初中数学竞赛辅导讲义及习题解答 第3讲 充满活力的韦达定理

合集下载

九年级数学秋季教材班第8次课 充满活力的韦达定理 定稿

九年级数学秋季教材班第8次课   充满活力的韦达定理  定稿

充满活力的韦达定理姓名 日期【知识要点】1.一元二次方程两根和与两根积和系数的关系: 如果ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么acx x a b x x =-=+2121,,2.一元二次方程的根与系数的关系简化形式:如果把方程()002≠=++a c bx ax 变形为02=++acx a b x ,即x 2+px+q=0的形式,其中acq a b P ==,.从而得出:如果方程 x 2+px+q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1·x 2=q . 3.韦达定理的逆定理:以两个数21,x x 为根的一元二次方程(二次项系数为1)是()021212=++-x x x x x x .一般地,如果有两个数21,x x 满足⎪⎪⎩⎪⎪⎨⎧=-=+a c x x ab x x 2121那么21,x x 必定是一元二次方程02=++c bx ax ()0≠a 的两个实数根. 2.不解方程,判断根的性质与符号:已知一元二次方程02=++c bx ax ()0≠a 有两个根21,x x .(1)方程两根的符号由“a b x x -=+21”,“acx x 21=”确定:①两根同号时, .②两根正号时, 且 . ③两根同负时, 且 . ④两根异号时, .(2)当两根异号时,即 ,利用abx x -=+21判断绝对值 较大的根是正还是负或者是零.①021>+x x 时, 根的绝对值较大; ②021<+x x 时, 根的绝对值较大;③021=+x x 时,两根的 相等,即两根互为 . 【典型例题】例1.下列方程中,两根的和与两根的积各是多少?(1)x 2-2x +1=0;(2)x 2-9x +10=0;(3)2x 2-9x +5=0;例2.判定下列各方程后面的两个数是不是它的两个根例3.已知方程5x 2+kx-6=0的根是2,求它的另一根及k 的值.例5.设x 1,x 2是方程2x 2+4x-3=0的两个根,利用根与系数的关系,求下列各式的值:(1)(x 1+1)(x 2+1) (2)x 12x 2+x 1x 22 (3)(x 1-x 2)2;例6.m 为何值时:(1)方程01342=++-m x x 有两个不相等的正数根? (2)方程()0234122=-+++m mx x m 有一正根、一负根?(3)方程()02152=-+-+m x m x 的两根是相反数?例7.(1)以和为根的一元二次方程 。

最新初三数学竞赛辅导教程【精】

最新初三数学竞赛辅导教程【精】

1.1 因式分解一、常用公式或变形方法(此处只列出教科书以外的常用于竞赛中的内容)1.2.3.4.二、例题讲解例1.已知a、b、c是△ABC ABC 的形状.例2.若三个素数的乘积恰好等于它们和的23倍,求这三个素数.(2015大同杯第四题)例3.已知实数a、b、c.(2003年宇振杯第3题)例4.三、练习题1.已知整数a、b.2..3.已知a、b、c(1(24.2014大同杯第1题)5.设非零实数a,b,c.(2013年全国初中数学联赛第一试第1题)6.已知正数a、b、c值.7.已知:,,,求.(2016全国初中数学联赛第二试B组第2题)1.2 对称式与轮换对称式一、定义1.对称式。

2. 如果一个多项式的各项的次数均等于同一个常数,那么称这个多项式为齐次多项式。

3.4.换式,但轮换式不一定是对称式。

例如对称式也是轮换式;二、例题讲解例1. 已知,a,b,c是△ABC的面积.例2.2014大同杯第4题)例3.设x、y、z xyz的值. 例4.x1、x2、y1、y2满足x12+x22=2,x2y1﹣x1y2=1,x1y1+x2y2=3.求y12+y22的值.三、练习题1. .2. 若数组(x,y,z求xyz的值.3. 已知b≥0,且a+b=c+1,b+c=d+2,c+d=a+3,求a+b+c+d的最大值.4.2015大同杯第7题)5.已知bc﹣a2=5,ca﹣b2=﹣1,ab﹣c2=﹣7,求6a+7b+8c6. 已知实数a、b、c x1、x2、y1、y2满足x12+ax22=b,x2y1﹣x1y2=a,x1y1+ax2y2=c.求y12+ay22的值.(2007新知杯第5题)1.3高斯函数一、定义实数x,用[x]表示不超过x的最大值整数,则y=[x]称为高斯函数.二、例题讲解例1. .(2006新知杯第6题)例2. 对于正整数n2017全国数学联赛第一试第6题)例3. 给定正实数a ,对任意一个正整数n数x 的最大整数。

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。

【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。

思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。

【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

初中数学竞赛第三讲充满活力的韦达定理(含答案)

初中数学竞赛第三讲充满活力的韦达定理(含答案)

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根. (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.学历训练A 组1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 . (2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,35.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25 C .5 D .2 6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( ) A .1 B .-l C .21- D .21 7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.B 组9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413 B .1949413 C .999413 D .979413 13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<m D .43≤m ≤115.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案。

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)
思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解.
【例5】已知实数 、 、 、 互不相等,且 ,试求 的值.思路点拨:运用连等式,通过迭代把 、 、 用 的代数式表示,由解方程求得 的值.
注:一元二次方程常见的变形形式有:
(1)把方程 ( )直接作零值多项式代换;
(2)把方程 ( )变形为 ,代换后降次;
11、已知 、 是有理数,方程 有一个根是 ,则 的值为.
12、已知 是方程 的一个正根.则代数式 的值为.
13、对于方程 ,如果方程实根的个数恰为3个,则m值等于()
A、1B、2 C、 D、2.5
14、自然数 满足 ,这样的 的个数是()
A、2 B、1 C、3 D、4
15、已知 、 都是负实数,且 ,那么 的值是()
20、如图,锐角△ABC中,PQRS是△ABC的内接矩形,且S△ABC= S矩形PQRS,其中 为不小于3的自然数.求证: 需为无理数.
参考答案
第二讲 判别式——二次方程根的检测器
为了检查产品质量是否合格,工厂里通常使用各种检验仪器,为了辨别钞票的真伪,银行里常常使用验钞机,类似地,在解一元二次方程有关问题时,最好能知道根的特性:如是否有实数根,有几个实数根,根的符号特点等.我们形象地说,判别式是一元二次方程根的“检测器”,在以下方面有着广泛的应用:
利用判别式,判定方程实根的个数、根的特性;
运用判别式,建立等式、不等式,求方程中参数或参数的取值范围;
通过判别式,证明与方程相关的代数问题;
借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题.
【例题求解】
【例1】 已知关于 的一元二次方程 有两个不相等的实数根,那么 的取值范围是.(广西中考题)

数学培优竞赛新方法(九年级)-第3讲-充满活力的韦达定理

数学培优竞赛新方法(九年级)-第3讲-充满活力的韦达定理

A.不大于 1
B.大于 1
C.小于 1
D.不小于 1
(2011 年《数学周报杯》全国初中数学竞赛题)
7.若 ab 1 ,且有 5a 2 2001a 9 0及9b2 2001b 5 0,则 a 的值为( ) b
9
A.
5
5
B.
9
C. 2001 5
D . 2001 9
(全国初中数学联赛题)
1
九年级数学培优竞赛辅导讲座
[充满活力的韦达定理] 学历训练
1.已知方程 x 2 px q 0 的两根均为正整数,且 p q 28 ,那么这个方程两根为

(“祖冲之杯”邀请赛)
2.已知整数 p,q 满足 p q 2010, 且关于 x 的一元二次方程 67x 2 px q 0 的两个根均为正整数,
值范围是( )
A. 0 m 1
B. m 3 4
(全国初中数学联赛题)
C. 3 m 1 D. 3 m 1
4
4
思路点拨 设方程的根分别为 1、 x1, x2 ,由三角形三边关系定理、韦达定理建立 m 的不等式组。
例 3.设 x1 、 x2 是方程 2x 2 4mx 2m 2 3m 2 0 的两个实数根,当 m 为何值时, x12 x2 2 有最小值?
九年级数学培优竞赛辅导讲座
第 3 讲 充满活力的韦达定理
知识纵横
一元二次方程的根与系数的关系,通常也称 为韦达定理,这是因为该定理是由 16 世纪法国最杰出 的数学家韦达发现的.
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征 ; 利用韦达定理逆定理,构造一元二次方程辅助解题等. 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路. 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解 这类问题常用到对称分析、构造等数学思想方法.

韦达定理含答案-

韦达定理含答案-

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件. 注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根. (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x + 有最小值?并求出这个最小值.思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.学历训练A 组1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 . (2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,35.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25 C .5 D .2 6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( ) A .1 B .-l C .21- D .21 7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.B 组9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413 B .1949413 C .999413 D .979413 13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<mD .43≤m ≤115.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案。

初三数学竞赛专题——韦达定理

初三数学竞赛专题——韦达定理

初三数学竞赛专题——韦达定理一、选择题1.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413B .1949413C .999413D .979413 答案:B2.如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么b a a b +的值为( )A .22123B .22125或2C .22125D .22123或2(2001年TI 杯全国初中数学竞赛试题)答案:B3.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,3答案:C 4.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<mD .43≤m ≤1答案:C5.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x答案:C6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( )A .1B .-lC .21-D .21 答案:C7.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25C .5D .2 答案:B二、填空题8.已知α、β是方程012=--x x 的两个根,则βα34+的值为 . (2003年天津市竞赛题)答案:5.9.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 .(2001年内蒙古中考题)(2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .(2003年四川省中考题)答案:(1)2135-≤<-m ;(2)7>m 10.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .(2003年金华市中考题)答案:611.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .(2002年四川省竞赛题) 答案:18211≤<m . 12.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .(2002年湖北省黄冈市中考题)答案:一313.已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 . (2001年浙江省绍兴市竞赛题)答案:014.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .(“祖冲之杯”邀请赛试题)答案:30,2三、解答题15.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值. 答案:(1)125≤k ;(2)0=k . 16.已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x .(2002年苏州市中考题)答案:(1)△=02)1(22>+-m ;(2)4=m ,51±=x ;0=m ,01=x ,22-=x17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.答案:1222===n m BD AD BC AC ,即m=2n ①,△=4n 2一m 2—8n 十16>0 ②,把①代人②得,n ≤2.又222119)(<-x x ,得4n 2一m 2—8n+4<0③,把①代人③,得n>21,∴221≤<n , ∴n=l ,2,从而得m=2或4.18.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.(全国初中数学联赛题) 答案:(1)2175-=m ;(2)原式=25)23(22--m ,当1-=m 时,最大值为10.19.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.答案:(1)m=8;(2)BE=2.20.设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.(第十六届江苏省竞赛题) 答案:当32=m 时,2221x x +有最小值,这个最小值为98 21.已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长. (2003年哈尔滨市中考题) 答案:(1)当m=2时,△=0,∴AB ∥CD 且AB=CD ,故四边形ABCD 是平行四边形.当m>2时,△=m 一2>0,又AB+CD =2m>0,047)21(2>+-=⋅m CD AB ,∴AB ≠CD ,而AB ∥CD ,故四边形ABCD 是梯形.(2)12121=-=AB DC PQ ,∴2=-AB DC ,∵AB DC BC DC AB DC ⋅-+=-4)()(22 ,∴)2(4)2(2222+--=m m m ,解得3=m ,从而AB=2,CD=4.22.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.(2000年俄罗斯数学竞赛题)答案:设01121=++ax x ,0121=++c bx x ,得b a c x --=11,由0222=++a x x ,0222=++b cx x ,得12--=c b a x (c ≠1),故121x x =.另一方面由韦达定理知11x 是第一个方程的根,这就表明2x 是方程012=++ax x 和02=++a x x 的公共根.因此两式相减有0)1)(1(2=--x a ,但当1=a 时,这两个方程无实根,故x 2=l ,从而x 1=l ,于是2-=a ,1-=+c b ,所以3-=++c b a23.关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确? 答案:由条件得14)(2+=+ab b a ,又△=0434)(92≥⨯⨯-+ab b a ,∴ab b a 316)(2≥+,即ab ab 31614≥+,∴4ab ≤3,从而4ab+1≤4.即(a+b)2≤4.。

初中数学竞赛:XXX定理(附练习题及答案)

初中数学竞赛:XXX定理(附练习题及答案)

初中数学竞赛:XXX定理(附练习题及答案)初中数学竞赛:XXX定理韦达定理是一元二次方程的根与系数的关系,最初由16世纪法国数学家XXX发现。

它包含了丰富的数学内容,并有广泛的应用,主要体现在以下几个方面:求方程中参数的值、求代数式的值、讨论根的符号特征、构造一元二次方程辅助解题等。

XXX定理具有对称性,可以通过设而不求、整体代入的方法解题。

它与代数、几何中的许多知识结合,可以生成丰富多彩的数学问题,解这些问题常用到对称分析、构造等数学思想方法。

例题求解】例1】已知α、β是方程x^2-x-1=0的两个实数根,则代数式α^2+α(β^2-2)的值为。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为α、β的对称式,即α^2+β^2和αβ,然后代入已知条件求解。

例2】如果a、b都是质数,且a^2-13a+m=0,b^2-13b+m=0,那么ba/(ab+2)的值为(。

)。

思路点拨:可将两个等式相减,得到a、b的关系,由于两个等式结构相同,可视a、b为方程x^2-13x+m=0的两实根,这样就为根与系数关系的应用创造了条件。

例3】已知关于x的方程:x-(m-2)x^4=01)求证:无论m取什么实数值,这个方程总有两个相异实根。

2)若这个方程的两个实根x1、x2满足x2=x1+2,求m的值及相应的x1、x2.思路点拨:对于(2),先判定x1、x2的符号特征,并从分类讨论入手。

例4】设x1、x2是方程2x^2-4mx+2m^2+3m-2=0的两个实数根,当m为何值时,x1^2+x2^2有最小值?并求出这个最小值。

思路点拨:利用根与系数关系把待求式用m的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的。

应用韦达定理的前提条件是一元二次方程有两个实数根,即判别式△≥0.转化是数学中重要的思想方法,但需注意转化前后问题的等价性。

已知四边形ABCD中,AB∥CD,且AB、CD的长是关于x的方程x^2-2mx+(m-2)^2的两个根。

初中数学韦达定理习题及答案

初中数学韦达定理习题及答案
9.(4分)(2004万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要_________.(单位:mm)(用含x、y、z的代数式表示)
10.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为_________ .
考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;整式的除法。1923992
分析:根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的`性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.
解答:解:①3x3(﹣2x2)=﹣6x5,正确;
②4a3b÷(﹣2a2b)=﹣2a,正确;
③应为(a3)2=a6,故本选项错误;
整式的乘除与因式分解单元测试卷(选择题)
下面是对整式的乘除与因式分解单元测试卷中选择题的练习,希望同学们很好的完成。
整式的乘除与因式分解单元测试卷
选择题(每小题4分,共24分)
1.(4分)下列计算正确的是()
A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6
2.(4分)(x﹣a)(x2+ax+a2)的计算结果是()
因式分解同步练习(解答题)
解答题
9.把下列各式分解因式:
①a2+10a+25②m2-12mn+36n2
③xy3-2x2y2+x3y④(x2+4y2)2-16x2y2
10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.
11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

九年级数学尖子生培优竞赛专题辅导第三讲 韦达定理及其应用(含答案)

九年级数学尖子生培优竞赛专题辅导第三讲 韦达定理及其应用(含答案)

第三讲 韦达定理及其应用趣题引路】韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣;常利用业余时间钻研数学.韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。

人们为了纪念他在代数学上的功绩,称他为“代生之父”历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战.国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解).消息传开,数学界为之震惊.同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。

韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理,你能利用韦达定理解决下面的问题吗?已知:①a 2+2a -1=0,②b 4-2b 2-1=0日1-ab 2≠0.求2220041()ab b a++的值。

解析 由①知211120a a +-= .即211()210a a +-=,③由②知(b 2)2-2b 2-1=0,④ 由韦达定理,得22112,1b b a a+=⋅=- , ∴()200422220042004211()21ab b b b a aa ⎡⎤++⎛⎫=++=-⎢⎥ ⎪⎝⎭⎣⎦62为一元二次方程²-2x -1=0的两根。

点评 本题的关键是构造一元二次方程x 2-2x -1=0,利用韦达定理求解,难点是将①变形成③,易错点是忽视条件1-ab ²≠0,而把a ,-b 2看作方程x 2+2x -1=0的两根来求解.知识延伸】例1 已知关于x 的二次方程2x 2+ax -2a +1=0的两个实根的平方和为174 ,求a 的值.解析 设方程的两实根为x 1,x 2,根据韦达定理,有 12122212a x x a x x ⎧+=-⎪⎪⎨-+⎪⋅=⎪⎩ 于是,x 12+x 22=(x 1+x 2)2-2x 1x 2 =221222a a -+⎛⎫--⋅ ⎪⎝⎭=14(a 2+8a -4) 依题设,得14 (a 2+8a -4)=174,解得a =-11或3.注意到x 1,x 2,为方程的两个实数根,则△≥0,但a =-11时,△=(-11)2+16×(-11)-8=-63<0;a =3时,△=32-4×2×(-6+1)=49>0,故a =3.点评 韦达定理应用的前提是方程有解,即判别式△=0,本题容易忽视的就是求出a 的值后,没有考虑a 的值满足△≥0这一前提条件。

韦达定理及其应用竞赛题上课讲义

韦达定理及其应用竞赛题上课讲义

韦达定理及其应用【内容综述】b 设一元二次方程.有二实数根,则一这两个式子反映了一元二次方程的两根之积与两根之和同系数a, b, c的关系,称之为韦达定理。

其逆命题也成立。

韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。

本讲重点介绍它在五个方面的应用。

【要点讲解】1. 求代数式的值应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。

b a★★例1若a, b为实数,且以+蟄十1 = 0,川+⑵+ 1 = 0,求7%的值。

思路注意a, b为方程一」:--的二实根;(隐含丄—)。

解(1)当a=b时,b 住r—十一=2亠's .(2)当-=-时,由已知及根的定义可知,a, b分别是方程- :-的两根,由韦达定理得^- = , ab=1..d + & _ / 丰力2 _ (&斗b)' - Tab _(一3『-1应3 必逸1丄十丄说明此题易漏解a=b的情况。

根的对称多项式【二,〔’-, 等都可以用方程的系数表达出来。

一般地,设:二,3为方程工m r -的二根,】〔「「,则有递推关系。

曲陰2 +1+1 +隅"0其中n为自然数。

由此关系可解一批竞赛题。

附加:本题还有一种最基本方法即分别解出a, b值进而求出所求多项式值,但计算量较大。

★★★例2若斯2=闭十],闿2_^_] = 口且胆工吃,试求代数式用+ 的值。

思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。

解:因为乂 ' ,由根的定义知m, n为方程■ ' - - ■ ■-的二不等实根,再由韦达定理,得2. 构造一元二次方程如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

★★★★例3设一元二次方程'"-rJ' 1'的二实根为:和・。

(1)试求以-「和;为根的一元二次方程;(2)若以川和「为根的一元二次方程仍为:厂 -I。

中学数学 韦达定理 练习题(含答案)

中学数学  韦达定理  练习题(含答案)

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根. (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x .思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长. (2003年哈尔滨市中考题)思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.学历训练1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 . (2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,35.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25 C .5 D .2 6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( ) A .1 B .-l C .21- D .21 7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413 B .1949413 C .999413 D .979413 13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<mD .43≤m ≤1 15.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2) 求22212111x mx x mx -+-的最大值. 17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案。

韦达定理练习(培优竞赛题)

韦达定理练习(培优竞赛题)

第三讲 充满活力的韦达定理知识纵横一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.例题求解【例1】(1)已知21x x 是方程031222=-+-m x x 的两个实数根,且0)(22121>++∙x x x x ,那么实数m 的取值范围是_________(河南省中考题)(2) 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .(绍兴市竞赛题)思路点拨 对于(1),运用根与系数关系建立m 的不等式,但要注意判别式的制约;对于(2) 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为基本对称式解。

【例2】如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边线之长,那么,实数m 的取值范围是( )A .10≤≤mB .43≥m C .143≤<m D .143≤≤m(全国初中数学联赛题)思路点拨 设方程的根分别为1、2/1x x ,由三角形三边关系定理、韦达定理建立m 的不等式组。

【例3】 已知关于x 的方程:04)2(22=---m x m x(1)求证:无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x .(苏州市中考题)思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.(第16届江苏省竞赛题)思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.根的分布【例5】c b a 、、为实数,ac<0,且,0532=++c b a 证明一元二次方程c bx ax ++2有大于53而小于 1 的根。

初中物理竞赛:韦达定理(附练习题及答案)

初中物理竞赛:韦达定理(附练习题及答案)

初中物理竞赛:韦达定理(附练习题及答案)韦达定理是物理学中的一个重要定理,用于求解力学问题。

它是基于能量守恒和功的定义推导出来的。

韦达定理的表达式为:\[W = \Delta KE \]其中,W表示外力做的功,\(\Delta KE\)表示物体动能的变化。

韦达定理可以应用于各种力学问题,帮助我们分析和计算物体的运动情况和动能的变化。

下面是一些韦达定理的练题及答案,供参考:1. 一个质量为2kg的物体在力为10N的作用下沿着力的方向移动了5m,求外力所做的功。

解答:根据韦达定理,外力做的功等于物体动能的变化。

由于力与物体的位移方向相同,所以力做正功。

根据韦达定理的表达式,可以得到:\[W = \Delta KE\]由于物体的质量和加速度未知,无法直接计算动能的变化。

但我们可以利用力和位移的关系求出力所做的功。

根据功的定义,可以得到:\[W = F \cdot s\]代入已知的数值可以计算出外力所做的功:\[W = 10N \cdot 5m = 50J\]所以外力所做的功为50焦耳。

2. 一个质量为1kg的物体从静止开始,受到一个恒力为5N的作用力,沿着力的方向移动了10m,求外力所做的功和物体的末速度。

解答:根据韦达定理,外力做的功等于物体动能的变化。

由于力与物体的位移方向相同,所以力做正功。

根据韦达定理的表达式,可以得到:\[W = \Delta KE\]由于物体的初始速度为零,加速度未知,无法直接计算动能的变化。

但我们可以利用力和位移的关系求出力所做的功。

根据功的定义,可以得到:\[W = F \cdot s\]代入已知的数值可以计算出外力所做的功:\[W = 5N \cdot 10m = 50J\]所以外力所做的功为50焦耳。

根据动能定理,可以得到:\[W = \Delta KE = \frac{1}{2} mv^2 - 0\]由此可以求解出物体的末速度:\[50 = \frac{1}{2} \cdot 1kg \cdot v^2\]\[v^2 = 100\]\[v = 10m/s\]所以物体的末速度为10米每秒。

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足(n2n1)n21的整数n有个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。

初中数学竞赛辅导讲义及习题解答 第3讲 充满活力的韦达定理

初中数学竞赛辅导讲义及习题解答 第3讲 充满活力的韦达定理

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。

【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例 【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么baa b +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

【例3】 已知关于x 的方程:04)2(22=---m x m x(1)求证:无论m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。

思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。

初中数学韦达定理习题及答案

初中数学韦达定理习题及答案
解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.
点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解.
12
考点:规律型:数字的变化类。1923992
专题:图表型。
分析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a,新芽数是13a,总芽数是34a,则比值为
12.(4分)(2004荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a)
第n年12345…
老芽率aa2a3a5a…
新芽率0aa2a3a…
总芽率a2a3a5a8a…
照这样下去,第8年老芽数与总芽数的比值为_________(精确到0.001).
解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;
B、应为a4÷a=a3,故本选项错误;
C、应为a3a2=a5,故本选项错误;
D、(﹣a2)3=﹣a6,正确.
故选D.
点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.
2.
考点:多项式乘多项式。1923992
∴(2a+2b)2﹣12=63,
∴(2a+2b)2=64,
2a+2b=±8,
两边同时除以2得,a+b=±4.
点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体.
11
考点:完全平方公式。1923992
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 充满活力的韦达定理
一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值;
利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。

【例题求解】
【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例 【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么b
a
a b +的值为( ) A 、
22123 B 、22125或2 C 、22125 D 、22
123
或2
思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表
示求解,而非对称式的求值常用到以下技巧:
(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

【例3】 已知关于x 的方程:04
)2(2
2
=---m x m x
(1)求证:无论m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。

思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。

【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

思路点拨:利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的。

注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性。

【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程04
7)2
1(222=+
-+-m mx x 的两个根。

(1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由。

(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.
思路点拨:对于(2),易建立含AC、BD及m的关系式,要求出m值,还需运用与中点相关知识找寻CD、AB的另一隐含关系式。

注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.
充满活力的韦达定理学历训练
1、(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式14
212
1<-+x x x x ,
则实数m 取值范围是 。

(2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 。

2、已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 。

3、CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 。

4、设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( ) A .1,-3 B .1,3 C .-1,-3 D .-1,3
5、在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( ) A .
23 B .2
5
C .5
D .2 6、方程019972=++px x 恰有两个正整数根1x 、2x ,则)
1)(1(21++x x p
的值是( )
A .1
B .-l
C .21-
D .2
1
7、若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断
4)(2≤+b a 是否正确?
8、已知关于x 的方程01)32(22=++--k x k x 。

(1) 当k 是为何值时,此方程有实数根;
(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值。

9、已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 。

10、已知α、β是方程012=--x x 的两个根,则βα34+的值为 。

11、△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 。

12、两个质数a 、b 恰好是整系数方程的两个根,则b
a
a b +的值是( )
A .9413
B .
1949413 C .999413 D .97
9413
13、设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为(
)
A .0232=---m x x
B .0232=--+m x x
C .02412=---x m x
D .02412=+--x m x
14、如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )
A .0≤m ≤1
B .m ≥
43 C .143≤<m D .4
3
≤m ≤1
15、如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根。

(1)求rn 的值;
(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的3
1
,请说
明理由.
16、设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x 。

(1) 若62
2
21=+x x ,求m 的值。

(2)求2
2
212111x mx x mx -+-的最大值。

17、如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24
122
=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值。

18、设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值。

参考答案。

相关文档
最新文档