三相异步电动机改变定子端电压调速

合集下载

三相异步电动机的变极调速控制

三相异步电动机的变极调速控制

SB3常闭触头 先断开,切断 KM1线圈电路
SB2常开触头 后闭合
KM1自锁触头复位断开
KM1主触 头断开
电动机因惯 性继续旋转
KM1互锁触头复位闭合
KM2、KM3 线圈都得电
●按钮控制的双速电动机变极调速工作过程
2)高速运转
需要高速运转时,也需要先按下低速启动按钮SB2,把定子 绕组接成△,让电动机低速启动。 启动结束,再按下高速启动按钮SB3,把定子绕组换接成YY, 实现电动机高速运行。
KT常开延时闭合
KM1失电 拆除△接线,切除电动机正序电源
定子绕组尾端接反序电源
KM2得电 KM3得电
电动机YY连接, 定子绕组首端 高速运转 短接于一点
变极调速安装接线注意事项: 1)正确识别电动机定子绕组的9个接线端子。 2)交换任意两相电源的相序。
2)按钮控制的双速电动机变极调速
注意控制电路的线号
三、变极调速原理
把定子每相绕组都看成两个完全对称的“半相绕组”。
以U相为例,设相电流从绕组的头部U1流进,尾部U2流出。 当U相两个“半相绕组”头尾相串联时(顺串),根据右手 螺旋法则,可判断出定子绕组产生4极磁场。 若U相两个“半相绕组” 尾尾相串联(反串)或者头尾相并 联(反并),定子绕组产生2极磁场。
●按钮控制的双速电动机变极调速工作过程
1)低速运转
需要低速运转时,按下低速启动按钮SB2,把定子绕组接成 △,让电动机低速启动,并连续运转。
合上QS,M3线圈电路
SB2常开触头后 闭合,KM1线圈
通电
KM1电气互锁触头断开, 对KM2、KM3互锁
KM1主触 头闭合
相关知识——三相异步电动机的电气调速
• 什么叫恒转矩调速?

异步电动机调压调速系统

异步电动机调压调速系统

(5-4)
Tema x 21Rs
3npUs2 Rs212(LlsL'lr)2
(5-5)
由图5-4可见,带恒转矩负载工作时, 普通笼型异步电机变电压时的稳定工作点 为 A、B、C,转差率 s 的变化范围不超 过 0 ~ sm ,调速范围有限。如果带风机类 负载运行,则工作点为D、E、F,调速范 围可以大一些。
U TVC——双向晶闸管交流调压器
n2
A A’ 闭环变压调速系统的近似动态结构图
’’ 现代带电流闭环的电子控制软起动器可以限制起动电流并保持恒值,直到转速升高后电流自动衰减下来(图5-12中曲线c),起动时间
也短于一级降压起动。
U 根采变据用化图 普 时5通静-6异差a所步率示电很的机大原的(理变见图电图,压5-5可调)以速,画时开,出环调静控速态制范结很围构难很图解窄,决,如这采图个5用矛-7高所盾转示。子。电阻的力矩电机可以增大*n调3速范围,但机械特性又变软,因而当负载
为此,对于恒转矩性质的负载,要求调 速范围大于D=2时,往往采用带转速反馈 的闭环控制系统(见图5-6a)。
1. 系统组成
~
+
U*n +
GT ASR Uc
Un
M 3~
n
T-G-
a)原理图
图5-6 带转速负反馈闭环控制的交流变压调速系统
2. 系统静特性 异步电机近似的传递函数
由图5-4可见,带恒转矩负载工作时,普通笼型异步电机变电压时的稳定工作点为 A、B、C,转差率 s 的变化范围不超过 0 ~ sm ,
ua VT2
a)
ub
VT3
uc
Ua0 a
b 0
c 负载
•型接法
ia ua b) ub

三相异步电动机启动,调速,制动

三相异步电动机启动,调速,制动

任务3.三相异步电动机的制动及实现
(1)电源反接制动
三相异步电动机的电源反接制动是将三相电 源中的任意两相对调,使电动机的旋转磁场反 向,产生一个与原转动方向相反的制动转矩, 迅速降低电动机的转速,当电动机转速接近零 时,立即切断电源。
这种制动方法制动转矩大,效果好,但冲击 剧烈,电流较大,易损坏电动机及传动零件。
(4)绕线型异步电动机转子串 电阻起动
绕线型异步电动机的起动,只要在转子回 路串入适当的电阻,就既可限制起动电流, 又可增大起动转矩,但在起动过程中,需 逐级将电阻切除。现在多用在转子回路接 频敏变阻器起动。
任务1:三相异步电动机的起动及实现
任务1:三相异步电动机的起动及实现
3.三相异步电动机启动控制电 路
任务1:三相异步电动机的起动及实现
自锁(自保): 依靠接触器自身辅助常开 触头
而使线圈保持通电的控制方 式 自锁触头: 起自锁作用的辅助常开触 头 工作原理: 按下按钮(SB1),线圈(KM)通 电,电机起动;同时,辅助触头 (KM)闭合,即使按钮松开,线圈 保持通电状态,电机 连续运行。
图为单向连续运行控制电路
K1为起动电流倍数:Ist为电动机的起动电流(A);In为电 动机的额定电流(A);Sn为电源变压器总容量;Pn为电 动机的额定功率。
Hale Waihona Puke 任务1:三相异步电动机的起动及实现
(2).星-三角降压起动 正常运行时,接成△形的鼠笼电动机,在起动时接成 星形,起动完毕后再接成△,称星-三角起动。
任务1:三相异步电动机的起动及实现
任务3.三相异步电动机的制动及实现
3.反接制动控制电路
任务3.三相异步电动机的制动及实现
4.能耗制动控制电路

三相异步电动机的起动与调速实验原理

三相异步电动机的起动与调速实验原理

三相异步电动机的起动与调速实验原理三相异步电动机是工业和家庭使用中最普遍的电动机。

其结构简单、性能稳定、故障率低、使用寿命长、维护成本低等优点,使得其被广泛应用于各种机械设备、压缩机、水泵、风扇等领域。

起动和调速是三相异步电动机运行的两个重要参数。

起动是指当电动机停止工作后重新启动的过程,调速是指根据工况需要改变电动机转速的过程。

本实验旨在探究三相异步电动机的起动和调速原理,并提供相关实验过程和数据分析。

一、起动实验原理三相异步电动机旋转时,电机产生的磁通量与旋转的同步速度不同。

当电动机停止后,转子上的磁通量与定子绕组中的磁通量存在差异。

这种差异会产生感应电动势,从而产生电流,这个过程被称为转子电动势或者诱导电动势。

在起动过程中,需要通过外部直流电源加上励磁电流,与转子电动势产生作用,使转子开始旋转。

起动时,电源的直流电压加到电动机定子绕组上,电动机的转子开始旋转,开始产生诱导电动势。

当转子旋转速度接近同步速度时,电动机称为同步运行。

在起动期间,由于初始转矩低,转子转速较慢,同步速度不易达到。

这时候,为了防止电动机过载,需要启动电动机保护器,保护器中的热继电器会自动切断电源,从而保护电动机。

二、实验过程1. 实验设备准备:三相异步电动机、电源电缆、电池、保护器、电流表、万用表、转速表、电阻箱等。

2. 接线并设定电流值:将电动机与电源电缆接入,接线过程中需要注意接线正确。

设定适当的电流值,并开始记录数据。

3. 启动电动机:通过保护器开关启动电动机,等待电动机开始旋转。

4. 记录数据:记录电动机转速、电流和电压值,同时获得电动机启动时间和转矩。

5. 重复实验:重复上述步骤,多次进行实验并记录数据,以便进行平均数计算和结果验证。

三、数据分析在起动实验中,需要记录的数据包括电动机启动时间、电流、电压和转速值。

在多次实验后,根据数据计算出平均值,并进行结果分析。

启动时间:启动时间是电动机开始运转到转子开始旋转的时间间隔。

三相异步电动机的调速

三相异步电动机的调速

m1 p U1 2 1 ( ) 常数 ' 4 f1 2 ( L1 L2 ) Te max的降低是由定子绕组电阻 r 的影响所致。尤其是当 f1 低到使得 r 由上式可见, 1 1 ( x1 x2 ) 相比较时, Te max下降严重。 可以与 Te max
解决措施: 可以对 U1 / f1的线性关系加以修正,提高低频时的 U1 / f1 ,以补偿 低频时定子绕组电阻压降的影响(见下图)。
TY 9550PY 9550PYY ( ) /( ) 1 TYY n1 2n1
结论:Y/YY接变极调速属于恒转矩调速方式。
第12章 三相异步电动机的调速
b、△/YY接变极调速
假定变极调速前后电机的功率因数 cos1 、效率 均不变,并设每半相绕组中的电 流均为额定值 I 1N ,则 /YY变极前后电动机的输出功率和输出转矩分别满足下列关系:
改变极对数p都是成倍的变化,转速也是成倍的变化,故为有级调速。 改变定子绕组的联结法改变绕组极对数的原理。 见下页图12-1,12-2
第12章 三相异步电动机的调速
三相异步电动机的转子转速可由下式给出:
60 f1 n (1 s) p
由上式可见,三相异步电动机的调速方法大致分为如下几种: 变极调速; 变频调速; 改变转差率调速; 其中,改变转差率的调速方法涉及: 改变定子电压的调压调速; 绕线式异步电动机的转子串电阻调速; 电磁离合器调速; 绕线式异步电动机的双馈调速与串级调速。
由此绘出保持U1 / f1=常数时变频调速的典型机械特性如下图所示。为便于比较,图 中还同时绘出了 Te max 常数时的机械特性,如图中的虚线所示。
三相异步电动机变频调速时 的机械特性( U1 / f1 =常数)

实验二 三相交流异步电动机变频调速实验

实验二  三相交流异步电动机变频调速实验

实验二三相交流异步电动机变频调速实验一、实验目的1.学习和掌握变频器的操作及控制方法;2.深入了解三相异步电动机变频调速性能;3.进一步学习PLC控制系统硬件电路设计和程序设计、调试。

二、实验原理1.三相交流异步电动机变频调速原理通过改变三相异步电动机定子绕组电压的频率,可以改变转子的旋转速度,当改变频率的同时改变电压的大小,使电压与频率的比值等于常数,则可保证电动机的输出转矩不变。

变频器就是专用于三相异步电动机调频调速的控制装置。

它的输入为单相交流电压(控制750W及以下的小功率电动机)或三相交流电压(控制750W以上的大功率电动机),而输出为幅值和频率均可调的三相交流电压供给三相异步电动机。

变频器的生产厂家很多,产品也很多,但基本原理相同。

本实验中采用的是松下小型变频器VFO 200W,有如下几种操作模式。

(1)运行/停止、正转/反转的操作模式:对于电动机的启动/停止以及正反转的控制有外部操作和面板操作两种模式,通过专用参数的设定来实现。

面板操作模式:通过变频器自带面板上的操作键实现运行/停止、正转/反转控制;外部操作模式:通过接在变频器专用输入端开关信号的接通、断开实现运行/停止、正转/反转。

(2)频率设定模式:频率的设定分为面板设定、外部设定两种,通过专用参数的设定来实现。

面板设定模式是根据面板上的电位器或专用键来设定频率的大小。

外部设定模式可以通过变频器上专用输入端上的电位器、电压信号、电流信号、开关编码信号以及PWM信号来实现频率的设定。

2.实验电路图本次实验的主要内容为“外部控制和外部电位器频率设定”。

实验电路图如图17.1所示。

图17.1 三相交流异步电动机变频调速实验电路图由图17.1可知,运行时,PLC程序要使Y4为1,停止时要使Y4为0,频率大小通过改变1、2、3端连接的电位器位置来调节。

3.电路接线表本实验的电路接线表如下表17.1(注:图17.1中方框内的接线已经在内部接好,不需再接线)表17.1 三相交流异步电动机变频调速实验电路接线图三、实验步骤1.按表17.1接线(为了安全起见,接线时请务必断开QF4);2.征得老师同意后,合上断路器QF2和QF4,接通操作面板上的电源开关;3.运行PC机上的PLC工具软件FXGP_WIN-C,输入课前编好的PLC程序(或直接打开已经编制好的,路径为:HJD-DJ1 \程序\实验17\变频调速.PMW),确认程序无误后,将其写入到PLC并运行。

5.5 异步电动机调速特性

5.5 异步电动机调速特性

采用恒磁通调压调速(也称恒转矩调速)。
即:
U1 f1
4.44N1kw1m
常数
分析:
当 f1↑时,再继续保持U1/f1=常数比较困难,因为 f1>50Hz时,UΦ↑> U1N不允许,这样只能保持UΦ不变。
f1↑→ Xm↑→ Im↓→ Φm↓→T↓ ,而 f1↑→n↑, P =TΩ属恒功率调速。所以工频以上采用恒压调速。
已知:n0=60f/p,当 f 改变,n0和n都将改变。 1.变频变压调速:
UΦ EΦ 4.44 f N1kw1Φ
当 f↓而UΦ不变时,Xm↓→ Im↑→ Φm↑→I0→I1↑ 引起电动机过热。
而Im↑→cosφ1↓Φm↑→pFe↑造成电动机带载能力 下降。
为了克服上述缺点,在工频(50Hz)以下调速时,
5.5 三相异步电动机的调速方法与特性
依据:
n
n0 (1 s)
60 f p
(1 s)
三相异步电动机的调速大致可以分成以下几种类型:
(1)改变转差率s调速,包括降低电源电压、绕线式异步 电动机转子回路串电阻等方法; (2)改变旋转磁场同步转速调速,包括改变定子绕组极 对数、改变供电电源频率等方法; (3)双馈调速,包括串级调速,属改变理想空载转速的 一种调速方法; (4)利用滑差离合器调速。
R M 3~
Rf
K2
+ -
(3)能耗制动时的机械特性:
2
3n 1 ns
Tmax2 Tmax1
0
Tz
T
(4)特点: 机械特性过原点,即n=0时T=0。能迅速、准确停车。
反馈制动、反接制动和能耗制动。
5.6.1 反馈制动 由于某种原因异步电动机的运行速度高于它的同步速

三相异步电机的调速

三相异步电机的调速

一.基频以下变频调速 A),保持 为常数
上式对s求导,即 有最大转矩和临界转差率为
一.基频以下变频调速 B),保持 为常数 为防止磁路的饱和,当降低定子电源频率时,保持 为常数,使气 隙每极磁通 为常数,应使电压和频率按比例的配合调节。这时,电动 机的电磁转矩为 上式对s求导,即 有最大转矩和临界转差率为
当某一瞬间电势的极性 与 或同相时,有转子回路电流为
反相
式中“–”号表示 与 反相,“+”号表示 与 同相。异步电动机的电磁 转矩为
当电动机定子电压及负载转矩都保持不变时,转子电流可看成常数;同时考虑到电 动机正常运行时s很小,sx2《 r2 忽略sx2 则: 在负载转矩 一定的条件下,若 转子串入 与 反相,则
变频调速原理及其机械特性
改变异步电动机定子绕组供电电源的频率 ,可以改变同步 转速n 1 ,从而改变转速。如果频率 连续可调,则可平滑的调 节转速,此为变频调速原理。
三相异步电动机运行时,忽略定子阻抗压降时,定子每相电 压为 如果降低频率 ,且保持定子电源电压 不变,则气隙每 极磁通 将增大,会引起电动机铁芯磁路饱和,从而导致过大 的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。 因此,降低电源频率 时,必须同时降低电源电压 ,以达到控 制磁通 的目的。对此,需要考虑基频(额定频率)以下的调 速和基频以上调速两种情况
三相异步电动机的调速
根据三相异步电动机的转速公式为
通过上式可知,改变交流电机转速的方 法有三种 1.变转差率调速:改变s实现调速; 2.变极调速:改变p来实现调速 3.变频调速:改变f1实现调速
三相异步电动机的调速
改变转差率的方法很多,常用的方案有改变异步电动机的定子 电压调速,采用电磁转差(或滑差)离合器调速,转子回路串电 阻调速以及串极调速。前两种方法适用于鼠笼式异步电动机,后 者适合于绕线式异步电动机。这些方案都能使异步电动机实现平 滑调速,但共同的缺点是在调速过程中存在转差损耗,即在调节 过程中转子绕组均产生大量的钢损耗( )(又称转差功 率),使转子发热,系统效率降低;主要存在调速范围窄、效率低, 对电网污染较大,不能满足交流调速应用的广泛需求; 改变电机的极数的调速,无法实现连续调速,并且接线麻烦, 应用的场合少;但价格便宜; 改变频率进行调速是最理想的,但这个梦想经历了百年之久, 直至20世纪70年代,大功率晶体管(GTR)的开发成功,才实现 变频调速,随着电子技术和计算机技术的日益发展变频调速技术 日益成熟,应用得越来越广泛了

三项异步电动机变频调速控制及其节能改造

三项异步电动机变频调速控制及其节能改造

三项异步电动机变频调速控制及其节能改造本文主要从三项异步电动机概述、三相笼型转子异步电动机的传统起动方式、三相异步电动机调速策略探讨、电动机节能注意事项等方面进行了阐述。

标签:三相异步电动机;调速;节能一、前言三项异步电动机在我国电网中应用非常广泛,技术也相对成熟,但是如何使其变频调速进行控制以及节能问题,都是需要进一步探讨与总结的重点问题。

二、三项异步电动机概述全国年总发电量的一半以上,耗能非常之高。

因此,加强和提高三相异步电动机的节能控制对我国电能的节约将会起到巨大的作用。

当电流在满负荷的情况下时,三相异步电动机的功效一般比较的高,可以达到85%左右。

但是,如果电流的负荷量下降的话,三相异步电动机的功效就会明显的降低。

因此,总的来说,三相异步电动机的功效还是比较低的。

如果我们通过对三相异步电动机节能控制,我们就会在这方面有所提高,从而提升电动机的运行效率,将会产生巨大的经济效益。

进行三相异步电动机的节能控制主要是从两方面的工作着手,首先就是要提升三相异步电动机的制造技术,而这方面如今已经取得了巨大的发展,另外一方面就是要做好电动机的运行控制技术,这才是我们进行电动机节能控制技术的关键。

三相异步电动机的功效是指三相异步电动机的输出功效同输入功效的比例,因此供电机的一部分电能是用来使电动机驱动的,即输入的功效,而另外一部分电能就会发生在三相异步电动机的自身损耗上,这就是我们所说的输出功效。

三相异步电动机的电能损耗主要是指电动机的铁和铜,而电动机的铜耗则是在电流通过电动机的铜线绕组时而产生的,相比之下,电动机的铁耗则是指电动机在运转的过程中,其定子和转子铁芯中产生的电流而发生的损耗,这主要是与电压有关。

电动机的损耗除了这两部分损耗外,还存在其他的损耗,但是这些损耗都比较小,可以忽略。

而三相异步电动机的节能原理就是在电压的负荷下降的时候,可以通过适当降低电源的电压的方法,从而减少电动机中铁耗,当电压下降的时候,相应的电流也会随之下降,这样也就降低了电动机中的铜耗,只有这样电动机的功效才会得到提高。

三相异步电动机简述及起动方式调速方法

三相异步电动机简述及起动方式调速方法

三相异步电动机简述及起动方式调速方法概述:自从1887年发明了三相异步电机后,三相异步电动机在全世界得到广泛的应用。

三相异步电机结构简单,无需电刷和换向器,可长期高速运行,只需对轴承进行维护。

相对其他类型电动机而言故障率较低。

我厂500多台电动机基本均为三相异步电动机。

工作原理简述:在三相交流电动机定子上布置有结构完全相同在空间位置各相差120电角度的三相绕组,分别通入三相交流电,则在定子与转子的空气隙间所产生的合成磁场是沿定子内圆旋转的,故称旋转磁场。

转速的大小由电动机极数和电源频率而定。

转子在磁场中相对定子有相对运动,切割磁杨,形成感应电动势。

转子铜条(铝条)是短路的,有感应电流产生而产磁场。

在磁场中受到力的作用。

转子就会旋转起来。

电机转动要有三个条件:第一要有旋转磁场,第二转子转动方向与旋转磁场方向相同,第三转子转速必须小于同步转速,否则导体不会切割磁场,无感应电流产生,电机就速度减慢产生转速差,所以只要有旋转磁场存在,转子总是落后同步转速在转动。

起动方式:三相异步电机起动方式有:1、直接起动,电机直接接额定电压起动。

2、降压起动: (1)定子串电抗降压起动; (2)星形三角形启动器起动; (3)软起动器起动; (4)用自耦变压器起动。

(5)转子绕线式电机采用转子绕组接电阻分段起动(或碱液水电阻起动),转子绕组接频敏变阻器起动两种方式。

3、变频起动及分段变频起动。

直接起动:直接起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为全压起动。

全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。

为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。

所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。

有人误认为降压起动比全压起动好,将负荷较重的电机也采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。

三相异步电动机启动、调速、正反转的常用方法

三相异步电动机启动、调速、正反转的常用方法

三相异步电动机启动、调速、正反转的常用方法
三相异步电动机是工业中常见的一种电动机类型,常用于驱动各种设备和机械。

下面介绍三相异步电动机的启动、调速、正反转的常用方法。

1. 启动方法:
(1) 直接启动:将电动机直接接通电源,并通过起动器启动,使电动机正常运转。

(2) 降压启动:采用降压起动器,通过降低电动机起动时的供电电压,减小启动电流,实现平稳起动。

(3) 自耦变压器启动:使用自耦变压器,先将电动机通过变压器接通降压启动,然后再切换到全压运行。

2. 调速方法:
(1) 换向极调速:在电机的定子绕组上安装两个或多个绕组,通过选择并联或串联不同的绕组,改变定子磁通路径,实现调速。

(2) 变频调速:通过改变电源的频率,控制电动机的转速。

常用的方法包括整流变频调速、逆变变频调速等。

3. 正反转方法:
(1) 切换反向起动器:在启动过程中,根据需要切换反向起动器,使电动机按照相反的方向旋转。

(2) 通过控制电源的相序:调整电源的相序,使电动机启动时的旋转方向相反。

总结起来,三相异步电动机的常用启动方法包括直接启动、降
压启动和自耦变压器启动;常用调速方法包括换向极调速和变频调速;常用正反转方法包括切换反向起动器和控制电源相序。

这些方法可以根据具体的工业应用需求进行选择和组合使用。

三相异步电动机的速度控制

三相异步电动机的速度控制

智能照明
智能照明系统通过控制灯具的亮 度和色温来营造不同的氛围,其 中三相异步电动机的速度控制可 以实现灯具的精确调光和动态效 果。
智能窗帘
智能窗帘通过三相异步电动机驱 动,实现窗帘的自动开合和角度 调整。速度控制可以确保窗帘运 动的平稳性和精确性,提高用户 体验。
新能源汽车领域应用前景
电动汽车驱动系统
转差率
转差率是异步电动机的一个重要参数,表示转子转速与旋转磁场转速 之间的差异程度。转差率的大小直接影响电动机的运行效率和性能。
异步电动机运行特性
启动特性
异步电动机在启动时,通常需要较大的启动电流以克服转 子的静摩擦力和惯性力。启动后,随着转速的升高,电流 逐渐减小。
负载特性
异步电动机在带负载运行时,随着负载的增加,转速会相 应降低,同时电流增大。在额定负载下,电动机的运行效 率最高。
见。
06
三相异步电动机速度控制 应用前景
工业领域应用现状
自动化生产线
在自动化生产线中,三相异步电动机的速度控制是实现精确同步和高效生产的关键。通过 调整电动机的转速,可以适应不同工序的加工需求,提高生产线的整体效率。
数控机床
数控机床是工业制造领域的重要设备,其主轴和进给轴通常采用三相异步电动机驱动。通 过速度控制,可以实现高精度、高效率的切削加工,提高产品质量和生产效率。
子铁芯中产生旋转磁场。
磁极对数
旋转磁场的转速与磁极对数有关。 磁极对数越多,旋转磁场的转速
越低。
转子转动原理
转子导体
转子导体中的电流在旋转磁场的作用下受到电磁力作用,使得转子 开始转动。
转子转速
转子的转速通常略低于旋转磁场的转速,这也是异步电动机得名的 原因。转子的转速与负载大小、电源电压、电动机设计等因素有关。

三相异步电动机的七种调速方式

三相异步电动机的七种调速方式

三相异步电动机的七种调速方式三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。

从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。

改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

三相异步电动机变频调速

三相异步电动机变频调速

.一、三相异步电动机变频调速原理由于电机转速 n 与旋转磁场转速 n1接近,磁场转速 n1改变后,电机转速 n 也60 f 1可知,改变电源频率 f 1,可以调节磁场旋转,从就随之变化,由公式 n1p而改变电机转速,这种方法称为变频调速。

根据三相异步电动机的转速公式为60 f1n1 1 sn 1 sp式中 f 1为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s为异步电动机的转差率。

所以调节三相异步电动机的转速有三种方案。

异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。

改变异步电动机定子绕组供电电源的频率 f 1,可以改变同步转速n ,从而改变转速。

如果频率 f 1连续可调,则可平滑的调节转速,此为变频调速原理。

三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为U 1E1 4.44 f 1N 1k m m式中 E1为气隙磁通在定子每相中的感应电动势;f1为定子电源频率; N1为定子每相绕组匝数; k m为基波绕组系数,m为每极气隙磁通量。

如果改变频率 f 1,且保持定子电源电压U1不变,则气隙每极磁通m 将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。

因此,降低电源频率 f 1时,必须同时降低电源电压,已达到控制磁通m 的目的。

.1、基频以下变频调速为了防止磁路的饱和,当降低定子电源频率 f 1时,保持U1为常数,使气每f 1极磁通m 为常数,应使电压和频率按比例的配合调节。

这时,电动机的电磁转[1][8]m 1 pU r 2r 21m 1 p U 1 2f 1ss 1T矩为222 f 1r 2 22 f 1r 2x 12r 1x 2r 1x 1 x 2ss上 式 对 s 求 导 , 即dT ,有最大转矩和临界转差率为ds12U2f11111T m22 f 1 r 1222 2 f1f 1r 1 22r 1x 1 x 2r 1 x 1 x 2s mr 2由上式可知:当U1常数时,在 f 1 较高时,即接近额22f 1x 1 x 2r 1定频率时, r 1 = x 1 x 2 ,随着 f 1 的降低, T m 减少的不多; 当 f 1 较低时, x 1 x 2较小; r 1 相对变大,则随着 f 1 的降低, T m 就减小了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生实验报告
实验报告注意事项
1. 课前必须认真预习实验,认真书写预习报告,了解实验步骤,未预习或预习
达不到要求的学生不准参加实验;
2. 实验完毕,必须将结果交实验指导教师进行检查,并将计算机正常关机、将
仪器设备、用具及椅子等整理好,方可离开实验室;
3. 按照实验要求书写实验报告,条理清晰,数据准确;
4. 当实验报告写错后,不能撕毁,请在相连的实验报告纸上重写;
5.实验报告严禁抄袭,如发现抄袭实验报告的情况,则抄袭者与被抄袭者该次
实验以0分计;
6. 无故缺实验者,按学院学籍管理制度进行处理;
7. 课程结束后实验报告册上交实验指导教师,并进行考核与存档。

实验
名称
三相异步电动机改变定子端电压调速
实验
目的

要求
掌握三相异步电动机改变定子端电压调速
实验内容及原理内容:
异步电机参数:
一台绕线式异步电动机,Y/y连接,已知数据为:额定功率PN = 1.1 kW,f = 50 Hz,2 p = 6,Un = 380 V,nN = 960 r/min,R1 = R2' = 4Ω,x1σ= x2σ'= 6Ω,xm = 150Ω,ki = ke = 0.02,忽略铁耗。

各参数为:
任务要求:
维持转轴上的负载为额定转矩,使转速下降到500 r/min,采用调压调速方式并计算其参数,做出机械特性图。

原理:
利用Matlab软件对三相异步电动机,改变定子端电压调速的机械速特性进行仿真。

预习
过程
中的
疑问
如何列出三相异步电机在调压前后的等量关系式
实验
名称
三相异步电动机改变定子端电压调速指导教师实验室实验日期分组
情况
成绩
实验步骤(算法、代码、方法等)实验步骤:
1)计算:采用调压调速(维持转轴上的负载为额定转矩,使转速下降到500 r/min)的端电压大小?
2)使用MATLAB软件编程可绘制改变定子端电压调速前后的异步电动机的机械特性曲线。

代码:
clc
clear
s=0.001:0.001:1;
n=1500.*(1-s);
p=3;
m=3;
Un=380/sqrt(3);
U1=124;
f=50;
R1=4;
R2=4;
x1=6;
x2=6;
Tem=m.*p./(2.*pi.*f).*(Un.^2.*R2./s)./((R1+R2./s).^2+(x1+x2).^2);
plot(Tem,n,'r');
xlabel('Tem/n*m');
ylabel('n/r/min');
hold on;
Tem1=m.*p./(2.*pi.*f).*(U1.^2.*R2./s)./((R1+R2./s).^2+(x1+x2).^2);
plot(Tem1,n,'b');
legend('调压调速前','调压调速后');
实验结果(结论及分析、遇到的问题及解决方案、意见及建议
等)
注:
1)计算:采用调压调速(维持转轴上的负载为额定转矩,使转速下降到500 r/min)的端电压大小?
2)使用MATLAB软件编程可绘制改变定子端电压调速前后的异步电动机的机械特性曲线。

(1)同步转速:n1=60f1/p=60*50/3=1000
额定转差率:sN=(n1-nN)/n1=(1000-960)/1000=0.04
负载额定转矩:TN=9.55*PN/nN=9.55*1100/960=10.94
调压调速后转差率:s=(1500-500)/1500=0.667
Tem=m.*p./(2.*pi.*f).*(Un.^2.*R2./s)./((R1+R2./s).^2+(x1+x2).^2)
10.94=3.*3./(2.*pi.*50).*(U.^2.*4./0.667)./((4+4./0.667).^2+(6+6).^2)
U=124V
(2)
因为实验中额定转矩不变,调压调速后转速降为500r/min,所以调速前后转差率改变,将前后转差率代入到转矩公式中,得出调速后电压为124V,随后用
MATLAB画出调压调速前后的T-n曲线。

三相异步电动机改变定子端电压调速,降低定子端电压,就使人为机械特性变软,电动机的工作点下移,从而达到调速的目的。

相关文档
最新文档