被分成k类每类数分别是k这元素全排列数!(!!k!)k类元素每类数无限从取出元素组合数(+k)排列((下标上标))()(+);!()!(!是阶乘);(两分别上标和下标)!;0!;(下标上标)组合((下标上标));!!()!;(两分别上标和下标);(下标上标);公式是指排列从元素取R进行排列公式是指组合从元素取R不进行排列元素总数R参与选择元素数!阶乘如9!987653从倒数r表达式应该()()(r+);因从到(r+)数(r+)r高二数学学习方法()记数学笔记特别是对概念理不侧面和数学规律教师课堂拓展课外知识记录下你觉得有价值思想方法或例题以及你还存问题以便今将其补上()建立数学纠错把平容易出现错误知识或推理记下以防再犯争取做到错、析错、改错、防错达到能从反面入手深入理正确东西;能由朔因把错误原因弄水落石出、以便对症下药;答问题完整、推理严密(3)熟记些数学规律和数学结论使己平运算技能达到了动化或半动化熟练程()常对知识结构进行梳理形成板块结构实行整体集装如表格化使知识结构目了然;常对习题进行类化由例到类由类到多类由多类到统;使几类问题归纳知识方法(5)数学课外籍与报刊参加数学学科课外活动与讲座多做数学课外题加学力拓展己知识面(6)及复习强化对基概念知识体系理与记忆进行适当反复巩固消灭前学忘(7)学会从多角、多层次地进行总结归类如①从数学思想分类②从题方法归类③从知识应用上分类等使所学知识系统化、条理化、专题化、络化(8)常做题进行定反思思考下题所用基础知识数学思想方法是什么什么要这样想是否还有别想法和法题分析方法与法其它问题是否也用到(9)无论是作业还是测验都应把准确性放位通法放位而不是味地追速或技巧这是学数学重要问题猜你感兴趣高二数学排列与组合知识总结高二数学选修知识总结3高二上学期数学复习知识归纳高二数学排列组合题技巧5高二上数学知识总结607高二数学排列组合公式知识总结。

高二数学《排列组合》复习课件

高二数学《排列组合》复习课件

4、(徐州二模)从6人中选4人组成4×100m接 力赛,其中甲跑第一棒,乙不跑最后一棒,有多 少种选法?
分析:(一)直接法
(二)间接法
A A A 2 A A4
3 4 3 5 1 2
2 4
=48
5、(南通一模)一个三位数,其十位上的数字 既小于百位上的数字也小于个位上的数字(如 735,414等),那么这样的三位数有 285 个. 2 2 2 2
排列组合复习课
*
一、复习回顾: (一)、知识结构 排列 基 本 原 理 排列数公式 应 用 问 题
组合数公式
组合
组合数性质
(二)、重点难点 1. 两个基本原理
2. 排列、组合的意义
3. 排列数、组合数计算公式
4. 组合数的两个性质 5. 排列组合应用题
1. 两个基本原理
①分类记数原理(加法原理):完成一件事,有 n类办法,在第1类办法中有m1种不同的方法, 在第2类办法中有m2种不同的方法……在第n类 办法中有mn种不同的方法,那么完成这件事共有 N= m1+ m2 +…..+ mn种不同的方法. ②分步记数原理(乘法原理):完成一件事需要 n个步骤,做第1步有m1种不同的方法,做第2 步有m2种不同的方法, ……做第n步有mn种不 同的方法,那么完成这件事共有N= m1× m2 ×.…..× mn种不同的方法.
C C .
5. 排列组合应用题
(1) 正确判断是排列问题,还是组合 问题,还是排列与组合的综合问题。 (2) 解决比较复杂的排列组合问题时, 往往需要既分类又分步。正确分类,不 重不漏;正确分步,连续完整。 (3) 掌握基本方法,并能灵活选择使 用。
(三)、常用解题方法及适用题目类型

排列组合方法精讲

排列组合方法精讲

高二十班解排列组合复习1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有( ) D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) B 、3600种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是( )解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种, 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:(注意是有序)有序分配问题指把元素分成若干组,可用逐步分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )A 、4441284C C C 种 答案:A . 6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法. 说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )B 、240种 答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个, 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂. 例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

高二排列组合知识点总结

高二排列组合知识点总结

高二排列组合知识点总结排列组合是高中数学中的重要内容,涉及到许多基本概念和重要定理。

本文将对高二阶段学习的排列组合知识点进行总结,以帮助学生复习和加深对该知识领域的理解。

一、排列与组合的基本概念1. 排列:从给定的元素集合中,选取若干个元素按照一定的顺序排列组成不同的序列。

2. 组合:从给定的元素集合中,选取若干个元素组成一个集合,不考虑元素的排列顺序。

3. 排列数:表示从n个不同元素中,按一定顺序选取k个元素进行排列的方法数,用符号A(n,k)表示,计算公式为A(n,k) =n!/(n-k)!。

4. 组合数:表示从n个不同元素中,选取k个元素组成一个集合的方法数,用符号C(n,k)表示,计算公式为C(n,k) = n!/[(n-k)!k!]。

二、排列与组合的性质与应用1. 乘法原理:若某事件发生的方式有m种,每种方式发生的次数有n1、n2、...、nm次,则该事件发生的总次数为n1 * n2 * ... * nm。

2. 加法原理:若某件事情的发生可以分成两个互斥事件A和B,则事件A发生的次数与事件B发生的次数之和等于该事情发生的总次数。

3. 逆排列:将n个元素的排列倒序排列,得到的新排列称为逆排列,用符号A(n)*表示。

4. 重复排列:当选取元素中存在相同元素时,不同元素之间的排列方式是不同的,需要考虑重复排列的问题。

5. 标志多项式:指数为n的标志多项式的系数表示从n个元素中选取k个元素排列的方法数,用符号P(n,k)表示。

三、排列组合的常见问题类型1. 从给定元素中选取特定元素进行排列与组合的问题。

例:从10个人中选取3个人进行排队的方式有多少种?解:根据排列数的计算公式,A(10,3) = 10!/(10-3)! = 10*9*8 = 720种方式。

2. 简化条件下的排列与组合问题。

例:3个不同的小球放入2个不同的盒子,每个盒子至少放1个小球,共有多少种放法?解:根据组合数的计算公式,C(3,1) = 3!/(3-1)!1! = 3种方式。

高中数学排列与组合复习题型完美版

高中数学排列与组合复习题型完美版

)高中数学排列与组合复习(题型完美版排列与组合第十讲□优秀针对学员基础:□基础□中等课程类型:□复习□预习□习题授课日期学员授课班级5月25 日D组杨佩云高二数学16班:本章主要内容加法计数原理与乘法计数原理;1. 排列数与组合数;2. 3.排列的综合应用;.4.组合的综合应用本章教学目标:1.掌握分类用加法分步用乘法两类计数原理;2.掌握排列数与组合数的运算方法;.3.掌握排列与组合的综合应用第一节计数原理课前导入晓明同学准备周六从射洪到成都去玩,他可选择乘坐汽车,一天有4班,也可选择火车,一天有3班,那么晓明从射洪到成都共有多少中选择?若晓明到了成都之后有准备去都江堰,从成都到都江堰的汽车有6班,火车有2班,那么晓明从射洪到都江堰共有多少种选择?【知识与方法】一.分类加法计数原理1.完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=种不同的方法.2.完成一件事有n类不同的方案,在第1类方案中有m种不同的方法,在第2类方案中有m种不同21的方法,…,在第n类方案中有m种不同的方法,则完成这件事共有N=种不同的方法.n二.分步乘法计数原理1.完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这10/ 1)题型完美版高中数学排列与组合复习(种不同的方法.件事共有N =,做第…m种不同的方法,m种不同的方法,做第2步有2.完成一件事需要n个步骤,做第1步有21种不同的方法.种不同的方法,则完成这件事共有n步有mN=n注意:1.在分类加法计数原理中,每类方案中的方法都能完成这件事.2.在分步乘法计数原理中,事情是分多步完成的,其中任何一个单独的步骤都不能完成这件事.【例题与变式】题型一计数原理【例1】某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,试问要“完成的这件事”指的是什么?若配成“一荤一素”是否“完成了这件事”?要“完成配成套餐”这件事需分类,还是分步,为什么?n展开后共有多少项?】【例2)a?b(【例3】甲、乙、丙准备周末出去郊游,问共有多少种情况?【变式1】(a+a+a)(b+b+b)(c+c+c+c)展开后共有________项. 4333122121【变式2】将5封信投入3个邮筒,不同的投法共有()35种C.3种.3 D.15种A.5种B【变式3】某校高一有6个班,高二有7个班,高三有8个班.现选两个班的学生参加社会实践活动,若要求这两个班来自不同年级,则有不同的选法____________种.【变式4】(2016?新课标Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9【例4】有一个圆被两相交弦分成四块,现用5种不同的颜料给这四块涂色,要求相邻的两块颜色不同,每块只涂一种颜色,共有多少种涂色方法?10/ 2高中数学排列与组合复习(题型完美版)【例5】(2018?南开区一模)如图所示的几何体是由一个三棱锥P-ABC与三棱柱ABC-ABC组合而成,111现用3种不同颜色对这个几何体的表面涂色(底面ABC不涂色),要求相邻的面均不同色,则不同的涂111色方案共有()A.6种B.9种C.12种D.36种【变式5】(2017?泸州模拟)如图,一环形花坛分成A,B,C,D四块,现有3种不同的花供选种,要求在每块里种一种花,且相邻的2块种不同的花,则不同的种法总数为()A.12 B.24 C.18 D.6【变式6】将红、黄、绿、黑四种不同的颜色涂在如图所示的图中,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?【例6】高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种【变式7】3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?10/ 3高中数学排列与组合复习(题型完美版)【例7】用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)四位密码?(2)四位数?(3)四位奇数?【变式8】(2015?四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个1.某年级要从3名男生,2名女生中选派3人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有()A.6种B.7种C.8种D.9种2.3名学生报名参加篮球、足球、排球、计算机课外兴趣小组,每人选报一门,则不同的报名方案有________种.3.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种不同的推选方法.4. 用6种不同颜色的彩色粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的彩色粉笔.问:该板报有多少种书写方案?1.实际完成情况:□按计划完成;□超额完成,原因分析________________________________________________________________________;□未完成计划内容,原因分析__________________________________________________________________.2.授课及学员问题总结:10/ 4)高中数学排列与组合复习(题型完美版第二节排列与组合的应用课前导入晓明同学准备周天用自己存了很久的零花钱买一注七星彩,你能帮他算算他中一等奖的概率大概是多少吗?(假定每个数字只能出现一次)【知识与方法】一.排列数、组合数的公式及性质!n m=+1)-…(nm=n(n-1)(n-(1)A2) n!m??n-公式m!?n…?n -m+1??n?n-1n-2?A nm==(2)C=nm A!??m!n-mm!mn;A n!=1(1)0!=n性质--mmnmmm1C+=CC=(2)CC;n1nnnn+二.排列与组合的应用1.特殊元素与特殊位置需要_____________.2.相邻问题用_____________.3.不相邻问题用_____________.4.定序问题用_____________.5.平均分组问题用_____________.6.元素相同问题用_____________.三.排列组合综合应用的常用策略1.正难则反策略.2.若题中有多个需要满足的要求,则逐个击破,并优先考虑特殊元素.【例题与变式】10/ 5高中数学排列与组合复习(题型完美版)类型一特殊元素和特殊位置优先策略位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

排列组合高二练习题及答案

排列组合高二练习题及答案

排列组合高二练习题及答案一、排列组合的基本概念和计算方法排列组合是数学中的一个重要概念,在高二数学课程中经常会出现相关的练习题。

下面是一些排列组合的基本概念和计算方法。

1.1 排列的概念排列是从一组元素中选取若干个元素按照一定的次序排列成一列,其中每个元素只能使用一次。

若有n个元素,要从中选取k个元素进行排列,那么排列的数目为P(n,k),公式为P(n,k) = n! / (n - k)!1.2 组合的概念组合是从一组元素中选取若干个元素无序地组成一组,其中每个元素只能使用一次。

若有n个元素,要从中选取k个元素进行组合,那么组合的数目为C(n,k),公式为C(n,k) = n! / (k! * (n - k)!)1.3 阶乘的概念阶乘是指从1乘到该数的连续自然数的乘积。

例如,5的阶乘表示为5!,其计算方法为5! = 5 * 4 * 3 * 2 * 1 = 120。

1.4 排列组合的计算方法在计算排列组合的过程中,需要用到阶乘的概念。

对于较大的数值,可以使用计算器或数学软件进行计算。

二、排列组合高二练习题现在,我们来看一些高二排列组合的练习题,帮助你巩固所学的知识。

2.1 题目一某班有10个学生,要从中选择3个学生组成一个小组,问有多少种不同的选择方法?答案:根据组合的计算方法,可得到C(10,3) = 10! / (3! * (10 - 3)!) = 120 种不同的选择方法。

2.2 题目二10个人依次排队,他们要按照以下条件进行排队:- 男生必须站在女生的前面- 同性别中按字母顺序排队问有多少种不同的排队方法?答案:根据条件,首先将10个人分成男生和女生两组,分别为5个男生和5个女生。

对于同性别中的排队,可以计算出男生的排队方式为P(5,5) = 5! = 120种,女生的排队方式也是一样。

因此,根据乘法原理,男女生排队的不同方法数为P(5,5) * P(5,5) = 120 * 120 = 14400种。

高二数学难点《排列组合》题型大全

高二数学难点《排列组合》题型大全

高二数学难点《排列组合》题型大全1.排队问题1.你帅,你帅,你天下最帅,头顶一窝白菜,身披一条麻袋,腰缠一根海带,你以为你是东方不败,其实你是傻瓜二代。

2你的一笑,狼都上吊,你的一叫,鸡飞狗跳,你的一站,臭味弥漫,你一出汗,虱子灾难,你不打扮,比鬼难看,你一打扮,鬼吓瘫痪7人站成一排拍照,共有______种排法.答案:(1)甲必须站在中间的排法_______种. 答案:(2)甲、乙两人必须站在两端的排法_______种. 答案:(3)甲、乙两人必须相邻的排法_______种. 答案:(4)甲、乙不能相邻的排法_______种. 答案:(5)若甲、乙、丙三人必须相邻的排法______种. 答案:(6)其中3人站在前排,4人站在后排的排法_______种. 答案:(7)其中甲、乙、丙站前排,其余4人站后排的排法_______种. 答案:(8)甲、乙不能站两端的排法_______种. 答案:(9)甲、乙均不与丙相邻的排法_______种. 答案:,即分丙站两端和丙不站两端计算(10)最高者站中间,其余6人按从中间到两端依次降低站在两边的排法_______种. 答案:(11)若甲、乙、丙顺序一定,则共有_______种排法. 答案:3377A A (12)若7人站成一圈,有_______种站法. 答案:(固定起点)或777A 2.几何问题 直线、线段、有向线段、射线、弦问题、平面个数、交线条数、交点个数、对角线条数、四面体个数(1)从-11,-7,0,1,2,3,5这七个数中每次选三个作为直线的系数,,C ,且斜率小于0的直线有_______条.答案:70(2)平面内有10个点,可确定_______条线段,_______条有向线段. 答案:(3)空间八个点最多确定_______个平面,_______个四面体. 答案:(4)平面内n 条线段最多有_______个交点. 答案:(5)空间n 个平面最多有_______条交线. 答案:(6)以正方体的八个顶点为顶点的三棱锥有_______个. 答案:(7)以正方形的四个顶点、四边中点、中心共九个点中的三个点可作_______个三角形. 答案:76,即(8)四面体的一个顶点为A ,从其它顶点与各棱中点中取3个点,使它们和点A 在同一平面上,不同取法有_______个. 答案:33,即(9)正方体有_______对异面的棱;棱与对角线异面的有_______对;_______对异面的面对角线;面对角线与体对角线异面的有_______对. 答案:24;24;30;24(10)如果∠AOB 的两边上分别有3个点和4个点,则过这八个点(含点)可作_______个三角形. 答案:42,即,先算不含的,再算含的,(11)从正方体的六个面中选三个面,其中有两个面不相邻的选法_______个. 答案:12(12)过圆周上的2n 个等分点可作_______个直角三角形. 答案:(13)从正四面体的四个顶点及各棱中点共10个点中,任取4个不共面的点的取法有_______种. 答案:141,即3.概率问题(去序法)(1)5名运动员参加100米跑,如每人到达终点的顺序各不同,则甲比乙先到达终点的可有 ________种. 答案:60,即255A (2) A 、B 、C 、D 、E 五人站在一排,若A 必须站在B 的左边(A 、B 可以不相邻),那么不同的排法有_______种. 答案:60,即255A (3)用1、2、3、4、5可以组成_______个无重复数字的三位数,偶数有_______个. 答案:60;24,即4.人民币币值:(通法1:按最大币值考虑;通法2:按每种币值的的拿法考虑)(1)现有壹元、贰元、伍元、拾元人民币各一张,可组成_______种币值. 答案:15,即(2)有1角硬币3枚,贰元币6张,百元币6张,共组成_______种币值. 答案:195,(3)有壹元、贰元、拾元人民币数张,现要支付20元,有_______种支付方法. 答案:18(4)有壹元硬币6枚,伍元币3张,拾元币3张,伍拾元币3张,可组成_______种不同的币值. 答案:201(5)现有壹元币一张、贰元币两张、伍元和拾元人民币各一张,可组成_______种币值. 答案:205.集合映射个数问题(1)集合有个元素,则集合的子集中含有3个元素的集合有_______个;集合共有_______个子集;_______个真子集. 答案:(2)集合,集合,则从→的映射有_______个,从→的映射有_______个. 答案:(3)若集合,,则从A →B 的映射有_______个. 答案:(4)若集合,,若中不同的元素在中有不同的象,则这样从A →B 的映射有_______个. 答案:60,即(5)集合,,则中的元素在中都有原象的映射有_______个. 答案:(6),映射:→,则使的映射有_______个. 答案:7(7),,对中任意元素x ,使均为偶数,则从→映射有_______个. 答案:126.多面手问题(1)9名翻译中,6人懂英语,4人懂日语,既懂英语又懂日语的1人,从中选3名英语,2名日语,有多少种不同选法. 答案:90,即按多面手分类:;按英语翻译分类:(2)11名工人,5人只会排版,4人只会印刷,2人都会,选出4人排版,4人印刷,有多少种不同选法. 答案:185,即按排版工人情况:7.约数问题(1)12有______个约数,60有______个约数(含1和其本身). 答案:6;12(2)一个正整数的最大约数为24,则它有______个约数. 答案:8(3)数2n ×3m ×有____________个约数. 答案:8.分组分配问题(平均分组、部分均匀分组、非均匀分组)6本不同的书分给3个人,按以下要求有多少种不同的分法?(1)平均分给甲、乙、丙三人;答案:(2)分成三份,每份两本;答案:33222426A C C C(3)分给甲一本,乙两本,丙三本;答案:(4)分成三份,一份一本,一份两本,一份三本;答案:(5)分给三个人,一人一本,一人两本,一人三本;答案:(6)分给甲四本,乙、丙各一本;(7)分成三份,一份四本,其余两份各一本; 答案:22111246A C C C 或 (8)分给三个人,一人四本,其余两人各一本;答案:或或2233111246A A C C C (9)分给甲乙丙三人,每人至少一本. 答案:++9.空位连续问题(1)一人射击8枪,4枪命中,其中3枪连在一起的方法有______种. 答案:20,即(2)停车场划出一排12个停车位置,今有8辆车需停放,要求空位连在一起,则停车方法______.答案:9(3)马路上有8盏路灯,为省电,可熄灭其中的3盏,但不能连续熄灭两盏,两头的灯不能熄灭,则熄灭的方法有______种. 答案:4,即(4)在一块并排10垄的田地种,选择两垄分别种植2种作物,每种作物种植一垄,为有利于作物生长,要求A 、B 两种作物之间的间隔不小于6垄,则不同的选垄方法有______种. 答案:1210.贺卡问题(1) 标号为1、2、3的卡片放入标号为1、2、3的三个盒子里,且每个盒子的标号与卡片标号均不同的放法有______种. 答案:2(2) 室四人各写一张贺年卡,先集中起来,然后每人从中拿出一张别人送出的贺年卡,则四张贺年卡不同的分配方法有______种. 答案:9,即(3) 数字为1、2、3、4、5填到标号为1、2、3、4、5的格子里,且所填数字与其格子的标号均不同的填法有______种. 答案:44,即递推式D (n )=(n-1)[D(n-1)+D(n-2)](4)某团支部进行换届选举,从甲、乙、丙、丁中选出三人分别担任班长、书记和宣传委员,规定上届任职的甲、乙、丙不能连任原职,则不同的任职方案______种. 答案:1111.巧插“隔板”问题(特点:要分配的元素是没有差别的)(1)要从6个班选出10个人参加校篮球比赛,每班都要有人参加的选法有______种. 答案:(2)方程的正整数解的个数,自然数解的个数各多少?答案:()(3)将10个相同的球放入9个不同的盒子,且每盒都不空的放法有_____种,放入6个不同盒子有_____种. 答案:(4)将10个相同的球放入3个不同的盒子,盒子的编号为1、2、3,要使放入的球输不小于编号数的放法有_____种. 答案:12.数字问题常识:最高次位不能为0;奇数、偶数取决于末位是否被2整除;若一个正整数每一位上的数字之和能被3整除,则此数能被3整除;末位数为0和5的整数可被5整除.用0、1、2、3、4、5这六个数,(1)可以组成多少个五位数;答案:(2)可以组成多少个无重复数字的五位数;答案:(3)可以组成多少个无重复数字的五位奇数;答案:(4)可以组成多少个无重复数字的五位偶数;答案: (5)可以组成多少个比32000大的无重复数字的五位数;答案: (6)可以组成多少个比32451大的无重复数字的五位数;答案: (7)可以组成多少个能被5整除的无重复数字的五位数;答案: (8)可以组成多少个能被25整除的无重复数字的五位数;答案: (9)可以组成多少个能被3整除的无重复数字的五位数;答案: (10)可以组成多少个能被6整除的无重复数字的五位数;答案: (11)可以组成多少个能被4整除的无重复数字的五位数;答案: (12)求组成的无重复数字的五位数的个位数字之和;答案: (13)求组成的无重复数字的五位数的和. 13. 鞋子成双、单只问题(技巧:先取“双”,再取“只”) 10双互不相同的鞋子混装在一只口袋中,从中任取4只,求满足下列要求的情况数 (1)4只没有成双;答案:,即 (2)4只恰成两双;答案:45,即 (3)4只鞋子2只成双,2只不成双;答案:1440, 14.球队比赛问题 双循环赛(排列)、单循环赛(组合)、淘汰赛、对抗赛 (1)4支队进行淘汰赛以决出冠军共举行______场比赛. 答案:3 (2)现有8支球队,平均分成2个小组,每组4支队分别举行双循环赛决出前两名,再由他们举行淘汰赛决出冠军,共举行______场比赛. 答案:27,即 15.涂色问题(技巧:先涂相邻区域多的,该分类时再分类)(1)将3种颜色涂在如图方格中,相邻不涂相同颜色。

高二数学知识点排列组合c和a

高二数学知识点排列组合c和a

高二数学知识点排列组合c和a 排列组合是高中数学中的一个重要内容,其中C和A是其中两个常见的概念。

下面将逐个介绍这两个概念及其相关的数学知识点。

一、排列排列是指从一组不同的元素中按照一定顺序选取若干个元素进行组合的方法。

在排列中,元素的顺序是重要的。

1. 简单排列简单排列是指从n个不同元素中选取m个元素进行排列,用符号P表示。

P(n, m) = n! / (n - m)!其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。

2. 复杂排列复杂排列是指排列中包含重复元素的情况。

- 重复元素的全排列当有n个元素中有m1个元素相同,m2个元素相同,...,mk个元素相同时,全排列的总数为P = n! / (m1! * m2! * ... * mk!)- 重复元素的部分排列当有n个元素中有m1个元素相同,m2个元素相同,...,mk个元素相同时,选取其中r个元素进行排列的情况下,部分排列的总数为P(n; m1, m2, ..., mk) = n! / (m1! * m2! * ... * mk!) / [(n - r)!]二、组合组合是指从一组不同的元素中按照一定顺序选取若干个元素进行组合的方法。

在组合中,元素的顺序不重要。

1. 简单组合简单组合是指从n个不同元素中选取m个元素进行组合,用符号C表示。

C(n, m) = n! / (m! * (n - m)!)2. 复杂组合复杂组合是指组合中包含重复元素的情况。

- 重复元素的组合当有n个元素中有m1个元素相同,m2个元素相同,...,mk个元素相同时,组合的总数为C = (n + m1 - 1)! / (m1! * (n - 1)!)- 重复元素的部分组合当有n个元素中有m1个元素相同,m2个元素相同,...,mk个元素相同时,选取其中r个元素进行组合的情况下,部分组合的总数为C(n; m1, m2, ..., mk) = (n + m1 - 1)! / (m1! * (n - 1)!) / [r! * (n - r)!]三、应用场景排列组合在各个领域都有广泛的应用,尤其在概率统计、计算机科学和组合数学等领域中起着重要的作用。

高考数学总复习考点知识专题讲解8 排列与组合

高考数学总复习考点知识专题讲解8 排列与组合

高考数学总复习考点知识专题讲解专题8 排列与组合知识点一排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.知识点二排列相同的条件两个排列相同的充要条件:(1)两个排列的元素完全相同.(2)元素的排列顺序也相同.【例1】判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互打电话.知识点三 排列数的定义从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 知识点四 排列数公式及全排列 1.排列数公式的两种形式(1)A m n =n (n -1)(n -2)…(n -m +1),其中m ,n ∈N *,并且m ≤n .(2)A m n =n !(n -m )!. 2.全排列:把n 个不同的元素全部取出的一个排列,叫做n 个元素的一个全排列,全排列数为A n n =n !(叫做n 的阶乘).规定:0!=1. 【例2】(2023•泰州期末)678910⨯⨯⨯⨯可以表示为()A .410AB .510AC .410CD .510C【例3】(2023•莱州市开学)已知18934x x A A -=,则x 等于() A .6B .13C .6或13D .12【例4】(2023•浑南区期末)12320222232022232022M A A A A =++++,20232023N A =,则M 与N 的大小关系是()A .M N =B .M N >C .M N <D .M N …知识点五“相邻”与“不相邻”问题相邻问题捆绑法,不相邻问题插空法.【例5】3名男生,4名女生,这7个人站成一排在下列情况下,各有多少种不同的站法? (1)男、女各站在一起;(2)男生必须排在一起;(3)男生不能排在一起;(4)男生互不相邻,且女生也互不相邻.【例6】(2023•香坊区期末)加工某种产品需要5道工序,分别为A,B,C,D,E,其中工序A,B必须相邻,工序C,D不能相邻,那么有()种加工方法.A.24B.32C.48D.64【例7】(2023•沈阳模拟)甲、乙、丙、丁、戊、己6人站成一排拍合照,要求甲必须站在中间两个位置之一,且乙、丙2人相邻,则不同的排队方法共有() A.24种B.48种C.72种D.96种知识点六定序问题用除法对于定序问题,可采用“除阶乘法”解决.即用不限制的排列数除以顺序一定元素的全排列数.【例8】7人站成一排.(1)甲必须在乙的前面(不一定相邻),则有多少种不同的排列方法?(2)甲、乙、丙三人自左向右的顺序不变(不一定相邻),则有多少不同的排列方法?知识点七特殊元素的“在”与“不在”问题分析法对于“在”与“不在”问题,可采用“特殊元素优先考虑,特殊位置优先安排”的原则解决.【例9】(2023•卧龙区月考)甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端、丙和丁相邻的不同排列方式有() A .24种B .36种C .48种D .144种【例10】(2023•宜宾月考)“四书”“五经”是我国9部经典名著《大学》《论语》《中庸》《孟子》《周易》《尚书》《诗经》《礼记》《春秋》的合称.为弘扬中国传统文化,某校计划在读书节活动期间举办“四书”“五经”知识讲座,每部名著安排1次讲座,若要求《大学》《论语》相邻,但都不与《周易》相邻,则排法种数为() A .622622A A A B .6262A A C .622672A A A D .622662A A A【例11】(2023•武强县期中)用数字0,1,2,3,4,5组成没有重复数字的四位数. (1)可组成多少个不同的四位数? (2)可组成多少个不同的偶数?【例12】从包括甲、乙两名同学在内的7名同学中选出5名同学排成一列,求解下列问题.(1)甲不在首位的排法有多少种?(2)甲既不在首位也不在末位的排法有多少种? (3)甲与乙既不在首位也不在末位的排法有多少种? (4)甲不在首位,同时乙不在末位的排法有多少种?同步训练(一)1.(2023•宿迁期末)下列各式中,不等于n !的是()A .n n AB .1n n A -C .1n n nA +D .11n n nA --2.(2023•宿迁月考)(1998)(1999)(2021)(2022)(n n n n n N ----∈,2022)n >可表示为()A .241998n A -B .251998n A -C .242022n A -D .252022n A -3.(2023•河南模拟)从3,5,7,11这四个质数中,每次取出两个不同的数分别为a ,b ,共可得到lga lgb -的不同值的个数是()A .6B .8C .12D .164.(2023•揭阳期末)已知甲、乙两个家庭排成一列测核酸,甲家庭是一对夫妻带1个小孩,乙家庭是一对夫妻带2个小孩.现要求2位父亲位于队伍的两端,3个小孩要排在一起,则不同的排队方式的种数为()A.288B.144C.72D.365.(2023•海淀区校级期末)某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A.72B.36C.24D.126.(20123•会宁县期中)用0,1,2,3,4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.7.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?知识点八组合及组合数的定义1.组合一般地,从n个不同元素中取出m(m≤n)个元素作为一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C m n表示.知识点九排列与组合的关系【例13】(1)某铁路线上有4个车站,则这条铁路线上共需准备多少种车票?(2)把5本不同的书分给5个学生,每人一本;(3)从7本不同的书中取出5本给某个学生.【例14】一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?知识点十组合数公式规定:C 0n =1.知识点十一 组合数的性质 性质1:C mn =C n -mn .性质2:C m n +1=C m n +C m -1n .【例15】(2023•朝阳区期末)已知2188m m C C -=,则m 等于() A .1B .3C .1或3D .1或4【例16】(2023•吉水县期末)计算33334562015C C C C ++++的值为()A .42015CB .32015C C .420161C -D .520151C -【例17】(2023•崂山区期末)对于伯努利数()n B n N ∈,有定义:001,(2)nk n n k k B B C B n ===∑….则()A .216B =B .4130B =C .6142B =D .230n B +=【例18】(2023•沙坪坝区模拟)某项活动安排了4个节目,每位观众都有6张相同的票,活动结束后将票全部投给喜欢的节目,一位观众最喜欢节目A,准备给该节目至少投3张,剩下的票则随机投给其余的节目,但必须要A节目的得票数是最多的,则4个节目获得该观众的票数情况有()种A.150B.72C.20D.17【例19】(2023•东湖区期末)某校举行科技文化艺术节活动,学生会准备安排6名同学到两个不同社团开展活动,要求每个社团至少安排两人,其中A,B两人不能分在同一个社团,则不同的安排方案数是()A.56B.28C.24D.12知识点十二分组、分配问题(1)分组问题属于“组合”问题,常见的分组问题有三种:①完全均匀分组,每组的元素个数均相等,均匀分成n组,最后必须除以n!;②部分均匀分组,应注意不要重复,有n组均匀,最后必须除以n!;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.1 平均分组【例20】(1)6本不同的书,分给甲、乙、丙三人,每人两本,有多少种方法?(2)6本不同的书,分为三份,每份两本,有多少种方法?2 不平均分组【例21】(1)6本不同的书,分为三份,一份一本,一份两本,一份三本,有多少种方法?(2)6本不同的书,分给甲、乙、丙三人,一人一本,一人两本,一人三本,有多少种不同的方法?3 分配问题【例22】6本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种不同的方法?【例23】(2022秋•浑南区期末)将6本不同的书分给甲、乙、丙、丁4个人,每人至少一本的不同分法共有种.(用数字作答)【例24】(2022秋•浑南区期末)某市聘请6名农业专家安排到三个乡镇作指导,每个乡镇至少一人,则安排方案的种数是()A.495B.540C.630D.720【例25】(2023•云南模拟)中国空间站()ChinaSpaceStation的主体结构包括天和核心舱、问天实验舱和梦天实验舱.2022年10月31日15:37分,我国将“梦天实验舱”成功送上太空,完成了最后一个关键部分的发射,“梦天实验舱”也和“天和核心舱”按照计划成功对接,成为“T”字形架构,我国成功将中国空间站建设完毕.2023年,中国空间站将正式进入运营阶段.假设中国空间站要安排甲、乙等5名航天员进舱开展实验,其中“天和核心舱”安排2人,“问天实验舱”安排2人,“梦天实验舱”安排1人.若甲、乙两人不能同时在一个舱内做实验,则不同的安排方案共有()A.9种B.24种C.26种D.30种知识点十三相同元素分配问题之隔板法隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”,每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法,隔板法专门解决相同元素的分配问题.将n个相同的元素分给m个不同的对象(n≥m),有C m-1n-1种方法,可描述为(n-1)个空中插入(m -1)块板.【例26】6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数.(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子.【例27】(2023•浦东新区期末)10个相同的小球放到6个不同的盒子里,每个盒子里至少放一个小球,则不同的放法有种.【例28】(2023•海淀区期末)没有一个冬天不可逾越,没有一个春天不会来临.某街道疫情防控小组选派7名工作人员到A ,B ,C 三个小区进行调研活动,每个小区至少去1人,恰有两个小区所派人数相同,则不同的安排方式共有() A .1176B .2352C .1722D .1302【例29】(2023•多选•玄武区期末)甲、乙、丙、丁、戊共5位志愿者被安排到A ,B ,C ,D 四所山区学校参加支教活动,要求每所学校至少安排一位志愿者,且每位志愿者只能到一所学校支教,则下列结论正确的是() A .不同的安排方法共有240种 B .甲志愿者被安排到A 学校的概率是14C .若A 学校安排两名志愿者,则不同的安排方法共有120种D .在甲志愿者被安排到A 学校支教的前提下,A 学校有两名志愿者的概率是25【例30】(2023•多选•营口期末)某校的高一和高二年级各10个班级,从中选出五个班级参加活动,下列结论正确的是()A .高二六班一定参加的选法有420C 种B .高一年级恰有2个班级的选法有231010C C 种C .高一年级最多有2个班级的选法为52012C 种D .高一年级最多有2个班级的选法为231451*********C C C C C ++种【例31】(2023•福建模拟)近年来,“剧本杀”门店遍地开花.放假伊始,7名同学相约前往某“剧本杀”门店体验沉浸式角色扮演型剧本游戏,目前店中仅有可供4人组局的剧本,其中A ,B 角色各1人,C 角色2人.已知这7名同学中有4名男生,3名女生,现决定让店主从他们7人中选出4人参加游戏,其余3人观看,要求选出的4人中至少有1名女生,并且A ,B 角色不可同时为女生.则店主共有348种选择方式.【例32】(2023•和平区校级模拟)我们常常运用对同一个量算两次的方法来证明组合恒等式,如:从装有编号为1,2,3,⋯,1n +的1n +个球的口袋中取出m 个球(0m n <…,m ,)n N ∈,共有1m n C +种取法.在1m n C +种取法中,不取1号球有m n C 种取法;取1号球有1m n C -种取法.所以11m m m n n n C C C -++=.试运用此方法,写出如下等式的结果:323232323142241n n n n n C C C C C C C C ----+⋅+⋅++⋅+=.同步训练(二)8.(多选)下列问题是组合问题的有()A .10个朋友聚会,每两人握手一次,一共握手多少次B .平面上有2 021个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段C .集合{a 1,a 2,a 3,…,a n }中含有三个元素的子集有多少个D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法9.(2023•宣城期中)关于排列组合数,下列结论错误的是() A .m n m n n C C -=B .11m m m n n n C C C -+=+C .11m m n n A mA --=D .11m m mn n n A mA A -++=10.(2023•多选•朝阳区期末)关于排列组合数,下列结论正确的是() A .m n m n n C C -=B .11m m m n n n C C C -+=+C .11m m n n A mA --=D .!()!mn n A n m =-11.课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法? (1)至少有一名队长当选;(2)至多有两名女生当选;(3)既要有队长,又要有女生当选.12.将4个编号为1,2,3,4的小球放入4个编号为1,2,3,4的盒子中.(1)有多少种放法?(2)每盒至多1个球,有多少种放法?(3)恰好有1个空盒,有多少种放法?(4)每个盒内放1个球,并且恰好有1个球的编号与盒子的编号相同,有多少种放法?(5)把4个不同的小球换成4个相同的小球,恰有一个空盒,有多少种放法?13.(多选)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数可能为()A.1 B.2 C.3 D.414.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有的4件次品,则这样的不同测试方法数是多少?15.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?16.空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,无四点共面,则以这些点为顶点,共可构成四面体的个数为()A.205 B.110 C.204 D.20017.4名优秀学生全部保送到3所学校去,每所学校至少去1名,则不同的保送方案有______种.18.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________.(用数字作答)19.(2023•长沙期末)6名志愿者分配到3个社区参加服务工作,每名志愿者只分配到一个社区,每个社区至少分配一名志愿者且人数各不相同,不同的分配方案共有() A .540种B .360种C .180种D .120种20.(2023•多选•罗湖区期末)在10件产品中,有7件合格品,3件不合格品,从这10件产品中任意抽出3件,则下列结论正确的有()A .抽出的3件产品中恰好有1件是不合格品的抽法有1237C C 种 B .抽出的3件产品中至少有1件是不合格品的抽法有1239C C 种 C .抽出的3件产品中至少有1件是不合格品的抽法有1221337373C C C C C ++种D .抽出的3件产品中至少有1件是不合格品的抽法有33107C C -种。

高中数学排列与组合教案

高中数学排列与组合教案

高中数学排列与组合教案教学目标:1. 理解排列与组合的概念。

2. 能够应用排列与组合的知识解决实际问题。

3. 提高学生的逻辑思维能力和解决问题的能力。

教学内容:1. 排列的概念及其性质。

2. 组合的概念及其性质。

3. 排列与组合的应用。

教学过程:第一课时:1. 引入排列与组合的概念,通过实际例子引发学生对排列与组合的认识。

2. 讲解排列的定义和性质,例如排列中元素不重复出现的特点。

3. 给学生布置一些排列练习题,让他们熟悉排列的运算方法和规律。

第二课时:1. 复习排列的概念和性质。

2. 讲解组合的定义和性质,例如组合中元素可重复出现的特点。

3. 给学生布置一些组合练习题,让他们熟悉组合的运算方法和规律。

第三课时:1. 复习排列与组合的概念和性质。

2. 讲解排列与组合的应用,例如在排队、选做题目等实际问题中的运用。

3. 给学生布置一些综合排列与组合的练习题,让他们能够灵活运用排列与组合的知识解决问题。

教学反馈:1. 对学生在排列与组合方面的理解进行总结和反馈。

2. 引导学生思考排列与组合在日常生活中的应用,并展开讨论。

教学评价:通过作业、课堂表现和练习题的表现评价学生对排列与组合的掌握程度和应用能力。

教学延伸:鼓励学生深入学习排列与组合知识,并拓展到更高级的数学领域,如概率论等。

教学资源:教科书、课件、练习题。

教学提醒:教师应注意引导学生通过实例来理解排列与组合的概念,激发学生的学习兴趣和思考能力。

同时,要关注学生的学习状态,及时调整教学方法,确保学生的学习效果。

高中数学选择性必修三 专题01排列组合(含答案)高二数学下学期期中专项复习

高中数学选择性必修三 专题01排列组合(含答案)高二数学下学期期中专项复习

专题01排列组合一、单选题1.(2020·江苏苏州市·高二期中)5人站成一排,若甲、乙彼此不相邻,则不同的排法种数共有( ) A .144 B .72 C .36 D .12【答案】B 【详解】解:先对除甲、乙两人的其他3人排列,有33A 种,3个人排列后有4个空,然后甲、乙两人从这4 个空中选2个空排列即可,所以共有3234324372A A ⋅=⨯⨯⨯=种方法,故选:B2.(2021·湖北高三月考)某市为了迎接国家文明城市验收,要求某单位4名工作人员到路口执勤,协助交警劝导人们规范出行.现有含甲、乙在内的4名工作人员,按要求分配到2个不同的路口执勤,每个路口至少一人,则甲、乙在同一路口的分配方案共有( ) A .3种 B .6种 C .9种 D .12种【答案】B 【详解】把甲、乙两人看作一个整体,4个人变成了3个元素,再把这3个元素分成2部分,每部分至少有1个人,然后分配到2个路口,共有212312C C A 6=种分配方案. 故选:B.3.(2020·重庆市第十一中学校高三月考)“学习强国”学习平台是由中宣部主管,以深入学习宣传习近平新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门APP .该款软件主要设有“阅读文章”“视听学习”两个学习板块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题板块.某人在一次学习过程中把六个板块全部学习.则“阅读文章”与“每周答题”两大板块相邻的学习方法有( ) A .192种 B .240种C .432种D .528种【答案】B 【详解】解:由题意可知,将“阅读文章”与“每周答题”两大板块捆绑在一起,再与其它4个板块排列,所以“阅读文章”与“每周答题”两大板块相邻的学习方法有2525240A A⋅=种,故选:B4.(2021·明光市高级中学高二开学考试(理))受新冠肺炎疫情影响,某学校按上级文件指示,要求错峰放学,错峰有序吃饭.高三年级一层楼有甲、乙、丙、丁、戊、己六个班排队吃饭,甲班不能排在第一位,且丙班、丁班必须排在一起,则这六个班排队吃饭的不同安排方案共有()A.120种B.156种C.192种D.240种【答案】C【详解】丙丁捆绑在一起看作一个班,变成5个班进行排列,然后在后面4个位置中选1个排甲,这样可得排法为214 244192A A A=.故选:C.5.(2020·四川省绵阳南山中学高二月考(理))根据党中央关于“精准扶贫,脱贫攻坚”要求,我市从10名大学毕业生中选3人担任县长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85B.56C.49D.28【答案】C【详解】根据题意可知,丙没有入选,则只需在其余9名大学毕业生中任选3人的选法种数减去甲、乙两人都没有被选中的选法种数,因此,所求的选法种数为3397843549C C-=-=.故选:C.6.(2020·全国高三专题练习(理))精准扶贫点用2400元的资金为贫困户购买良种羊羔,共有肉用山羊、毛用绵羊、产奶山羊三种羊羔,价格均为每只300元,若要求每种羊羔至少买1只,则所有可能的购买方案总数为( )A.12 B.14 C.21 D.18【答案】C【详解】由于每只羊羔的价格均为300元,则共有8个购买羊羔的指标,可以看成8个无差别的小球,三种不同的羊羔可以看成三个编号1,2,3的盒子,则问题转化为把8个无差别的小球装入3个不同的盒子中,每个盒子至少装一个小球.用隔板法,8个小球共有7个空,插2个隔板,共有2721C=种不同的购买方案,故选:C.7.(2020·陕西高二期末(理))元宵节灯展后,悬挂有8盏不同的花灯需要取下,如图所示,每次取1盏,则不同的取法共有().A.32种B.70种C.90种D.280种【答案】B【详解】因为取灯时每次只能取一盏,所以每串灯必须先取下面的灯,即每串灯取下的顺序确定,取下的方法有88444470AA A=种.故选:B8.(2020·合肥市第六中学高三其他模拟(理))现有四名高三学生准备高考后到长三角城市群(包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”)旅游,假设每名学生均从上海市、江苏省、浙江省、安徽省这四个地方中随机选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.716【答案】B【详解】四名学生从四个地方任选一个共有4444256⨯⨯⨯=种选法,恰有一个地方未被选中,即有两位学生选了同一个地方,另外两名学生各去一个地方,考虑先分堆在排序共有23446432144C A⨯=⨯⨯⨯=种,所以恰有一个地方未被选中的概率为1449 25616=.故选:B9.(2019·黄梅国际育才高级中学高二月考)在重庆召开的“市长峰会”期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为()A .124414128C A A B .124414128C C CC .12441412338C C C A D .12443141283C C C A【答案】B 【详解】首先从14人中选出12人共1214C 种,然后将12人平均分为3组共444123843C C C A ⋅⋅种, 然后这两步相乘,得12441412833C C C A ⋅⋅,将三组分配下去共124414128C C C ⋅⋅种. 故选:B.10.(2021·辽宁沈阳市·高三一模)2020年我国进行了第七次全国人口普查,“大国点名,没你不行”.在此次活动中,某学校有2女、4男6名教师报名成为志愿者,现在有3个不同的社区需要进行普查工作,从这6名志愿者中选派3名,每人去1个小区,每个小区去1名教师,其中至少要有1名女教师,则不同的选派方案有多少种( ) A .16种 B .20种 C .96种 D .120种【答案】C 【详解】只有一名女教师:123124372n C C A ==; 选派两名女教师:213224324n C C A ==;所以共有72+24=96种方法. 故选:C11.(多选)(2020·全国高二单元测试)现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,则以下说法错误的是( ) A .若每人都安排一项工作,则不同的方法数为45B .若每项工作至少有1人参加,则不同的方法数为4154A CC .如果司机工作不安排,其余三项工作至少安排1人,则这5名同学全部被安排的不同方法数为()3122352533C CC C A +D .每项工作至少有1人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是1232334333C C A C A +【答案】ABC 【详解】对于选项A :因为每人有四项工作可以安排,所以5人都安排一项工作的不同方法数为54,故选项A 中说法错误;对于选项B :每项工作至少有1人参加,则不同的方法数为2454C A ,故选项B 中说法错误;对于选项C :如果司机不安排工作,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为31223525332222C C C C A A A ⎛⎫+ ⎪⎝⎭,故选项C 中说法错误;对于选项D :分两类考虑,第一类:司机安排1人,方法数为13C ,另外4人分3组,方法数为24C (4人选2人为1组,另外2人分2组只有一种分法),然后3组人安排除司机外的三项工作,方法数为33A ,则不同安排方案的种数是123343C C A ,第二类:司机安排2人,方法数为23C ,剩下3人安排另外三项工作,方法数为33A ,则不同安排方案的种数是2333C A ,由分类加法计数原理得,共有1232334333C C A C A +种不同的安排方案,故选项D 中说法正确. 故选:ABC .12.(多选)(2021·全国高二课时练习)几只猴子在一棵枯树上玩耍,假设它们均不慎失足下落,已知:(1)甲在下落的过程中依次撞击到树枝A ,B ,C ;(2)乙在下落的过程中依次撞击到树枝D ,E ,F ;(3)丙在下落的过程中依次撞击到树枝G ,A ,C ;(4)丁在下落的过程中依次撞击到树枝B ,D ,H ;(5)戊在下落的过程中依次撞击到树枝I ,C ,E ,下列结论正确的是( ) A .最高处的树枝为G 、I 当中的一个 B .最低处的树枝一定是FC .这九棵树枝从高到低不同的顺序共有33种D .这九棵树枝从高到低不同的顺序共有32种 【答案】AC 【详解】解:由题判断出部分树枝由高到低的顺序为GABCEF ,还剩下D ,H ,I ,且树枝I 比C 高,树枝D 在树枝B ,E 之间,树枝H 比D 低,故A 选项正确; 先看树枝I ,有4种可能,若I 在B ,C 之间, 则D 有3种可能:①D 在B ,I 之间,H 有5种可能;②D 在I ,C 之间,H 有4种可能; ③D 在C ,E 之间,H 有3种可能, 此时树枝的高低顺序有54312++=(种)。

高中数学专题复习:排列组合难题21种方法

高中数学专题复习:排列组合难题21种方法

高考数学专题复习系列排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高二数学排列和组合知识点

高二数学排列和组合知识点

高二数学排列和组合知识点在高二数学学习过程中,排列和组合是一个重要的知识点,也是数学中一个常用的概念。

掌握排列和组合的相关知识,对于解决实际问题以及进一步深入数学学习都非常有帮助。

本文将介绍高二数学排列和组合知识点,帮助同学们更好地理解和应用。

一、排列的概念排列是从给定的对象集合中选取若干元素按照一定的顺序进行排列的方法数。

在排列中,元素的顺序很重要,不同的排列方式被视为不同的结果。

1.1 线性排列线性排列是最基础也是最常见的排列方式。

在线性排列中,从给定的对象集合中选取若干元素按照一定的顺序进行排列,每个元素只能使用一次。

1.2 循环排列循环排列是指从给定的对象集合中选取若干元素按照一定的顺序进行排列,并且排列中的元素可以重复出现。

循环排列中的排列方式具有循环的性质,即排列的开头和结尾是相连的。

二、组合的概念组合是从给定的对象集合中选取若干元素,不考虑元素的顺序进行组合的方法数。

在组合中,元素的顺序不重要,同样的元素组合方式被视为相同的结果。

2.1 无限制组合无限制组合是指从给定的对象集合中选取若干元素,不考虑元素的顺序进行组合,并且可以重复选取元素。

2.2 有限制组合有限制组合是指从给定的对象集合中选取若干元素,不考虑元素的顺序进行组合,并且每个元素只能使用一次。

三、排列和组合的应用排列和组合在实际生活中有着广泛的应用,例如:3.1 考试座位安排在学校的考试中,考试座位需要进行排列。

通过排列的方式可以确保每个学生都能坐在一个指定的位置上,避免作弊等问题。

3.2 奖品抽取在抽奖活动中,需要从参与抽奖的人员中选取一定数量的获奖者。

通过组合的方式可以确定每个获奖者的组合方式,保证公平公正。

3.3 生肖组合在中国传统文化中,属相有十二种,根据生肖的组合可以预测一个人的命运、性格等。

通过组合的方式可以得到不同的组合结果,为人们提供参考和娱乐。

四、排列和组合的计算公式在排列和组合的计算过程中,有一些通用的计算公式可以帮助我们求解问题,例如:4.1 排列计算公式排列的计算公式为:A(n, m) = n!/(n-m)!,其中n表示对象的总数,m表示选取的元素数量。

数学高二排列部分的知识点

数学高二排列部分的知识点

数学高二排列部分的知识点排列是组合数学中的一个重要概念,它在高中数学中占据着重要地位。

在高二数学中,排列部分的知识点涉及到排列的定义、性质、计算方法等方面内容。

本文将为你详细介绍高二数学排列部分的核心知识点。

1. 排列的定义排列是指从一组不同的元素中按照一定的顺序选取若干个元素构成一种组合方式。

一般来说,排列的元素中不允许存在重复的情况。

2. 排列的计算公式高二数学中,排列的计算公式主要有两种,分别是排列的定义公式和排列的计数公式。

排列的定义公式为:P(n,r) = n! / (n-r)!其中,P(n,r)表示从n个元素中选取r个元素进行排列的情况数,n!表示n的阶乘。

排列的计数公式为:P(n,n) = n!其中,P(n,n)表示从n个元素中选取n个元素进行排列的情况数,n!表示n的阶乘。

3. 排列的性质排列具有以下几个基本性质:(1)交换律:对于排列P(n,r),交换其中任意两个元素的位置,得到的仍然是一个排列。

(2)乘法原理:对于两个独立的排列P(n,r)和P(m,s),将它们按某种顺序排列在一起,得到的结果是一个新的排列P(n+r, r+s)。

(3)循环性质:对于一个排列P(n,r),将其逆序得到的排列仍然是一个排列。

4. 应用案例排列在实际问题中有着广泛的应用,下面通过一个应用案例来加深理解。

案例:某班有10名学生,要从中选取4名学生参加一次数学竞赛。

问有多少种不同的选取方案?解答:根据排列计算公式,可知P(10, 4) = 10! / (10-4)! = 5040。

即从10名学生中选取4名学生进行排列的方案数为5040。

5. 注意事项在应用排列的过程中,需要注意以下几个问题:(1)是否允许重复:有些问题中,选取的元素允许出现重复,需要根据具体情况进行计算。

(2)约束条件:有些问题中,选取元素的数量、位置等存在一定的约束条件,需要根据具体情况进行计算。

(3)问题转化:有些问题中,可以通过将问题转化成排列问题来进行求解,需要善于运用数学方法。

人教B版高二选修2-3教案设计排列组合-复习篇学生版(不含答案)

人教B版高二选修2-3教案设计排列组合-复习篇学生版(不含答案)

排列组合—复习篇类型一、可重复的排列求幂法例1、(1)有4 名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4 名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3 封不同的信投入 4 个不同的邮筒,则有多少种不同投法?1、把6 名实习生分配到7 个车间实习共有多少种不同方法?2、8名同学争夺3 项冠军,获得冠军的可能性有()A、83B、38C、A 3D、C 33、4 封信投到3 个信箱当中,有多少种投法?类型二、相邻问题——捆绑法,不相邻问题——插空法,相邻与不相邻混合——先捆绑再插空例1、6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有种,甲、乙两人不相邻的不同排法有种。

1、从单词“equation”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连接且顺序不变)的不同排列共有个2、计划在某画廊展开10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有种。

3、A, B, C, D, E 五人并排站成一排,如果A, B 必须相邻且B 在A 的右边,那么不同的排法种数有。

例2、5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有种排法。

例3、A、B、C、D、E、F五件商品排列成一排摆放在货架上,要求A、B相邻,B、C不相邻,有种不同的排列方法。

例4、(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数有多少种?(2)3人坐在有八个座位的一排上,若3人不相邻,则不同坐法的种数有多少种?例5、马路上有编号为1,2,3…,9 九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?1、现有5名男生和3名女生站成一排照相,(1)3名女生站在一起,有多少种不同的站法?(2)3名女生不相邻,有多少种不同的站法。

高考数学复习考点题型归类解析46排列与组合(解析版)

高考数学复习考点题型归类解析46排列与组合(解析版)

高考数学复习考点题型归类解析专题46排列组合一、关键能力1. 理解排列、组合的概念,掌握排列数公式、组合数公式,并能解决简单的实际问题. (1)考查两个计数原理;(2)考查排列组合问题、概率计算中两个计数原理的应用.(3)两个计数原理是解决排列、组合问题的基本方法,同时又能独立地解决一些简单的计数问题,通常与排列组合问题或概率计算问题综合考查. 二、必备知识1. 排列的相关概念及排列数公式(1)排列的定义:从个不同元素中取出 ()个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列.(2)排列数的定义:从个不同元素中取出 ()个元素的所有不同排列的个数叫做从个不同元素中取出个元素的排列数,用表示.(3)排列数公式:这里并且(4)全排列:个不同元素全部取出的一个排列,叫做个元素的一个全排列,(叫做n 的阶乘).排列数公式写成阶乘的形式为,这里规定.2.组合的相关概念及组合数公式n m m n ≤n m n m m n ≤n m m n A ()()()121mn A n n n n m =---+,n m N∈m n ≤n n ()()1221!n n A n n n n =--⋅⋅=()!!m n n A n m =-0!1=(1)组合的定义:从个不同元素中取出 ()个元素合成一组,叫做从个不同元素中取出个元素的一个组合.(2)组合数的定义:从个不同元素中取出 ()个元素的所有不同组合的个数,叫做从个不同元素中取出个元素的组合数,用表示.[来源:学.科.网](3)组合数的计算公式:,由于,所以.(4)组合数的性质:①;②;③.三、高频考点+重点题型 考点一 、排列问题例1-1、有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,则不同的站法共有( )A .66种B .60种C .36种D .24种 【答案】B 【分析】首先利用全排列并结合已知条件即可求解. 【详解】首先对五名学生全排列,则共有55120A =种情况,又因为只有甲在乙的左边或右边两种情况, 所以甲不排在乙的左边的不同的站法共有55602A =种情况. 故选:Bn m m n ≤n m n m m n ≤n m m n C ()()()()121!!!!mmnnmm n n n n m A n C A m m n m ---+===-0!1=01n C =m n m n n C C -=11m m m n n n C C C -+=+11r r n n rC nC --=例1-2、男生甲和女生乙及另外2男2女共6位同学排成一排拍照,要求男女生相间且甲和乙相邻,共( )种不同排法. 【答案】40 【分析】给6个人编号,在进行分类讨论,即可求解 【详解】不妨给6人从左至右依次编号为:123456,先讨论男女男女男女的排法, 若甲排1号位,则乙只能排二号位,剩下两男两女全排列,共有222214A A ⋅⋅=种;若甲排3号位,则乙可以选择2号位或4号位,剩下两男两女全排列,共有222228A A ⋅⋅=种; 若甲排5号位,则乙可以选择4号位或6号位,剩下两男两女全排列,共有222228A A ⋅⋅=种; 合计20种排法,若再将男女调换位置,则符合条件的总排法有20240⨯=种, 故答案为:40例1-3、名男同学、名女学生和位老师站成一排拍照合影,要求位老师必须站正中间,队伍左右两端不能同时是一男学生与一女学生,则总共有__________种排法. 【答案】 【解析】当两端都是男生时:当两端都是女生时:共有种排法 故答案为例2-1、用1,2,3,4,5这五个数字,可以组成比20 000大,并且百位数不是数字3的没有重复数字的五位数,共有( )3322576242342288A A A ⨯⨯=242342288A A A ⨯⨯=576576A .96个B .78个C .72个D .64个 答案 B解析 根据题意知,要求这个五位数比20 000大,则万位数必须是2,3,4,5这4个数字中的一个,当万位数是3时,百位数不是数字3,符合要求的五位数有A 44=24(个);当万位数是2,4,5时,由于百位数不能是数字3,则符合要求的五位数有3×(A 44-A 33)=54(个),因此共有54+24=78(个)这样的五位数符合要求.故选B. 例2-2、用0,1,2,3,4,5这6个数字. (1)能组成多少个无重复数的四位偶数?(2)能组成多少个奇数数字互不相邻的六位数(无重复数字)? (1)156 (2)132(1)符合要求的四位偶数可分为三类: 第一类:0在个位时,有A 35个;第二类:2在个位时,首位从1,3,4,5中选定1个(A 14种),十位和百位从余下的数字中选,有A 24种,于是有A 14·A 24个;第三类:4在个位时,与第二类同理,也有A 14·A 24个.由分类加法计数原理得,共有A 35+2A 14·A 24=156(个).(2) 先排0,2,4,再让1,3,5插空,总的排法共A 33A 34=144(种),其中0在排头,将1,3,5插在后3个空的排法共A 22·A 33=12(种),此时构不成六位数,故总的六位数的个数为A 33A 34-A 22A 33=144-12=132(种).对点练1.(2021·浙江高二期中)将编号为、、、、的个小球全部放入、、三个盒子内,若每个盒子不空,且放在同一个盒子内的小球编号不相连,则不同的方法总数有()123455A B CA .B .C .D . 【答案】A 【解析】将编号为、、、、的个小球,根据小球的个数可分为、、或、、两组. ①当三个盒子中的小球个数分别为、、时,由于放在同一个盒子里的小球编号互不相连,故个小球的编号只能是、、的在一个盒子里,故只有一种分组方法,再分配到三个盒子,此时共有种分配方法;②当三个盒子中的小球个数分别为、、时,由于放在同一个盒子里的小球编号互不相连,此时放个小球的盒子中小球的编号分别为、或、或、或、或、或、,共种,再分配到三个盒子中,此时,共有种.综上所述,不同的放法种数为种. 故选:A.对点练2.(2021·江西·横峰中学高二期中(理))现从8名学生干部中选出3名同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,则不同的选派方案的种数是________.(用数字作答) 【答案】336 【分析】根据排列定义及公式即可求解. 【详解】423648601234551131221133135336A =1222()1,3()2,4()1,3()2,5()1,4()2,5()1,4()3,5()1,5()2,4()2,4()3,5633636A =64362+=从8名学生干部中选出3名同学排列的种数为38876336A=⨯⨯=,故共有336种不同的选派方案.故答案为:336考点二.组合问题例3-1、(2018·全国Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有______种.(用数字填写答案)答案16解析方法一按参加的女生人数可分两类:只有1位女生参加有C12C24种,有2位女生参加有C22C14种.故所求选法共有C12C24+C22C14=2×6+4=16(种).方法二间接法:从2位女生,4位男生中选3人,共有C36种情况,没有女生参加的情况有C34种,故所求选法共有C36-C34=20-4=16(种).例3-2.从7名男生,5名女生中选取5人,至少有2名女生入选的种数为________.答案596解析“至少有2名女生”的反面是“只有一名女生或没有女生”,故可用间接法,所以有C512-C1515C47-C57=596(种).例4-1.(2021·衡水中学调研)为了应对美欧等国的经济制裁,俄罗斯天然气公司决定从10名办公室工作人员中裁去4人,要求甲、乙二人不能全部裁去,则不同的裁员方案的种数为________.答案182解析甲、乙中裁一人的方案有C12C38种,甲、乙都不裁的方案有C48种,故不同的裁员方案共有C12C38+C48=182(种).例4-2.(2021·河南高考模拟(理))安排,,,,,,共6名义工照顾A B C D E F甲,乙,丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工不安排照顾老人甲,义工不安排照顾老人乙,则安排方法共有( ) A.30种B.40种C.42种D.48种 【答案】C 【解析】名义工照顾三位老人,每两位义工照顾一位老人共有:种安排方法其中照顾老人甲的情况有:种照顾老人乙的情况有:种照顾老人甲,同时照顾老人乙的情况有:种符合题意的安排方法有:种本题正确选项:对点练1、甲、乙两人从4门课程中各选修2门.求:(1)甲、乙所选的课程中恰有1门相同的选法有多少种? (2)甲、乙所选的课程中至少有一门不相同的选法有多少种? (1)24 (2)30(1)解法1:甲或乙中一人先选,方法有C 24,另一人再选,有C 12C 12种,则选法种数共有C 24C 12C 12=24(种).解法2:先确定相同的那一门,有C 14种,再甲、乙各选一本不同的,有A 23种,则选法种数共有C 14·A 23=24(种).(2)甲、乙两人从4门课程中各选两门不同的选法种数为C 24C 24,又甲、乙两人所选的两门课程都相同的选法种数为C 24种,因此满足条件的不同选法种数为C 24C 24-C 24=30(种).对点练2、.(湖南高考真题)在某种信息传输过程中,用4个数字的一个排列(数字允A B 62264C C 90=A 1254C C 30=B 1254C C 30=A B 1143C C 12=∴9030301242--+=C许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( ) A.10B.11C.12D.15 【答案】B 【解析】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有C 42=6个;第二类:与信息0110有一个对应位置上的数字相同有C 41=4个;第三类:与信息0110有没有两个对应位置上的数字相同有C 40=1个,由分类计数原理与信息0110至多有两个数字对应位置相同的共有6+4+1=11个,故选B .对点练3.(2021·浙江温州·高三月考)一个盒子里装有7个大小、形状完成相同的小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为1,2,3,从盒子中任取4个小球,其中含有编号为3的不同取法有________种. 【答案】30 【解析】从反面考虑,总数为,不含有编号为3的总数为,即得解. 【详解】从反面考虑,总数为,不含有编号为3的总数为,所以含有编号为3的总数为.故答案为:30.47C 45C 47C 45C 447530C C -=变式4.(2021·杭州二模)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种 D共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C 45+C 44+C 25C 24=66(种),故选D .考点三、排列与组合的综合问题例5、(多选题)2021年3月,为促进疫情后复工复产期间安全生产,滨州市某医院派出甲、乙、丙、丁4名医生到,,三家企业开展“新冠肺炎”防护排查工作,每名医生只能到一家企业工作,则下列结论正确的是() A .若企业最多派1名医生,则所有不同分派方案共48种 B .若每家企业至少分派1名医生,则所有不同分派方案共36种C .若每家企业至少分派1名医生,且医生甲必须到企业,则所有不同分派方案共12种D .所有不同分派方案共种 【答案】ABC 【解析】对于选项A :若企业没有派医生去,每名医生有种选择,则共用种,若企业派1名医生则有种,所以共有种.对于选项B :若每家企业至少分派1名医生,则有种, A B C C A 34C 24216=C 134232C ⋅=163248+=211342132236C C C A A ⋅=对于选项C :若每家企业至少分派1名医生,且医生甲必须到企业,若甲企业分人,则有种;若甲企业分 人,则有种,所以共有种.对于选项D :所有不同分派方案共有种. 故选:例6、(2017·浙江高考真题)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答) 【答案】660 【解析】第一类,先选女男,有种,这人选人作为队长和副队有种,故有种;第二类,先选女男,有种,这人选人作为队长和副队有种,故有种,根据分类计数原理共有种,故答案为.对点练1.(2021·浙江·诸暨市教育研究中心高二期末)用红、黄、蓝三种颜色填涂如图所示的六个方格,要求有公共边的两个方格不同色,则不同的填涂方法有( )A .96种B .48种C .144种D .72种 【答案】D 【分析】A 2336A =12123126C C A =6612+=43ABC 13316240C C =422412A =4012480⨯=22226215C C =422412A =1512180⨯=480180660+=660将涂色方法分为两类,即,,,A B D F 用三种颜色涂和用两种颜色涂,分别计算出两种情况下涂色方案的种数,根据分类加法计数原理即可求得结果.【详解】将六个方格标注为,,,,,A B C D E F ,如下图所示,①若,,,A B D F 用三种颜色涂,则,D F 同色或AF 同色或AD 同色,当,D F 同色时,六个方格的涂色方法有313212A C =种;当AF 同色时,六个方格的涂色方法有313212A C =种;当AD 同色时,六个方格的涂色方法有31132224A C C =种;②若,,,A B D F 用两种颜色涂,则,,A D F 同色,此时六个方格的涂色方法有21132224A C C =种; 综上所述:不同的填涂方法有1212242472+++=种.故选:D.对点练2.(2021·福建福州模拟)福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有 ()A .90种B .180种C .270种D .360种【答案】B【解析】根据题意,分3步进行分析:①在6位志愿者中任选1个,安排到甲展区,有166C =种情况;②在剩下的5个志愿者中任选1个,安排到乙展区,有C 15=5种情况;③将剩下的4个志愿者平均分成2组,然后安排到剩下的2个展区,有种情况,则一共有6×5×6=180种不同的安排方案,故选B.巩固训练一. 单选题1.三名学生报名参加校园文化活动,活动共有三个项目,每人限报其中一项,则恰有两名学生报同一项目的报名方法种数有( )A .6种B .9种C .18种D .36种【答案】C【分析】根据题意首先从三名学生中选2名选报同一项目,再从三个项目中选2项项目,全排即可.【详解】由题意可得22233233218C C A ⋅⋅=⨯⨯=,故选:C2.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军”,对乙说:“你不会是最差的”,从这两个回答分析,这5人的名次排列所有可能的情况共有( )A .18种B .36种C .54种D .72种【答案】C【分析】222422226C C A A ⨯=甲、乙不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有可能是第二、三、四名3种情况;再排甲,也有3种情况;余下的问题是三个元素在三个位置全排列,根据分步计数原理即可得到结果.【详解】由题意得:甲、乙都不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有可能是第二、三、四名3种情况;再排甲,也有3种情况;余下3人有33A 种排法.故共有33333332154A ⨯⨯=⨯⨯⨯⨯=种不同的情况.故选:C.3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .168答案 B解析 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A 22C 13A 23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A 22A 34=48(种)安排方法,故共有36+36+48=120(种)安排方法.4.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在.某城市关系要好的A ,B ,C ,D 四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A 家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有( )A.18种B.24种C.36种D.48种答案 B解析根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式,故选B.5.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为()A.16 B.18 C.24 D.32答案 C解析将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6(种)排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.6.互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,现要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法() A.A55种B.A22种C.A24A22种D.C12C12A22A22种答案 D解析红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,即红色菊花两边各一盆白色菊花,一盆黄色菊花,共有C12C12A22A22种摆放方法.7.十三届全国人大二次会议于2021年3月5日至15日在北京召开,会议期间工作人员将其中的5个代表团人员(含A,B两市代表团)安排至a,b,c三家宾馆入住,规定同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住,若A,B两市代表团必须安排在a宾馆入住,则不同的安排种数为()A.6 B.12 C.16 D.18答案 B解析如果仅有A,B入住a宾馆,则余下三个代表团必有2个入住同一个宾馆,此时共有C23A22=6(种)安排数,如果有A,B及其余一个代表团入住a宾馆,则余下两个代表团入住b,c,此时共有C13A22=6(种)安排数,综上,共有不同的安排种数为12.8.马路上有七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案共有()A.60种B.20种C.10种D.8种答案 C解析根据题意,可分为两步:第一步,先安排四盏不亮的路灯,有1种情况;第二步,四盏不亮的路灯排好后,有5个空位,在5个空位中任意选3个,插入三盏亮的路灯,有C35=10(种)情况.故不同的开灯方案共有10×1=10(种).9.有5列火车分别准备停在某车站并行的5条轨道上,若快车A不能停在第3道上,货车B不能停在第1道上,则5列火车不同的停靠方法数为()A.56 B.63 C.72 D.78答案 D解析若没有限制,5列火车可以随便停,则有A55种不同的停靠方法;快车A停在第3道上,则5列火车不同的停靠方法为A44种;货车B停在第1道上,则5列火车不同的停靠方法为A44种;快车A停在第3道上,且货车B停在第1道上,则5列火车不同的停靠方法为A33种,故符合要求的5列火车不同的停靠方法数为A55-2A44+A33=120-48+6=78.10.身穿红、黄两种颜色衣服的各有两人,身穿蓝色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法种数共有()A.24种B.28种C.36种D.48种答案 D解析分类计数原理,按红红之间有蓝无蓝两类来分.(1)当红红之间有蓝时,则有A22A24=24(种).(2)当红红之间无蓝时,则有C12A22C12C13=24(种);因此,这五个人排成一行,穿相同颜色衣服的人不能相邻,则有48种排法.11.(2017·全国Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种答案 D解析由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C 13·C 24·A 22=36(种),或列式为C 13·C 24·C 12=3×4×32×2=36(种).12.若一个四位数的各位数字之和为10,则称该数为“完美四位数”,如数字“2 017”.试问用数字0,1,2,3,4,5,6,7组成的无重复数字且大于2 017的“完美四位数”的个数为( )A .55B .59C .66D .71答案 D解析 记千位为首位,百位为第二位,十位为第三位,由题设中提供的信息可知,和为10的无重复的四个数字有(0,1,2,7),(0,1,3,6),(0,1,4,5),(0,2,3,5),(1,2,3,4),共五组.其中第一组(0,1,2,7)中,7排在首位有A 33=6(种)情形,2排在首位,1或7排在第二位上时,有2A 22=4(种)情形,2排在首位,0排在第二位,7排在第三位有1种情形,共有6+4+1=11(种)情形符合题设;第二组中3,6分别排在首位共有2A 33=12(种)情形;第三组中4,5分别排在首位共有2A 33=12(种)情形;第四组中2,3,5分别排在首位共有3A 33=18(种)情形;第五组中2,3,4分别排在首位共有3A 33=18(种)情形.依据分类计数原理可知符合题设条件的“完美四位数”共有11+12+12+18+18=71(个)二. 填空题13.(2018·浙江高考真题)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260.【解析】若不取零,则排列数为224534C C A ,若取零,则排列数为21135333C C A A ,因此一共有22421135345333C C A C C A A 1260+=个没有重复数字的四位数. 14.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)【答案】1080【解析】41345454A C C A 1080+=15.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【答案】120【解析】①1男4女,1436C C 45=种;②2男3女,2336C C 60=种;③3男2女,3236C C 15=种;∴一共有456015120++=种.故答案为:120.16.(2021·全国高考真题(理))4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种故答案为:36.17.用数字1,2,3,4,5,6组成没有重复数字的6位数,要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是________.答案40解析第一步将3,4,5,6按奇偶相间排成一列,共有2×A22×A22=8(种)排法;第二步再将1,2捆绑插入4个数字产生的5个空位中,共有A15=5(种)插法,插入时需满足条件相邻数字的奇偶性不同,1,2的排法由已排4个数的奇偶性确定.∴不同的排法有8×5=40(种),即这样的六位数有40个.18.某省高中学校自实施素质教育以来,学生社团得到迅猛发展.某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为________.答案180解析设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C14种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有C24A33种方法,这时共有C14C24A33种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C24种方法,甲与丁、戊分配到其他三个社团中有A33种方法,这时共有C24A33种参加方法;综合(1)(2),共有C14C24A33+C24A33=180(种)参加方法.19.从4名男生和3名女生中选出4名去参加一项活动,要求男生甲和乙不能同时参加,女生中的丙和丁至少有一名参加,则不同的选法种数为________.(用数字作答) 答案 23解析 ①设甲参加,乙不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为C 35-C 33=9,②设乙参加,甲不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为C 35-C 33=9,③设甲,乙都不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为C 45=5, 综合①②③得,不同的选法种数为9+9+5=23.20.某宾馆安排A ,B ,C ,D ,E 五人入住3个房间,每个房间至少住1人,且A ,B 不能住同一房间,则共有________种不同的安排方法.(用数字作答)答案 114解析 5个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C 35·A 33=60(种),A ,B 住同一房间有C 13·A 33=18(种),故有60-18=42(种),当为(2,2,1)时,有C 25·C 23A 22·A 33=90(种),A ,B 住同一房间有C 23·A 33=18(种), 故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).三. 解答题21.求下列各式中的正整数n :(1)33210n n A A =;(2)101098765n A =⨯⨯⨯⨯⨯.21 / 21 【答案】(1)8n =(2)6【分析】(1)根据排列数公式列出方程即可求解;(2)根据排列数公式列出方程即可求解; (1)解:因为33210n n A A =,所以()()()()221221012n n n n n n ⨯-⨯-=⨯⨯-⨯-,解得8n =; (2)解:因为101098765n A =⨯⨯⨯⨯⨯,又()10109101n A n =⨯⨯⨯-+,所以1015n -+=,解得6n =.22.利用组合数公式证明111m m m n n n C C C ++++=.【答案】证明见解析【分析】利用组合数公式分别计算等式左右两边即可证明.【详解】证明:因为()11(1)!1!()!m n n C m n m +++=+-,()()()1!11!!!(1)!(1)!!()!(1)!()!(1)!()!m m n n n n m m n n n C C n m m m n m m n m m n m +⎡⎤-+++⎣⎦++==--+-+--=+, 所以111m m m n n n C C C ++++=。

高二数学排列与组合复习(新编201912)

高二数学排列与组合复习(新编201912)

Anm

C
m n

Amm
C
m n

Anm
/
Amm
Anm n (n 1) (n m 1) n!
C
m n

n! m!(n
m)!
(n m)!
C
m nC nm n Nhomakorabea性质
Anm

n! (n m)!
Cm n1

C
m n

C
m n
1
(
m

n)
例题讲解
例1、分析解答如下问题: (1)4封信投入3个信箱,不同的投信方法有
计 分步计数原理

原 理
分类计数原理
排列
组合
相同点
都是从n个元素中任取m(m≤n)个元素
排 列
M个元素不完全相 M个元素不完全相同

同是不同排列;元 是不同组合;元素相
组 合
不同点 素完全相同,顺序 同,排列顺序不同是 不同是不同排列, 同一组合,仅与取法

与取法和顺序有关 有关。
系 与 区 别
联系 计数公式
教学目的
小结与复习(1)
1、知识目标:使学生深刻理解两个基本原理, 掌握排列组合的定义以及排列数与组合数公式, 组合的两个性质,认识知识间的区别与内在联系。
2、能力目标:提高学生综合运用概念和知识 分析问题和解决问题的能力,加强分类讨论、化 归、模型化、集合与对应等思想方法的培养。
3、情感目标:会用排列与组合的知识及其 两个基本原理理解实际生活中的某些问题,从 量变的角度分析其内在规律,培养探索精神, 养成独立思考的学习品质。

高二数学复习:排列与组合计算公式

高二数学复习:排列与组合计算公式

高二数学复习:排列与组合计算公式
学生会有11人①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数①从中任取两个数求它们的商可以有多少种不同的商?
②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.&there4;等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6解方程(1);(2).解(1)原方程解得.(2)原方程可变为∵,,&there4;原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公司申请公积金开户一般多久完成
[单选,A1型题]一侧瞳孔散大,直接和间接光反射消失,对侧间接光反射正常,病损位于()。A.对侧视神经B.同侧视神经C.对侧动眼神经D.同侧动眼神经E.同侧视神经及动眼神经 [单选]目前我国治疗普通型流脑首选的药物是()A.青霉素B.氯霉素C.头孢类抗生素D.磺胺类E.环丙沙星 [单选,A2型题]对某社区进行糖尿病健康促进规划的结局评价应评估糖尿病患者()A.自测血糖技能的变化B.有关糖尿病知识的变化C.饮食行为的变化D.血糖控制率的变化E.饮食态度的改变 [单选,A1型题]下列哪种中药既能杀虫止痒、燥湿,又能温肾壮阳()A.蟾酥B.蛇床子C.地肤子D.大蒜E.苦参 [单选,A2型题,A1/A2型题]表达细胞间黏附分子的作用是()。A.激发细胞膜一系列生化反应,导致组胺为主的多种介质的释放B.刺激CD4+T淋巴细胞分化为Th2细胞C.调控细胞基因的表达D.多种淋巴细胞向鼻黏膜局部的迁移、黏附、定位E.增高副交感神经活性 [单选]仓储管理包括()两部分。A.仓库管理和库存管理B.仓库管理和储存管理C.库房管理和储存管理D.库房管理和库存管理 [填空题]肋板、肋骨、横梁、平面横舱壁等以靠近()一边为理论线。 [单选]近海航区,系指中国渤海、黄海及东海距岸不超过()海里的海域。A.100B.150C.200D.250 [单选]某工业企业甲产品在生产过程中发现不可修复废品一批,该批废品的成本构成为:直接材料3200元,直接人工4000元,制造费用2000元。废品残料计价500元已回收入库,应收过失人赔偿款1000元。假定不考虑其他因素,该批废品的净损失为()元。A.7700B.8700C.9200D.10700 [单选]病人X线片可见Codman三角,可能的诊断为()A.脂肪肉瘤B.骨肉瘤C.皮质旁肉瘤D.骨髓瘤E.骨巨细胞瘤 [单选]某工程竣工验收合格后第11年内,部分梁板发生不同程度的断裂.经有相应资质的质量鉴定机构鉴定,确认断裂原因为混凝土施工养护不当致其强度不符合设计要求,则该质量缺陷应由()。A.建设单位维修并承担维修费用B.施工单位维修并承担维修费用C.施工单位维修,设计单位承担维修 [单选]行政诉讼的举证期间是()。A.第一审过程中B.第一审庭审结束之前C.第二审之前D.第二审庭审结束之前 [填空题]用兆欧表测量电器设备的绝缘电阻,必须先()。 [单选,A1型题]下列关于汤剂服用量说法错误的是()A.成人服用量一般每次约300ml,每日2~3次B.儿童服用量一般每次75ml,每日2次C.小儿服药,宜浓缩体积D.对病情危重者,应遵照医嘱服药E.小儿服药,以少量多次为好 [单选]部件装配图是表示设备中某一()的结构、形状、大小和连接装配关系及必要的加工、检验要求等内容的图样。A、组件B、部件C、零件D、局部 [单选]怎样路由器的配置才能够避免split-horizon阻止路由更新()。A.为每个有独一无二DLCI的PVC配置一个分割的子接口,并且给予接口分配分隔的子网B.配置每个点到点帧中继电路支持多播和广播流量C.在相同子网上配置许多子接口D.配置一个单独的子接口去建立多个PVC连接到多个远程 [单选]某施工单位通过行贿中标某大型项目,并向项目建设单位提交了某银行出具的工程履约保函。目前工程已经实施过半,经其他投标人投诉,招标主管部门调查认定行贿谋取中标情节属实。则()。A.施工合同无效,履约保函有效B.施工合同无效,履约保函也无效C.施工合同有效,履约 [名词解释]非法抛传 [单选,A1型题]药物依赖是指个体对药物产生()。A.精神依赖B.躯体依赖C.耐受性增加D.精神和躯体依赖E.耐受性降低 [多选]股份经营战略的特点有()。A.所有权多元化B.产权经营独立化C.公司股权分散化D.股东利润平均化E.股东责任无限化 [单选]下列哪一项不是过期妊娠的超声表现?A.胎盘老化B.胎儿双顶径小于同孕期胎儿C.胎儿皮下脂肪变薄D.胎儿股骨长度正常高于正常胎儿增长值E.胎儿脐带动脉S/D增多 [单选]期刊的中观层次选题策划包括()等内容。A.选择开本B.设计版心大小C.专题策划、作品组配D.确定刊名 [单选]单人做胸外心脏按压与人工呼吸次数的比例是()A.2:1B.5:1C.4:1D.15:2E.6:1 [单选]烧伤创面外用药磺胺米隆的常用浓度为()A.0.5%~1%B.1%~5%C.5%~10%D.15%~20%E.20%~30% [问答题,简答题]请简述企业财务管理包括哪些基本内容? [单选]“计算机集成制造系统”英文简写是()。A.CADB.CAMCIMSD.ERP [单选]孕卵着床的时间约为受精后的().A.2~3天B.3~4天C.4~5天D.6~7天E.14天 [单选,A2型题,A1/A2型题]下列贫血中的外周血片中不会出现幼红细胞的是()。A.溶血性贫血B.再生障碍性贫血C.缺铁性贫血D.失血性贫血E.巨幼细胞贫血 [填空题]胶管是由橡胶和纤维或钢丝材料经()而成的中空可挠性管状橡胶制品。通常用于输送或抽吸各种气体、液体、粕流体和粉粒状团体等物料。 [单选,A1型题]关于义齿软衬技术,下列描述正确的是()A.旧义齿软衬应尽可能采用直接法B.间接法软衬比直接法软衬准确度高C.间接法软衬材料物理性能优于直接法软衬材料D.直接法软衬材料厚度必须大于2mmE.间接法软衬材料厚度应小于1mm [单选,A1型题]疾病的三间分布包括()A.年龄、性别和种族B.职业、家庭和环境C.国家、地区和城乡D.短期波动、季节性和周期性E.时间、地区和人群分布 [多选]一般情况下,和易性包括以下含义()。A.流动性B.黏聚性C.保水性D.硬化性E.速凝性 [单选]承担消防水带产品市场准入检验的检验机构是()。A、国家固定灭火系统和耐火构件质量监督检验中心B、国家消防装备质量监督检验中心C、国家消防电子产品质量监督检验中心D、国家防火建筑材料质量监督检验中心 [单选]共同共有以()的存在为前提。A.所有权B.共同关系C.家庭关系D.夫妻关系 [单选]个人注册客户办理网上记账式国债业务的账户必须是()。A、个人身份证下的任一账户B、个人已注册的准贷记卡C、个人已注册的借记卡D、个人已注册活期存折 [问答题,简答题]简述巴氏杀菌。 [单选]根据企业国有资产法律制度的规定,某国有独资企业的下列事项中,企业负责人集体讨论决定的是()。A.合并、分立B.增加或减少注册资本C.发行债券D.转让重大财产 [单选,A1型题]婴儿添加离乳食品的一般顺序是()A.米湖、蛋黄、鱼泥、菜泥B.面条、蛋黄、肉泥、菜泥C.蛋黄、豆腐、鱼泥、菜泥D.米汤、肉泥、菜泥、碎肝E.米饭、肉泥、菜泥、鸡蛋 [单选]尽管新的生产要素能够提高农业产量,但在现实中往往能看到许多传统农民拒绝接受和采用这种包含着新的技术变化的许多生产要素。这是因为()A.传统农民是保守的B.传统农民懒惰C.传统农民不愿进行过多的劳动D.农民对风险的承受能力差 [单选]线形锁最弱点位于三角锁
相关文档
最新文档