钢热处理时的组织转变

合集下载

钢在加热时的组织转变

钢在加热时的组织转变

钢在加热时的组织转变
1. 钢在加热过程中的组织变化
钢是一种具有高强度和韧性的金属材料,广泛用于机械制造、建筑、船舶、桥梁等领域。

在钢材加工过程中,热处理是一项重要的工艺步骤,可以改善钢的力学性能、提高其使用寿命。

而钢在加热过程中的组织变化,是影响其热处理效果和性能表现的关键因素之一。

2. 软化和晶粒长大
钢材经过冷加工和热加工后,其组织结构会发生变化。

加热可以使钢材发生软化,原因是钢的晶界杂质和碳化物颗粒会被空气中的氧化物气体消耗掉,在高温下形成低能量状态的组织结构,从而改变了材料的硬度和韧度,有利于加工和使用。

同时,钢材在加热时晶粒也会长大,因为温度升高会使晶界能量降低,晶界的迁移和改变也会导致晶粒的长大。

3. 相变和组织重构
除了软化和晶粒长大,加热还可以使钢材发生相变和组织重构。

钢材中的相是指金属组织的多种形态和状态,在不同的温度下会发生相变。

例如,铁素体(ferrite)和奥氏体(austenite)是钢中常见的相,钢的性能也与其相的形态和含量密切相关。

因此,在加热过程中应该控制温度和时间,以使钢材中的相变完成,并尽量避免相的不均匀分布。

4. 总结
总之,钢材在加热时会产生多种组织变化,包括软化、晶粒长大、相变和组织重构等。

这些变化会影响钢材的力学性能、延展性和可加
工性,同时也决定了热处理工艺的制定和实施。

因此,在进行热处理
之前,应该准确了解材料的组织结构和特性,并选择合适的工艺参数
和方式,以使钢材发挥最佳性能。

球化退火过程中的组织转变

球化退火过程中的组织转变

球化退火过程中的组织转变
球化退火是一种热处理技术,其主要目的是将钢中珠光体转变为球状组织,以便改善钢的塑性和切削性。

这个过程中发生的主要组织转变是由珠光体向球状体的转变,通常由三个阶段组成:
1. 奥氏体转变:将钢材加热到适当的温度,使其处于奥氏体状态。

这通常需要一个特定的温度范围,根据不同钢材和应用,通常在725℃至1050℃之间。

2. 等温球化:将钢材置于特定温度下进行处理,以促进球状体的形核和生长。

这个过程的时间通常是根据钢材的种类和规格而定的,从数分钟到数小时不等。

3. 退火:将钢材从等温球化处理的温度冷却到室温,这通常需要数小时到数天的时间,以便使钢材内部的组织转变充分完成。

在整个球化退火过程中,还会发生其他一些组织转变,如高温下的马氏体转变、低温下的马氏体和贝氏体转变等。

然而,球化退火过程中的主要组织转变是由珠光体向球状体的转变,这种转变可以提高钢材的塑性和切削性,从而使其更加适合各种应用。

《金属材料与热处理》钢在加热及冷却时的组织转变课程教案

《金属材料与热处理》钢在加热及冷却时的组织转变课程教案
《金属材料与热处理》课程教案
课题
钢在加热及冷却时的组织转变
教学目标
知识目标
1、了解钢加热时相转变;
2、掌握等温冷却及其产物;
3、学会C曲线分析。
课型
理论型
课时
2
教学重点
1、了解钢加热时相转变;
2、掌握等温冷却及其产物。
教学难点
学会C曲线分析。
教学方法
讲授法、展示法
教学过程
备注
第一课时
组织教学
复习并引入
分析总结
本次课介绍了钢在加热时的转变(奥氏体化)和冷却时的转变(多种产物),而冷却时所得产物的性能以及连续冷却(低温转变)的内容在下次课时进行介绍。
课件演示
重难点
重难点
作业处理
1、热处理目的?
2、热处理概念?
3、热处理使钢性能发生变化的原因?
板书设计
钢在加热及冷却时的组织转变
一、钢在加热时的组织转变
冷却方法
Rel/MPa
Rm/MPa
A/%
Z/%
HRC
随炉冷却
530
280
32.5
49.3
15~18
空气中冷却
670~720
340
15~18
45~50
18~24油中冷却900Fra bibliotek620
18~20
48
40~50
水中冷却
1100
720
7~8
12~14
52~60
2、冷却方式的分类
等温冷却
冷却方式
连续冷却
1等温(处理)冷却
1、热处理目的?
2、热处理概念?
3、热处理使钢性能发生变化的原因?

钢的热处理及组织转变

钢的热处理及组织转变

一、钢的热处理
钢的淬火:
冷却介质有:油、水、盐水、碱水等,其冷却能力依次 加强,这些冷却介质都不能完全满足上述理想的淬火冷却 条件。
一、钢的热处理
钢淬火的方法:
单液淬火法:工件易变形和开裂 双液淬火法:减小了马氏体转变的相变应力 分级淬火法: Ms 线附近的盐槽或碱槽中,保温一段时 间,大大减小相变应力 等温淬火法:温度高于 Ms 的盐槽或碱槽中,保温一段 时间,发生下贝氏体转变
二、钢在加热及冷却时的组织转变
回火屈氏体(350 0C~500 0C)
由针状(或条状)铁素 体与粒状渗碳体组成的混 合物。具有较高的屈服强 度和弹性极限,并保持一 定的硬度(40HRC)和韧 性。
应用于弹簧和热锻模具。
二、钢在加热及冷却时的组织转变
回火索氏体(500 0C~650 0C)
由多边形的铁素体与粒 状渗碳体组成的混合物。 具有高强度,兼有高韧性, 硬度:187 HBS。有优良 的综合机械性能。
一、钢的热处理
淬火钢回火时组织转变: ③ 碳化物的转变
在 300 0C ~ 400 0C 温度回火时,ε 碳化物将转变为 Fe3C。400 0C时,过饱和的碳基本完全析出,钢的内应力 基本消除。
转变的过程是以 ε 碳化物重新溶入 α 固溶体,而稳定的 渗碳体相不断地析出的方式进行的。
一、钢的热处理
二、钢在加热及冷却时的组织转变
钢在加热及冷却时的组织转变:
一、钢在加热时的组织转变 二、钢在冷却时的组织转变 三、钢在回火时的转变
二、钢在加热及冷却时的组织转变
一、钢在加热时的组织转变
⑴ 奥氏体形核-钢在加热到 A1 时,奥氏体晶核优先在 铁素体和渗碳体的相界面上形成。
奥氏体晶核形成Leabharlann 二、钢在加热及冷却时的组织转变

钢的热处理及组织转变

钢的热处理及组织转变

二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
一、钢的热处理
钢的退火:
⑴ 退火的定义 将钢加热到一定温度,保温一定时间,然后缓慢冷却下 来,获得接近平衡状态的组织的热处理工艺,称为退火。 ⑵ 退火的目的
① 降低硬度,提高塑性和韧性;
② 消除残余内应力,减轻变形和防止开裂; ③ 均匀成分,细化晶粒,为最终热处理作准备; ④ 改善或消除铸造、轧制、焊接等加工中的组织缺陷。
降低钢的硬度和耐磨性。
温度过低,在淬火组织中出现铁素体,使淬火组织出现软 点,降低钢的强度和硬度。
一、钢的热处理
钢的淬火:
理想的淬火冷却曲线 应该是:在650~550 0 C范围要快冷,其它 温度区间不需快冷, 尤其在Ms点以下更不 需快冷,以免引起工 作变形或开裂。
一、钢的热处理
钢的淬火:
保持适当时间,缓慢冷却,重新形成均匀的晶粒,以消除
形变强化效应和残余应力的退火工艺。
目的:
温度 再结晶温度
消除加工硬化
提高塑性
改善切削加工性能
时间
一、钢的热处理
钢的正火:
⑴ 定义:将钢加热到 AC3 或 Accm 以上 30~50℃,保温一定
时间,出炉后在空气中冷却的热处理工艺,称为钢的正火。
上贝氏体 (羽毛状)
500
下贝氏体 (针叶状)
二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
性能上看上贝氏体的脆性较大,无实用价值;而下贝 氏体则是韧性较好的组织,是热处理时(如采用等温淬火) 常要求获得的组织。
原因:上贝氏体中的碳 化物呈较粗的片状,分
布在铁素体板条间,且
不均匀,使板条容易发 生脆废;
获得的球化效果较好,在大件和大批量生产中难以实现,

钢的热处理——钢的回火转变

钢的热处理——钢的回火转变

四 碳化物转变(250~400℃) ——转变第三阶段

(一)高碳马氏体
碳钢中马氏体过饱和的C几乎全部脱溶,但仍 具有一定的正方度。形成两种比ε-FexC更加稳定 的碳化物: 一种是c-Fe5C2——单斜晶系

一种是θ-Fe3C——正交晶系


(1)碳化物转变取决于回火温度,也和时间有关, 随着回火时间的延长,转变温度可以降低。 (2)是否出现χ-Fe5C2与钢的C%有关,C%增加有利 于χ-Fe5C2产生(板条马氏体不易产生χ-Fe5C2)。
c
c/a
3.02 3.02 2.886 2.886 2.884 2.878 2.874
1.062 1.062 1.013 1.012 1.009 1.006 1.004
碳含量 (%) 1.4
1.2 0.29 0.27 0.21 0.14 0.08
250
1h
2.863
2.872
1.003
0.06

2. 马氏体单相分解 当温度高于150℃时,碳原子扩散能力 加大,a-Fe中不同浓度可通过长程扩散消 除,析出的碳化物粒子可从较远处得到碳 原子而长大。故在分解过程中,不再存在 两种不同碳含量的a相,碳含量和正方度不 断下降,当温度达300℃时,正方度c/a接 近 1。



淬火碳钢在不同温度回火,可得到不同的 组织: 250℃以下回火,得到α+碳化物(ε,η), 即回火马氏体 (碳化物存在于板条或片内), 记作M‘ ----低温回火 350~500℃回火,得到α (0.25%C)+θ 碳 化物,即回火屈氏体(细小碳化物及针状 α ), 记作T‘。----中温回火 500~650℃回火,得到平衡态等轴α+θ碳 化物,即回火索氏体(细粒碳化物及等轴 α),记作S‘。-----高温回火

退火、正火和回火时的组织转变、性能变化及实际应用

退火、正火和回火时的组织转变、性能变化及实际应用

退火、正火和回火时的组织转变、性能变化及实际应用一、退火时的组织转变、性能变化及实际应用1、扩散退火是为了消除化学成分的不均匀,改善组织。

扩散退火是一种加热温度高、保温时间长的热处理方法。

其生产效率低,热能消耗大,工件氧化及脱碳也很严重,以致金属损失大。

故只有在必要时才使用,一般只用于高合金钢铸锭和大型铸件。

2、完全退火在加热过程中,使钢的组织全部转变的奥氏体,在冷却过程中,奥氏体转变为细小而均匀的平衡组织,从而降低钢的强度,细化晶粒,充分消除内应力。

完全退火主要用于亚共析钢,过共析钢不宜采用完全退火。

由于完全退火工艺往往需要很长时间,生产中多采用等温退火来代替完全退火。

3、球化退火是使钢获得球状组织的工艺方法。

所谓球状组织是指呈球状小颗粒的渗碳体,均匀地分布在铁素体基体中的混合物。

在球化退火前,若钢的原始组织中有明显网状渗碳体时,应先进行正火处理。

球化退火后的性能和应用范围见初级部分。

4、去应力退火详见初级部分。

二、正火时的组织转变、性能变化及实际应用详见初级部分。

三、回火时的组织转变、性能变化及实际应用1、低温回火(<250℃)低温回火得到的组织是回火马氏体,其性能是:具有高的硬度(HRC58~64)和高的耐磨性,和一定的韧性。

主要用于刀具、量具、拉丝模以及其它要求硬而耐磨的零件。

2、中温回火(250℃~500℃)中温回火得到的组织是回火托氏体,其性能是:具有高的弹性极限、屈服点和适当的韧性,硬度可达HRC40~50。

主要用于弹性零件及热锻模等。

3、高温回火(>500℃)高温回火得到的组织是回火索氏体,具有良好的综合力学性能(足够的强度与高韧性相配合),硬度达HRC25~40。

生产中常把淬火及高温回火的复合热处理工艺称为“调质”。

调质处理广泛用于受力构件,如螺栓、连杆、齿轮、曲轴等零件。

调质与正火相比较,不仅强度较高,而且塑性和韧性远高于正火钢,这是由于调质钢的组织是回火索氏体。

因此,重要零件应采用调质。

热处理基础知识

热处理基础知识

3. 淬火
(1)定义: 把零件加温到临界温度 以上30 ~ 50℃,保温一段时间,然 后快速冷却 ( 水冷 )。
(2)目的: 为了获得马氏体组织, 提高钢的硬度和耐磨性。
(3)工艺参数:
(4)常用的淬火冷却介质
名称
最大冷却速度时 平均冷却速度/(℃•s-1)
所在温 冷却速度 650~550 300~200
固体渗碳法示意图
泥封

渗碳箱
试棒
零件 渗碳剂
气体渗碳法示意图
5) 渗碳后的热处理工艺
温 度 930℃
渗碳
850℃




方案1
方案2
时间
(4)渗氮
1)定义:向钢的表面渗入氮原子的过程。
2)目的:获得具有表硬里韧及抗蚀性能 的零件。
3)用钢: 中碳合金钢。 4)方法:气体渗氮。
渗碳与渗氮的工艺特点
1.3 钢的热处理
( Heat Treatment of Steel )
概述 钢在加热时的组织转变 钢在冷却时的组织转变 钢的普通热处理工艺 钢的表面热处理工艺 机械制造过程中的热处理
1.3.1 热处理及其作用
1. 热处理的定义: 将钢在固态下进行不 同的加热、保温和冷却,以改变其内部 组织,从而获得所需性能的一种工艺。

保温
度热

临界温度
冷 却
时间
2.热处理的目的: 通过改变钢的内部组织 来改善钢的性能,如强度、硬度、塑性、 韧性、耐磨性、耐蚀性、加工性能等。
3.热处理的分类
普通 热处理
退火;正火; 淬火;回火;
感应加 热淬火热处理ຫໍສະໝຸດ 表面淬火表面 热处理

钢的热处理要点

钢的热处理要点

1.3钢的热处理钢的热处理是指将钢在固态下进行加热、保温和冷却,以改变其内部组织,从而获得所需要性能的一种工艺方法。

热处理的目的是提高工件的使用性能和寿命。

还可以作为消除毛坯〔如铸件、锻件等〕中缺陷,改善其工艺性能,为后续工序作组织准备。

钢的热处理种类很多,根据加热和冷却方法不同,大致分类如下:钢在加热时的组织转变在Fe-Fe3C相图中,共析钢加热超过PSK线〔A1〕时,其组织完全转变为奥氏体。

亚共析钢和过共析钢必须加热到GS线〔A3〕和ES线〔Acm〕以上才能全部转变为奥氏体。

相图中的平衡临界点A1、A3、Acm是碳钢在极缓慢地加热或冷却情况下测定的。

但在实际生产中,加热和冷却并不是极其缓慢的。

加热转变在平衡临界点以上进行,冷却转变在平衡临界点以下进行。

加热和冷却速度越大,其偏离平衡临界点也越大。

为了区别于平衡临界点,通常将实际加热时各临界点标为Ac1、Ac3、Accm;实际冷却时各临界点标为Ar1、Ar3、Arcm,任何成分的碳钢加热到相变点Ac1以上都会发生珠光体向奥氏体转变,通常把这种转变过程称为奥氏体化。

1.奥氏体的形成共析钢加热到Ac1以上由珠光体全部转变为奥氏体第一阶段是奥氏体的形核与长大,第二阶段是剩余渗碳体的溶解,第三阶段是奥氏体成分均匀化。

亚共析钢和过共析钢的奥氏体形成过程与共析钢根本相同,不同处在于亚共析钢、过共析钢在Ac1稍上温度时,还分别有铁素体、二次渗碳体未变化。

所以,它们的完全奥氏体化温度应分别为Ac3、Accm以上。

2.奥氏体晶粒的长大及影响因素钢在加热时,奥氏体的晶粒大小直接影响到热处理后钢的性能。

加热时奥氏体晶粒细小,冷却后组织也细小;反之,组织那么粗大。

钢材晶粒细化,既能有效地提高强度,又能明显提高塑性和韧性,这是其它强化方法所不及的。

〔1〕奥氏体晶粒度晶粒度是表示晶粒大小的一种量度。

(2〕、影响奥氏体晶粒度的因素1〕加热温度和保温时间:加热温度高、保温时间长,A晶粒粗大。

钢的热处理钢在加热和冷却时组织转变课件

钢的热处理钢在加热和冷却时组织转变课件

钢在冷却时的组织转变
珠光体的形成
总结词
珠光体是钢在冷却过程中形成的一种组织,由铁素体和渗碳体的层片状交替排 列构成。
详细描述
当钢在冷却时,奥氏体中的碳原子开始扩散并偏聚在铁素体和渗碳体的界面处, 形成富碳的铁素体和贫碳的渗碳体。随着温度的降低,这些富碳的铁素体和贫 碳的渗碳体会逐渐形成层片状结构,最终形成珠光体。
马氏体的转变
总结词
马氏体是钢在冷却过程中形成的一种组织,其特点是具有较 高的硬度和强度。
详细描述
当钢在冷却时,如果冷却速度足够快,奥氏体中的碳原子来 不及扩散,就会形成一种过饱和的固溶体,即马氏体。马氏 体的硬度高、强度大,因此在制造高强度、耐磨性好的刀具、 模具等产品时具有重要的应用。
贝氏体的转变
奥氏体的形成是一个扩 散过程,需要一定的时 间和温度。
04
奥氏体的形成与钢的成 分、加热速度和温度等 因素有关。
奥氏体晶粒的长大
01
02
03
04
随着温度的升高,奥氏体晶粒 逐渐长大。
晶粒的大小对钢的性能有重要 影响,晶粒越细,钢的强度和
韧性越好。
加热温度和时间是影响奥氏体 晶粒大小的主要因素。
为了获得细小的奥氏体晶粒, 通常采用快速加热和短时间保
回火
总结词
回火是一种将淬火后的金属重新加热至低温 并保持一段时间的过程,主要用于消除淬火 过程中产生的内应力、提高金属的韧性和塑 性。
详细描述
回火的主要目的是通过低温加热使金属内部 组织结构发生转变,消除淬火过程中产生的 内应力,提高金属的韧性和塑性。回火工艺 通常包括将淬火后的金属加热到低温回火温
开裂
是指热处理过程中,由于内应力过大 或组织转变不均匀,导致钢的表面出 现裂纹。开裂可以通过优化热处理工 艺、控制冷却速度和改善材料成分来 减少。

钢在加热及冷却时的组织转变

钢在加热及冷却时的组织转变

2.奥氏体的形成
钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程。

物元素(如铌、钒、钛等),会形成难熔的碳化物和氮化物颗粒,弥散分布于奥氏体晶界上,阻碍奥氏体晶粒的长大。

因此,大多数合金钢、本质细晶粒钢加热时奥氏体的晶粒一般较细。

原始组织:钢的原始晶粒越细,热处理加热后的奥氏体的晶粒越细。

二、钢在冷却时的组织转变
冷却方式是决定热处理组织和性能的主要因素。

热处理冷却方式分为等温冷却和连续冷却。

等温转变产物及性能:用等温转变图可分析钢在A
线以下不同温度进行等温转变
1
所获的产物。

根据等温温度不同,其转变产物有珠光体型和贝氏体型两种。

~550℃ ,获片状珠光体型(F+P)组织。

[ 高温转变]:转变温度范围为A
1
依转变温度由高到低,转变产物分别为珠光体、索氏体、托氏体,片层间距由粗到细。

其力学性能与片层间距大小有关,片层间距越小,则塑性变形抗力越大,强度
炉冷V
:比较缓慢,相当于随炉冷却(退火的冷却方式),它分别与C曲线的
1
转变开始和转变终了线相交于1、2点,这两点位于C曲线上部珠光体转变区域,估计它的转变产物为珠光体,硬度170~220HBS。

空冷V
:相当于在空气中冷却(正火的冷却方式),它分别与C曲线的转变开
2
始线和转变终了线相交于3、4点,位于C曲线珠光体转变区域中下部分,故可判断。

钢的热处理与组织

钢的热处理与组织

第一章钢的热处理组织与性能1 概述热处理之所以能使钢的性能发生巨大的变化,主要是由于钢制工件在适当的介质中,经不同的加热与冷却过程,使刚的内部组织发生了变化,化学热处理还改变钢件表层的化学成分,使其表面和基体具有不同的组织,获得所需表里不一的性能。

1.1 钢加热时的组织转变在进行退火、正火和淬火等热处理时,一般将钢加热到临界温度以上,以获得奥氏体。

加热时形成的奥氏体对冷却转变过程,以及冷却时转变产物的组织、性能有显著影响。

奥氏体的形成过程以共析钢为例,加热至AC1以上,钢中珠光体向奥氏体转变,包括以下四个阶段:(如图1—1)1)形核:在温度AC1以上珠光体不稳定。

在铁素体和渗碳体界面上碳浓度不均匀,原子排列不规则从浓度和机构上为奥氏体晶核的形成提供了有利条件,因此优先在界面上形成奥氏体晶核。

2)长大:奥氏体形核后的长大依靠铁素体继续转变为奥氏体和渗碳体的不断溶解。

前者比后者快,所以转变基本完成后仍有部分剩余奥氏体未溶解。

3)剩余渗碳体的溶解:随着时间延长,剩余渗碳体不断溶入奥氏体中。

4)奥氏体的均匀化:渗碳体溶解后,奥氏体中碳浓度不均匀,需要通过碳原子扩散获得均匀的奥氏体。

对亚共析钢和过共析钢而言,温度刚超过AC1只能使珠光体转变为奥氏体,只有在AC1或Acm以上保温足够时间,才能使先共析铁素体或先共析渗碳体完全溶入奥氏体中,获得单项奥氏体组织。

1.2 过冷奥氏体的转变冷至临界温度以下的奥氏体称为过冷奥氏体。

它的分解是一个点阵重构和碳原子扩散再分配的过程。

过冷奥氏体转变分为三种基本类型:珠光体转变(扩散型),贝氏体转变(过渡型),马氏体转变(无扩散型)。

过冷奥氏体等温转变曲线(C—曲线或TTT图)过冷奥氏体等温转变曲线形如拉丁字母中的“C”,故称为C-曲线,亦称TTT(Time Temperature Transformation)图,如图1-2所示。

共析钢C-曲线如图1-2所示,图中最上面的一根水平虚线为钢的临界点A1,下方的一根水平线Ms为马氏体转变开始温度,另一根水平线M f为马氏体转变终了温度。

钢在加热时的转变

钢在加热时的转变

钢在加热时的转变热处理—将固体金属或合金在一定介质中的加热、保温和冷却,以改变材料整体或表面组织,从而获得所需要的工艺性能。

大多数热处理工艺都要将钢加热到临界温度以上,获得全部或部分奥氏体组织,即奥氏体化。

奥氏体的形成奥氏体的形成是形核和长大的过程,也是Fe,C原子扩散和晶格改变的过程。

分为四步。

共析钢中奥氏体的形成过程如图1所示:第一步奥氏体晶核形成:首先在a与Fe3C相界形核。

第二步奥氏体晶核长大:g晶核通过碳原子的扩散向a和Fe3C方向长大。

第三步残余Fe3C溶解:铁素体的成分、结构更接近于奥氏体,因而先消失。

残余的Fe3C随保温时间延长继续溶解直至消失。

第四步奥氏体成分均匀化:Fe3C溶解后,其所在部位碳含量仍很高,通过长时间保温使奥氏体成分趋于均匀。

图1 奥氏体的形成示意图亚共析钢和过共析钢的奥氏体化过程与共析钢基本相同。

但由于先共析a或二次Fe3C的存在,要获得全部奥氏体组织,必须相应加热到Ac3或Accm以上。

2. 影响奥氏体转变速度的因素(1)加热温度和速度增加→转变快;(2)钢中的碳质量分数增加或Fe3C片间距减小→界面多,形核多→转变快;(3)合金元素→钴、镍增加奥氏体化速度,铬、钼等降低奥氏体化速度。

3.奥氏体晶粒度(1)奥氏体晶粒度—奥氏体晶粒越细,退火后组织细,则钢的强度、塑性、韧性较好。

淬火后得到的马氏体也细小,韧性得到改善。

某一具体热处理或加工条件下的奥氏体的晶粒度叫实际晶粒度。

奥氏体化刚结束时的晶粒度称起始晶粒度,此时晶粒细小均匀。

通常将钢加热到930±10℃奥氏体化后,保温8小时,设法把奥氏体晶粒保留到室温测得的晶粒度为本质晶粒度。

用来衡量钢加热时奥氏体晶粒的长大倾向。

g晶粒度为1-4级的是本质粗晶粒钢,5-8级的是本质细晶粒钢。

前者晶粒长大倾向大,后者晶粒长大倾向小。

(2)影响奥氏体晶粒度的因素第一,加热温度越高,保温时间越长→晶粒尺寸越大。

第二,碳质量分数越大晶粒长大倾向增多。

钢在热处理时的组织转变

钢在热处理时的组织转变
⑴珠光体型转变。过冷奥氏体在 A1 到鼻部的温度范围内等温冷却时,将发生珠 光体型转变,转变产物为铁素体薄层和渗碳体薄层交替重叠的层状组织,即珠光体组 织。随转变温度的降低即过冷度的增大,珠光体晶粒将细化,即片层间距变小,硬度 提高。珠光体组织通常分为如下三种:在 A1 到 650℃之间形成较粗大的珠光体,仍为 珠光体,用符号 P 表示;在 650℃到 600℃之间形成细珠光体,称为索氏体,用符号 S 表示;在 600℃到 550℃之间形成极细珠光体,称为托氏体,用符号 T 表示。其结 构如图 2-31 所示。
钢在热处理时的组织转变
1.2钢在冷却时的组织转变
图 2-29 共析钢过冷奥氏体等温转变图的建立
钢在热处理时的组织转变
1.2钢在冷却时的组织转变
图2-30为共析钢过冷奥氏体等温转变图。两条C曲线中,左边的一条 为过冷奥氏体转变开始线,右边一条为转变终了线,其右侧为转变产 物区,两条C曲线之间为过冷奥氏体部分转变区。从图看出:A1以上 是奥氏体稳定区域;在A1以下,转变开始线以左,由于过冷现象, 奥氏体仍能存在一段时间,这段时间称为孕育期。孕育期的长短标志 着过冷奥氏体的稳定性的大小。曲线的拐弯处(550℃左右)俗称 “鼻尖”,孕育期最短,过冷奥氏体稳定性最小。鼻尖将曲线分为上 下两部分,上部称为高温转变区,下部称为中温转变区。
图 2-32 上贝氏体
图 2-33 下贝氏体
钢在热处理时的组织转变
1.2钢是碳在⑶在冷马γ却氏-F体e时中型的所转组形变成。织在的转过M变饱s 以和下固温溶度体范,围用内符冷号却M,表转示变。产硬物度主取要决为于马碳氏的体过。马饱氏和体程
度,即随碳的质量分数增加,强度明显增高。 3)亚共析钢和过共析钢的等温转变图 亚共析钢和过共析钢的过冷奥氏体在转变为珠光体之前,要分别析出先析铁素体

钢在加热时的转变

钢在加热时的转变

钢在冷却时的转变冷却是热处理的最后一个工序,也是最关键的工序,它决定了钢热处理后的组织和性能。

同一种钢,加热温度和保温 时间相同,冷却方法不同,热处理后的性能截然不同。

这是因为过冷奥氏体在冷却过程中转变成了不同的产物。

那么奥氏 体在冷却时转变成什么产物?有什么规律呢?这就是本次课的主要内容。

碳钢热处理时的冷却速度一般较大,大多都偏离了平衡状态(除退火外) ,所以热处理后的组织为非平衡组织。

碳钢 非平衡组织和按铁碳相图结晶得到的平衡组织相比差别很大。

所以不能再用铁碳相图加以分析,而应使用 C 曲线来确定。

一、 共析钢等温转变 C 曲线先介绍几个概念。

等温冷却和连续冷却;过冷奥氏体:处于 A1以下热力学不稳定的奥氏体,而奥氏体在 A1以上是稳定的,不会发生转变。

所以等温转变 C 曲线讲的就是过冷奥氏体在等温冷却条件下的转变规律。

(一) 、等温 C 曲线的测定(略)(二) 、等温 C 曲线的结构坐标轴、线、区的含义;孕育期的问题,引出 C 曲线的“NOSE”,共析钢过冷奥氏体最不稳定的温度是550℃,也就是说其“NOSE”出现在 550℃。

C 曲线的“NOSE”对钢的热处理影响很大,应注意。

(三) 、转变产物按照不同的冷却条件,过冷奥氏体在不同的温度范围内等温时将转变成不同的产物。

1、 珠光体类型转变在 A1--550℃之间等温时,过冷奥氏体转变成珠光体类型组织(即都是由 F 和 Fe3C 组成 ) ,而且等温温度越低, 组织中 F 和 Fe3C 的层片间距越小,组织越细,力学性能越高。

这些组织分别称为珠光体、索氏体和屈氏体,用符号 P、 S、T 表示。

其中 S 只有在1000倍的显微镜下才能分辨出其层片状形态;而 T 则只有在更高倍的电子显微镜下才能分辨 出其层片状形态。

这个转变是一个扩散型相变,需要完成铁的晶格改组和碳原子的重新分布。

2、 贝氏体转变在550℃--Ms 之间等温时,过冷奥氏体发生贝氏体转变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Wc 100
5) 马氏体的硬度取决于马氏体中碳的过饱和度
硬度 ( HRC )
抗拉强度 ( Mpa )
70
2000
60
1800
50 1400
40 1000
30
600 20
10
200
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
马氏体的碳浓度 Wc 100%
温度 (℃)
二、钢的正火 1、定义:将钢件加温到A3或Acm以上30~50℃,保温一段时间后在空气中冷却。 2、目的:消除应力,调整硬度,为最终热处理做准备。
3、工艺参数:
第三节 钢的淬火与回火
一、钢的淬火 1、定义: 将钢件奥氏体化后以>Vk的冷速快冷,以获得M组织的热处理工艺。 2、目的: 获得高硬度的 M 或 B下 组织。 3、工艺参数:
水冷
Vk
油冷
Vk1 时间(lgτ)
2) 在连续冷却过程中TTT曲线的应用
温度
800 700 600 500
稳定的奥氏体区
400
300 Ms
200
100
0 Mf V4 Vk
V3
-100
0
1
10
102
103
A1
V1 炉冷 V1=5.5℃/s P
V2
空冷 V2=20℃/s S
油冷 V3=33℃/s T+M+Ar 水冷 V4≥138℃/s M+Ar

保温

加热
临界温度
连续冷却
等温冷却
时间
4.1 钢热处理时的组织转变
T/℃
2、过冷奥氏体等温冷却转变
800
1) 等温冷却转变曲线
700
----TTT曲线(C曲线)
600
T---time
T---temperature
500
T---transformation
400
300
200
100 0
-100 0
TTT 曲线(共析钢)建立示意图 A1
T
B
300 Ms
200
100 0 Mf
M + A残
-100 0
110Biblioteka 102103104 时间(s)
3、过冷奥氏体的连续冷却转变
1) 连续冷却转变曲线----CCT曲线 C---continuous C---cooling
T---transformation

A1

A+P
Pf
Ps
K Ms Mf
炉冷 空冷
光镜形貌
电镜形貌
珠光体形貌像
光镜形貌
电镜形貌
索氏体形貌像
光镜形貌 电镜形貌
屈氏体形貌像
2、贝氏体型(B)转变(550~230℃) ➢550~350℃: B上 ≈45HRC
➢350~230℃: B下 ≈55HRC
3、马氏体型(M)转变(230~-50℃)
1) 定义:马氏体是一种碳在α–Fe中的过饱和固溶体。
为后续冷却时组织的转变做准备。 1、奥氏体的形成
4.1 钢热处理时的组织转变
2、奥氏体晶粒大小对钢的力学性能的影响
◇ 奥氏体晶粒均匀细小,热处理后钢的力学性能愈高。 ◇ 奥氏体晶粒粗大淬火时易使工件产生较大变形甚至开裂。
4.1 钢热处理时的组织转变
二、 钢冷却时的组织转变
1、钢热处理时的冷却方式
1
10
102
103
104 t / s
T /℃
TTT(共析钢)曲线分析
800
700
过 600 冷
500
奥 氏
体 400 区
300 Ms
200
100
0 Mf
-100 0
稳定奥氏体区
A
+
A转变终止线



A转变开始线
产物区
1
10
102
A1
A1~550℃(高温转变区) 产 P 转变 物 区
550~230℃(中温转变区) B 转变
2) 转变特点: ➢在一个温度范围内连续冷却转变 ➢无扩散转变(Fe、C均不扩散),与原A的成分相同,造成晶格畸变。
3) 马氏体的组织形态: ➢板条状---低碳马氏体(<0.2%C ) ➢针片状---高碳马氏体(>1.0%C )
30~50HRC ≈65HRC
4) A含碳量对马氏体转变温度及Ar数量的影响
230~-50℃(低温转变区) M 转变
103
104
t/s
转变产物及性能 1.珠光体型(P)转变(A1~550℃) ➢A1~650℃: 珠光体(P) ≈20HRC 片间距0.6~0.7μm
➢650~600℃: 索氏体(S) ≈30HRC 片间距0.2~0.4μm
➢600~550℃: 屈氏体(T) ≈40HRC 片间距<0.2μm
第4章 钢的热处理
概述
◇ 钢的热处理

保温

加热
临界温度 冷却
时间
概述
◇ 钢的热处理目的:提高钢的力学性能;改善钢的工艺性能。
◇ 钢的热处理分类:
普通热处理
热处理
退火、正火 淬火与回火
表面淬火
感应加热
表面热处理
火焰加热
化学热处理
渗碳、渗氮 碳氮共渗
4.1 钢热处理时的组织转变
一、钢加热时的组织转变 钢热处理加热的目的是获得成分均匀、晶粒细小的奥氏体组织,
亚共析钢的TTT曲线
800
F
700
A
600
500
400 300 Ms 200 100
0 Mf
M + A残
-100 0
1
10
102
103
A3 A1 P+F S+F T B
104 时间(s)
温度 (℃)
800 700 600 500
400
过共析钢的TTT曲线
ACM
Fe3CⅡ A
A1 P + Fe3CⅡ S + Fe3CⅡ
4、淬火介质: ◇ 理想淬火冷却介质
温度
800 700 600 500
400 300 Ms 200 100
0 Mf
104 时间(s)
第二节 钢的预备热处理 ◆ 零件生产的一般工艺路线
毛坯生产 预备热处理
机械加
工 最终热处理
预备热处理 : 退火 ; 正火 最终热处理 : 淬火 ; 回火
机械精加工
一、钢的退火 1、定义: 把钢件加温到一定温度,保温一定时间后缓慢冷却的热处理工艺。
2、目的: 消除毛坯件的缺陷或加工硬化,为后续加工和最终热处理做准备。
700
600
500
温 400 度
300
200
Ms
100

0 -100 -200
0
Mf
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Wc 100
残 90
余 奥
80
氏 70

量 60
( % )50
40
30
20
10
0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
3、分类: 完全退火
普通完全退火 等温完全退火
退火
球化退火
普通球化退火 等温球化退火
低温退火
再结晶退火
去应力退火
4、工艺参数:
退火工艺 完全退火 球化退火 去应力退火 再结晶退火
加热温度 Ac3 + 30~50 Ac1 + 30~50
500~600 T再 + 100~200
T10钢球化退火组织 ( 化染 )
相关文档
最新文档