弹簧基础知识
弹簧基础知识汇总
弹簧基础知识汇总弹簧是机械和电子行业中广泛使用的一种弹性元件,弹簧在受载时能产生较大的弹性变形,并把机械功或动能转化为变形能,而在卸载后弹簧的变形消失并回复到原状,同时将变形能转化为机械功或动能。
弹簧的载荷与变形之比称为弹簧刚度,刚度越大,则弹簧越硬。
一、弹簧的作用•缓冲和减振。
如汽车、火车车箱下的减振弹簧,各种缓冲器的缓冲弹簧等;•控制机构的运动。
如内燃机中的阀门弹簧,离合器中的控制弹簧等;•储存及输出能量。
如钟表弹簧、枪闩弹簧等;•测量力的大小。
如弹簧秤,测力器中的弹簧等;二、弹簧的分类按受力性质弹簧分为:拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧。
拉伸弹簧(简称拉簧)是承受轴向拉力的螺旋弹簧,拉伸弹簧一般都用圆截面材料制造。
在不承受负荷时,拉伸弹簧的圈与圈之间一般都是并紧的没有间隙。
压缩弹簧(简称压簧)是承受向压力的螺旋弹簧,它所用的材料截面多为圆形,也有用矩形和多股钢萦卷制的,弹簧一般为等节距的,压缩弹簧的圈与圈之间有一定的间隙,当受到外载荷时弹簧收缩变形,储存形变能。
扭转弹簧属于螺旋弹簧。
扭转弹簧可以存储和释放角能量或者通过绕簧体中轴旋转力臂以静态固定某一装置。
扭转弹簧的端部被固定到其他组件,当其他组件绕着弹簧中心旋转时,该弹簧将它们拉回初始位置,产生扭矩或旋转力。
还有两种不常见的空气弹簧和碳纳米管弹簧;空气弹簧是在柔性密闭容器中加入压力空气,利用空气的可压缩性实现弹性作用的一种非金属弹簧,用在高档车辆的悬架装置中可以大大改善车辆的平顺性,从而大大提高了车辆运行的舒适性,所以空气弹簧在汽车、铁路机车上得到了广泛的应用。
碳纳米管弹簧:需要先制出碳纳米管薄膜,再利用纺丝技术将碳纳米管薄膜纺成碳纳米管弹簧。
直径可以达上百微米,而长度可以达几厘米,有望应用于可伸缩导体、柔性电极、微型应变传感器、超级电容器、集成电路、太阳能电池、场发射源、能量耗散纤维等领域,还有望应用于医疗器械,比如拉力传感绷带等。
弹簧力学知识点归纳总结
弹簧力学知识点归纳总结一、弹簧的基本原理弹簧是一种以弹性变形产生弹力的机械元件,其基本原理是胡克定律。
胡克定律规定,在一定温度下,弹簧的变形量正比于外力,即F=kx,其中F表示弹簧所受外力,x表示弹簧的变形量,k表示弹簧的弹性系数。
弹簧的弹性系数取决于弹簧的几何形状和材料性质,是弹簧力学分析的基本参数。
二、弹簧的分类按照形状和用途,弹簧可以分为螺旋弹簧、压缩弹簧、拉伸弹簧、扭转弹簧等。
螺旋弹簧广泛应用在机械设备中,用于承受轴向力;压缩弹簧多用于减震、支撑等场合;拉伸弹簧则主要用于拉伸应用,如弹簧秤等;扭转弹簧则主要用于扭转应用,如扭簧。
三、弹簧的应力分析在外力作用下,弹簧会产生应力,弹簧的应力分析是弹簧力学中的重要内容。
在弹簧的应力分析中,需要考虑弹簧的几何形状、外力大小和方向、弹簧的材料性质等因素。
通过应力分析可以确定弹簧的最大应力和应力分布规律,从而指导弹簧的设计和选材。
四、弹簧的应变分析弹簧的应变分析是指在外力作用下,弹簧所发生的形变。
弹簧的应变分析是弹簧力学中的关键问题,通过应变分析可以确定弹簧的形变量和形变规律。
弹簧的应变分析需要考虑弹簧的几何形状、材料性质、外力大小和方向等因素。
五、弹簧的设计原则在实际工程中,弹簧的设计是一个复杂的过程,需要综合考虑弹簧的弹性系数、强度、耐久性、工作温度等因素。
弹簧的设计原则包括:根据工作条件确定弹簧的工作方式;选择合适的弹簧材料;确定弹簧的几何形状和尺寸;考虑弹簧的安装和使用环境等。
通过合理设计,可以确保弹簧在工作中能够稳定可靠地发挥作用。
综上所述,弹簧力学是力学的一个重要分支,研究的是弹簧在外力作用下的形变和应力分布。
弹簧力学的应用广泛,涉及机械、航空航天、建筑、汽车等领域。
弹簧力学的基本知识包括弹簧的基本原理、弹簧的分类、弹簧的应力分析、弹簧的应变分析、弹簧的设计原则等内容。
通过深入学习弹簧力学,可以更好地理解和应用弹簧这一重要的机械元件。
弹簧基本知识
一.弹簧的种类与作用:1.弹簧的种类:弹簧的种类很多,也有各种分类的方法,但都不具决定性: 1.1依使用材料分类:1.1.依构成弹簧的材料所受应力状态分类:A.压缩螺旋弹簧B.拉张螺旋弹簧C.扭转螺旋弹簧D.其它螺旋弹簧E.迭板弹簧F.扭杆G.滑形弹簧H.薄板弹簧I.盘簧J.弹簧垫圈K.线细工弹簧L.扣环M.环形弹簧2.弹簧的作用:不过,一般同时2.弹性系数:对弹簧材料施力,产生单位应变时的应力称为弹性系数,此值为弹簧设计的基体,弹簧材料的弹性系数主要取决于其化学成分,因热处理、冷间加工而稍有变化,使用温度高时会大减少;3.疲劳强度:疲劳强度与材料的抗拉强度有一定关系,但因表面状态、脱碳、冷间加工、热处理而变化,这些条件因材料的制造方法,弹簧的制造方法而变化; 4.淬火性:大形弹簧为了提高淬火效果,需要淬火性良好的材料,淬火性取决于材料的化学成分;5.形状尺寸:弹簧材料的机械性性质因尺寸而异,得不到特殊尺寸,形状,颇受限制;6.耐热性:7.8.9.10.,三.弹簧一般用线材:1.琴钢线:(Piano wire)是用琴钢线材施行韧化处理,藉强力抽线加工,赋予良好的尺寸精度,良好的表面肌肤,高度机械性性质,韧化是将高碳钢线在变态点以上的温度连续加热约500℃的熔铅等中冷却,作成富加工性的组织;A. SWPA——抗拉强度较低用于重荷重特性的弹簧、耐疲劳B. SWPB——抗拉强度较高;抗拉强度因线径而异,线径细,抗拉强度一般较高;2.硬钢线:(碳钢线) ——Hard Drawn Steel Wire使用硬钢线材韧化处理后,借冷间抽线加工制造,素材及加工都没有琴钢线那么严格,良质者有时不亚于琴钢线,不过,其不均度通常大于琴钢线,广用于反复次数不多之弹簧,无冲击荷重的弹簧;2.1 SWC 60C 含碳量较低2.2 SWC 80C 含碳量较高,应用广泛3.,4.耐热,加4.2.黄铜线(C2680W):弹簧用黄铜为Cu70%,Zn30%的7~3黄铜,抗拉强度低;4.3.白铜线Ni18% Zn27% Cu55%的合金,强度大,弹簧特性良好,加工后约在350℃低温退火;4.4.铍铜:在铜合金材料中,性能最优良,弹簧弹性好,耐高温;5.电镀钢线:视客户需求,其素材有SWC、SWP、SUS镀锌线镀锡线镀镍线镀金线BATT线:(素材为SUS)6.其它线材:铜包线电热线铁线漆包线四.热处理(低温退火)——发蓝弹簧的热处理,可提高材料的弹簧性能或补助性能,消除弹簧的应力,但因弹簧材料种类多,热处理方法随之而异。
弹簧力学知识点总结归纳
弹簧力学知识点总结归纳一、弹簧的基本概念1. 弹簧的分类根据弹簧的结构和材料,可以将弹簧分为螺旋弹簧、涡卷弹簧、板簧和气弹簧等。
螺旋弹簧是最常见的一种,其主要由圆柱形的弹簧丝卷绕而成。
而涡卷弹簧则是由平行的条状材料绕成的,板簧则是由薄金属板压制而成。
2. 弹簧的作用弹簧在工程中常用来储存和释放能量,它可以在受到外力作用时发生形变,当外力消失时则能够恢复原状。
因此弹簧常用于减震、缓冲、支撑以及传递力和运动等方面。
3. 弹簧的刚度弹簧的刚度可以用来描述弹簧对外力的抵抗能力,通常用刚度系数K来表示。
刚度系数K 定义为弹簧的变形量与受到的外力之间的比值,即K=F/Δx,其中F为受到的外力,Δx为弹簧的变形量。
4. 弹簧的力学模型弹簧在受力时可以近似为线弹簧,其力学模型可以用胡克定律描述。
在胡克定律中,弹簧的变形与受力成正比,即F=KΔx,其中F为外力,K为刚度系数,Δx为变形量。
二、应力-应变关系1. 弹性变形当外力作用在弹簧上时,弹簧会发生形变,这种形变叫做弹性变形。
在弹性变形范围内,弹簧的形变与受力成正比,且当外力消失时弹簧能够恢复原状。
2. 应力-应变关系应力和应变是描述材料受力作用下的变形特性的重要物理量。
弹簧的应力-应变关系通常用应力-应变曲线来描述,曲线的斜率就是弹簧的刚度系数。
3. 弹性模量弹性模量是描述材料在受到外力作用下的形变能力的物理量。
对于弹簧来说,可以用弹性模量来描述其受力形变的特性,通常表示为E。
弹性模量E与弹簧的材料有关,可以通过应力-应变曲线的斜率来计算。
三、哈克定律1. 哈克定律的基本原理哈克定律是弹簧力学中非常重要的定律,其表述为“弹簧的伸长(或压缩)与受力成正比,方向与受力方向相同”。
根据哈克定律,可以得出F=KΔx,即受力与变形之间的关系。
2. 哈克定律的适用范围哈克定律适用于线弹簧在弹性变形范围内的受力情况。
在这个范围内,弹簧的受力与变形成正比,可以用哈克定律来描述。
弹簧基础知识
弹簧是机械和电子行业中广泛使用的一种弹性元件,弹簧在受载时 能产生较大的弹性变形,把机械功或动能转化为变形能,而卸载后弹簧 的变形消失并回复原状,将变形能转化为机械功或动能。
弹簧的主要功用有:① 测力,如弹簧秤和测量计的弹簧等;②控 制运动,如离合器、制动器和阀门控制弹簧;③减振和缓冲,如缓冲器、 减振器的弹簧等;④储能或输能,如钟表、仪表和自动控制机构上的弹 簧等。
JIS G 3561
合 阀用油回火铬钒钢线 JIS G 3565
金 阀用油回火硅铬钢线 JIS G 3566
SWO-V SWOCV-V SWOSC-V
o
120℃
o
o
220℃
o
o
245℃
弹簧用油回火硅铬钢线 JSMA NO.5
SWOSM(2)
o
220℃
黄铜线
铜
白铜线
合
金
磷青铜线
铍铜线
JIS H3521 H 3721
SHINYUAN ELECTRONIC., LTD
弹簧基础知识
弹簧的用途:
主要功能有:①控制机械的运动,如内燃机中的阀门弹簧、离合器 中的控制弹簧等。②吸收振动和冲击能量,如汽车、火车车厢下的缓冲 弹簧、联轴器中的吸振弹簧等。③储存及输出能量作为动力,如钟表弹 簧、枪械中的弹簧等。④用作测力元件,如测力器、弹簧秤中的弹簧等。 弹簧的载荷与变形之比称为弹簧刚度,刚度越大,则弹簧越硬。
弹簧的基础知识
一根弹簧剪去一半之后K怎么变化K变为原来的2倍。
证明过程:原弹簧可以看作两个“半弹簧”串接,设劲度系数为k1=k2,当原弹簧受力变形时,每个“半弹簧”变形量为X,则整个弹簧变形为2x。
则有F=K*(2x)=k1*x=k2*x,k1=k2=2K0即每个弹簧劲度系数都是2K o弹簧裂纹的分类弹簧裂纹的分类可按几何特性、力学特性和裂纹的形状这几种状况进行划分。
1、穿透裂纹:穿透整个构件厚度的裂纹称为穿透裂纹。
一般情况把裂纹长度达到弹簧材料厚度一半以上的都视为穿透裂纹,并将其简化为理想尖裂纹处理,把裂纹尖端的曲率半径理想化的趋近于零,穿透裂纹的形状可以是直线的、曲线的或是其他类型的。
2、表面裂纹:所谓的表面裂纹就是裂纹位于弹簧的表面或者是弹簧的厚度比裂纹深度大的比较多。
半椭圆裂纹通常是表面裂纹的简化形式。
3、深埋裂纹:位于弹簧内部的裂纹就是深埋裂纹。
深埋裂纹的简化形式通常是圆片或椭圆片状裂纹。
按裂纹的力学特性分类外加作用力的不同,产生的裂纹就会有所不同,在构件中的裂纹按照其力学的特性可分为如图所示的三种基本状态:张开型(I型)裂纹:拉应力垂直于裂纹,位移在裂纹面上是张开的形状。
滑开型(II型)裂纹:平行裂纹面并且垂直于裂纹边缘的剪应力作用在裂纹上,裂纹在平面内相对滑开。
撕开型(III型)裂纹:平行裂纹面并且平行裂纹前缘的剪应力作用在裂纹上,裂纹相对错开。
弹簧振子的周期与弹簧本身质量的关系弹簧振子是一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。
用来研究简谐振动的规律。
在研究弹簧振子的周期问题时,弹簧的质量是忽略不计的,因此弹簧振子的周期与弹簧本身质量没有关系。
弹簧承载力如何计算弹簧承载力计算公式如下:弹力公式F=kx,F为弹力,k为系数,X为弹簧拉长的长度弹簧系数计算方法弹簧系数二弹性模量X线径的4次方/8/有效圈数/中径的3次方系数单位为:KG线径单位为:mm。
弹簧设计基础知识
弹簧设计基础知识弹簧是一种具有弹性的零件,其具有压缩或拉伸时能够恢复原状或接近原状的特性。
在工程设计中,弹簧被广泛应用于各种领域,如机械、航空航天、汽车、电子等。
在进行弹簧设计时,需要掌握一些基础知识。
1.弹力学基础:弹簧的设计是基于弹性力学原理的,需要掌握弹性力学的基本概念和公式,如胡克定律、应力、应变、弹性模量等。
这些基础知识是理解和计算弹簧的重要基础。
2.弹簧的材料:弹簧一般由金属材料制成,最常用的材料包括钢、不锈钢和合金钢等。
在设计弹簧时,需要了解不同材料的力学性能,如弹性极限、屈服强度、延伸率等。
选择合适的材料可以使弹簧具有较好的弹性和耐久性。
3.弹簧的类型:弹簧的类型多种多样,常见的包括扭簧、拉簧和压簧等。
不同类型的弹簧有不同的设计原则和应用场景。
了解各种类型的弹簧的特点和应用可以帮助设计出更合适的弹簧。
4.弹簧的基本参数:在设计弹簧时,需要确定一些基本参数,如弹簧的工作压力、使用温度、变形量和周期等。
这些参数是确定弹簧的尺寸和材料的重要依据。
5.弹簧的设计过程:弹簧的设计过程包括计算弹性变形量、确定弹簧的几何尺寸、选择适当的材料和验证弹簧的可靠性。
在设计过程中,需要根据具体的工程要求和使用条件合理选择设计参数。
6.弹簧的测试和验证:设计完成后,需要对弹簧进行测试和验证,以确保其性能和可靠性符合设计要求。
常用的测试方法包括拉伸试验、扭转试验和疲劳试验等。
根据测试结果可以对弹簧进行调整和改进。
7.弹簧的应用范围:弹簧广泛应用于各个领域,如机械传动、振动控制、减震和支撑等。
在设计弹簧时,需要了解弹簧在不同应用中的特点和设计要求。
弹簧设计是一门复杂而有挑战性的工程学科,需要结合理论知识和实践经验进行设计和优化。
掌握弹簧的基础知识是进行弹簧设计的基础,只有深入理解弹簧的力学特性和设计要求,才能设计出性能良好的弹簧。
弹簧基础必学知识点
弹簧基础必学知识点
以下是弹簧基础的必学知识点:
1. 弹性力:弹簧的特性之一是能够产生弹性力。
弹性力是指弹簧在被
拉伸或压缩时产生的力,其大小与弹簧的形变程度成正比。
弹簧的弹
性力遵循胡克定律,即弹性力等于形变量与弹簧的弹性系数之积。
2. 弹簧常数:弹簧常数也称为弹性系数,表示弹簧在单位形变量时所
产生的弹性力的大小。
弹簧常数的单位是牛顿/米(N/m)或牛顿/毫米(N/mm)。
3. 弹簧的伸长量和形变量:当弹簧受到拉伸或压缩时,其长度会有所
改变。
弹簧的伸长量指的是弹簧拉伸或压缩后的长度与原始长度之差。
形变量是指弹簧的伸长或压缩量,它是伸长量的正负值,取决于弹簧
是被拉伸还是被压缩。
4. 弹簧的刚度:弹簧的刚度是指单位形变量时产生的弹性力的大小。
刚度与弹簧的弹性系数成正比,刚度越大,弹簧的形变量增加时产生
的弹力也越大。
5. 弹簧的自由长度和自由状态:弹簧的自由长度是指未受任何外力作
用时的长度。
弹簧的自由状态是指弹簧处于无外力作用、没有任何形
变的状态。
6. 弹簧的材料和几何形状:弹簧的材料通常是高强度的合金钢或不锈钢,具有良好的弹性和耐久性。
弹簧的几何形状可以是螺旋形、针形、矩形等,具体形状取决于弹簧的应用场景和要求。
7. 弹簧的应用:弹簧广泛应用于各个领域,如机械工程、汽车工业、电子产品等。
常见的应用包括悬挂系统、阀门调节、减震器、压力传感器等。
这些知识点是了解弹簧基础的关键,掌握这些知识将有助于理解和应用弹簧的工作原理及其在各个领域的应用。
弹簧基础知识培训
弹簧基础知识一、弹簧的定义、作用、类型:1.弹簧的定义:弹簧是一种机械零件,它利用材料的弹性和结构特点,在工作时产生变形,把机械功或动能转变为变形能(位能),或把变形能(位能)转变为机械功或动能。
2.弹簧的作用:(1)减震(2)控制运动(3)测量器材的衡定(4)储存能量3.弹簧的基本特性(1)刚度:载荷与变形的关系(单位变形量所产生的载荷). 单位是:N/mm 柔度:单位载荷下产生的变形量. 它与刚度成反比(2)弹簧的变形能(变形所储存的能量,储存-—转换--释放)(3)自振频率(4)弹簧受迫振动的振幅。
4。
弹簧的类型4.1 圆柱螺旋弹簧圆截面材料圆柱螺旋压缩弹簧矩形截面材料圆柱螺旋压缩弹簧扁截面材料圆柱螺旋压缩弹簧不等节距圆柱螺旋弹簧多股螺旋弹簧圆柱螺旋拉伸弹簧圆柱螺旋扭转弹簧4.2 非圆柱螺旋弹簧截锥螺旋弹簧中凹形螺旋弹簧中凸形螺旋弹簧组合螺旋弹簧非圆形螺旋弹簧4.3 其它类型弹簧线成型片弹簧……..二、常用的名词诠释。
1.工作负荷:弹簧工作过程中承受的力和扭距。
2.弹簧刚度:单位变形量所产生的负荷.3.弹簧柔度:单位工作负荷下所产生的变形量。
4.初拉力:密圈螺旋拉伸弹簧在冷卷时形成的内应力,其值为弹簧开始产生拉伸变形时所需的作用力。
5.自由高度(长度):弹簧无负荷时的高度(长度).6.压并高度:压缩弹簧压至各圈接触时的理论高度。
7.总圈数:沿螺旋轴线两端间的螺旋圈数。
8.有效圈数:(工作圈数)计算弹簧刚度时的圈数.9.支承圈数:弹簧端部用于支承或固定的圈数。
10.弹簧中径:弹簧内径和外径的平均值.11.节距:螺旋弹簧两相邻有效圈截面中心线的轴向距离.12.间距:(坑距)螺旋弹簧两相邻有效圈轴向间距。
13.旋绕比:弹簧中径与线径的比值。
14.高径比:螺旋压缩弹簧自由高度与中径的比值.15.立定处理:将热处理后的压缩弹簧压缩到工作极限负荷下的高度或压并高度(拉伸到弹簧工作极限下的长度,扭转到工作极限扭转角)一次或多次短暂压缩(拉伸或扭转)以达到稳定弹簧几何尺寸的主要目的的一种工艺方法.(定型)16.强压(拉、扭):将弹簧压缩(拉、扭)至弹簧材料表层产生有益的工作应力反向残余力,以达到提高弹簧承载能力和稳定几何尺寸的一种工艺方法。
弹簧物理知识点总结归纳
弹簧物理知识点总结归纳一、弹簧的基本性质1. 弹性形变:当外力作用于弹簧上时,弹簧会发生形变。
在外力撤离后,弹簧会恢复到原来的形状和尺寸。
这种恢复形变的能力称为弹性形变,是弹簧的基本性质之一。
2. 弹性系数:弹性系数是衡量弹簧弹性形变程度的物理量,通常用符号k表示。
弹性系数越大,弹簧所受外力对其形变的影响越小;弹性系数越小,弹簧所受外力对其形变的影响越大。
3. 弹簧的质量:弹簧的质量对其弹性形变和振动有一定影响。
一般来说,质量较大的弹簧在受力后会有较大的惯性效应,且振动频率相对较低;质量较小的弹簧则相反。
二、弹性形变弹性形变是指弹簧在受力后发生的形变,其恢复形变的能力符合胡克定律。
弹性形变可以分为拉伸形变和压缩形变两种情况。
1. 拉伸形变:当外力沿弹簧的轴向拉伸时,弹簧发生拉伸形变。
此时,弹簧的长度会增加,并且弹簧内部的分子间距也会增大。
拉伸形变时,弹簧所受外力与形变的关系可以用胡克定律来描述。
2. 压缩形变:当外力沿弹簧的轴向压缩时,弹簧发生压缩形变。
此时,弹簧的长度会减小,弹簧内部的分子间距也会减小。
压缩形变时,弹簧所受外力与形变的关系同样可以用胡克定律来描述。
三、胡克定律胡克定律是描述弹簧弹性形变的基本定律,它建立了外力与弹性形变之间的线性关系。
根据胡克定律,弹簧所受的拉伸或压缩力与形变之间的关系可以用数学公式表示为:F = kx其中,F表示弹簧所受的拉伸或压缩力,k表示弹簧的弹性系数,x表示形变的位移。
胡克定律适用于弹簧在受力后的弹性形变,同时也适用于低应变范围内的弹性体。
胡克定律的表达式也可以写成:k = F / x其中,k表示弹簧的弹性系数,F表示弹簧所受的拉伸或压缩力,x表示形变的位移。
弹簧的弹性系数k是一个重要的物理参数,它可以用来描述弹簧的硬度和弹性特性。
四、弹簧的振动弹簧在受力后会发生振动,其振动特性与弹簧的弹性系数、质量、劲度和外力的频率等因素有关。
在弹簧振动中,通常会涉及到以下几个重要的物理知识点:1. 振动频率:弹簧的振动频率与其弹性系数和质量有关。
弹簧基础知识
弹簧基础知识弹簧是一种利用弹性来工作的机械零件。
一般用弹簧钢制成。
用以控制机件的运动、缓和冲击或震动、贮蓄能量、测量力的大小…等,广泛用于机器、仪表中。
弹簧只是个蓄能器,它有储存能量的功能,但不能慢慢地把能量释放出来,要实现慢慢释放这一功能应该靠“弹簧+大传动比机构”实现,常见于机械表。
弹簧是机械和电子行业中广泛使用的一种弹性元件,弹簧在受载时能产生较大的弹性变形,并把机械功或动能转化为变形能,而在卸载后弹簧的变形消失并回复到原状,同时将变形能转化为机械功或动能。
弹簧的载荷与变形之比称为弹簧刚度,刚度越大,则弹簧越硬。
弹簧的主要功能①控制机械的运动,如:内燃机中的阀门弹簧、离合器中的控制弹簧…等。
②吸收振动和冲击能量,如:汽车、火车车厢下的缓冲弹簧、联轴器中的吸振弹簧…等。
③储存及输出能量作为动力,如:钟表弹簧、枪械中的弹簧…等。
④用作测力元件,如:测力器、弹簧秤中的弹簧…等。
弹簧分类按受力性质,弹簧可分为:拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧。
按形状可分为:螺旋弹簧、碟形弹簧、环形弹簧、波形弹簧、板弹簧、截锥涡卷弹簧、发条弹簧(卷弹簧)、扭杆弹簧、地弹簧、卡簧、异型弹簧…等。
按制作过程可分为:冷卷弹簧和热卷弹簧(丝直径小于8毫米的一般用冷卷法,大于8毫米的用热卷法)。
按弹性元件的材料可分为:金属弹簧、橡胶弹簧、聚氨酯弹簧、液压弹簧、气弹簧、氢气弹簧…等。
按弹簧丝截面的形状可分为:圆形截面弹簧和矩(方)形截面弹簧。
金属弹簧的制造材料一般来说应具有:高的弹性极限、疲劳极限、冲击韧性及良好的热处理性能…等,常用的有:碳素弹簧钢、合金弹簧钢、不锈弹簧钢、有色金属合金(铜合金、镍合金)…等。
弹簧专业供应商(简单列几个,无法求全)德国Stabilus公司(气弹簧)美国联合弹簧公司(各种弹簧,共五大品牌:SPEC;RAYMOND;KALLER;HYSON 和SPD)西安弘力橡胶气囊有限责任公司(气弹簧)上汽股份中国弹簧厂(金属弹簧)杭州弹簧有限公司(金属弹簧)浙江省诸暨市利强弹簧有限公司(金属弹簧)浙江美力科技股份有限公司(金属弹簧)泰州市盛源不锈钢弹簧厂(不锈钢弹簧)弹簧发展简史弹簧很早很早之前就有应用了,古代的弓和弩就是两种广义上的弹簧。
弹簧相关知识点总结归纳
弹簧相关知识点总结归纳一、弹簧的基本特性1. 弹性弹簧的基本特性是具有一定的弹性,当受到外力压缩或拉伸时,可以储存能量并在外力作用结束后恢复原状。
这种特性使得弹簧可以在各种机械系统中发挥作用,并且可以根据需要进行弹性形变。
2. 强度弹簧通常需要具有较高的强度,以保证在长期使用过程中不会发生断裂或变形。
因此,制造弹簧的材料通常选用强度高的金属材料,如碳素钢、不锈钢等。
3. 蠕变在长期应力作用下,弹簧会发生塑性变形,即蠕变现象。
这对于要求弹簧长期稳定工作的场合来说是一个需要考虑的因素,通常需要通过合理的工艺和材料选择来减小蠕变效应。
4. 疲劳弹簧在长期使用过程中会受到交变应力的作用,使得弹簧材料容易发生疲劳现象。
因此,对于需要长期稳定工作的弹簧来说,需要通过材料选择、热处理等方式来提高其抗疲劳性能。
二、弹簧的种类1. 压缩弹簧压缩弹簧是一种在轴向方向上受力产生弹性形变的弹簧,通常用于各种机械系统中,如汽车悬挂系统、工业机械等。
2. 拉伸弹簧拉伸弹簧是一种在轴向方向上受拉力产生弹性形变的弹簧,常见于各种门窗、弹簧秤等家用和工业应用中。
3. 扭转弹簧扭转弹簧是一种在轴向方向上受扭转力产生弹性形变的弹簧,通常应用于各种机械系统的传动装置中。
4. 波纹管弹簧波纹管弹簧是一种利用金属波纹管的弹性形变来实现弹簧功能的特殊弹簧类型,常见于汽车减震器、阀门、管道接头等。
5. 线圈弹簧线圈弹簧是一种将金属线材绕成螺旋状的形式,通过压缩或拉伸来实现弹性形变的弹簧,广泛应用于各种机械装置中。
6. 平板弹簧平板弹簧是一种通过金属板材的弯曲来实现弹性形变的弹簧,通常用于各种摩擦副减振、悬架系统中。
7. 锁紧弹簧锁紧弹簧是一种通过摩擦力实现锁紧功能的特殊弹簧类型,常见于各种离合器、制动器等装置中。
8. 复合弹簧复合弹簧是将不同类型的弹簧组合在一起,以实现更复杂的弹性形变特性,广泛应用于需要多种弹性形变特性的装置中。
三、弹簧的工艺制造1. 材料选择弹簧的材料选择直接影响着弹簧的强度、疲劳性能和耐蠕变性能,通常选用碳素钢、不锈钢、合金钢等金属材料进行制造。
弹簧基础知识
博达弹簧加工过程
• 见视频
• 碳素弹簧钢(如65、70钢):价格便宜、来源方便,但弹性 极限低;
• 低锰弹簧钢(如65Mn):淬透性好、强度较高,淬火后易产 生裂纹
• 硅锰弹簧钢(如60Si2MnA):弹性极限高,回火稳定性好, 力学性能良好;
• 铬钒钢(如50CrVA):耐疲劳和抗冲击性能好,价格贵,用 于要求高的场合。
二.外径
பைடு நூலகம் 6,热处理
• 作用:减少消除产品的内应力,防止产品 在使用中变形和开列,提高钢的韧性,适 当调整钢的强度和硬度。弹簧的工作状态 承受的弯曲应力、扭转应力在表面处最高, 因而它的表面状态非常重要。热处理时的 氧化脱碳是最忌讳的,加热时要严格控制 炉内气氛,尽量缩短加热时间。弹簧经热 处理后,一般进行喷丸处理,使表面强化 并在表面产生残余压应力,以提高疲劳强 度。
• 镀镍线,SWZL-F 用于需要表面处理,又容易打结产品,例 如:电池弹簧
三.弹簧加工工艺
• 弹簧他是在一根钢丝上产生的机械性能! 他可调性很差!只有材料、外径、圈数、 总长这几大项可调。
一.材料
• 选择弹簧材料时,应考虑其用途、使用条件(载荷性质、 大小及循环特性、工作持续时间、工作温度等)以及加工、 热处理和经济性等因素。为了保障弹簧能够可靠地工作, 其材料除应满足具有较高的强度极限和屈服极限外,还必 须具有较高的弹性极限、疲劳极限、冲击韧性、塑性和良 好的热处理工艺性等。 常用材料有:
二.弹簧材料
• 碳钢丝。SWC.SWB。65MN弹簧钢 用途及特点:为硬拉钢丝,用于耐蚀性差, 要求精度不高,钢性较脆。
• 琴钢丝。SWPB.SWPA。 用途及特点:耐疲劳性佳,要求精度高。 一般用于对弹簧性韧性要求较高的产品, 例如开关弹簧
弹簧的基础知识
¢
□
二.弹簧的种类
按弹簧的形状及用途可分为:
• • • • • 压簧 拉簧 扭簧 异形簧(电池簧、卡钩等等) 平衡杆
三.弹簧旋向
旋向定义: 将弹簧自然放置,从上往下看, 顺时针方向旋绕的是右旋; 逆时针方向旋绕的是左旋; (同右手螺旋定律是一致的).
七.电镀
二。电镀的种类及用途: 1.镀镍(Ni):防锈、具有可焊性; 2.镀锌(Zn):防锈、美观; 3.镀银(Ag):防锈、可焊性、导电性; 4.镀铜(Cu):导电性良好及信号稳定; 5.发黑(染黑、发兰):短期内不生锈; 6.上油:短期内常温下不生锈(时间长短与 所上防锈油的质量有关)。
THANKS 谢 谢
四.弹簧圈数
ቤተ መጻሕፍቲ ባይዱ弹簧圈数:
总圈数:弹簧绕制 成形的总圈数 (含支撑密合圈 和有效圈); 有效圈数:有节 矩的圈数(拉簧 则为弹簧密圈);
五.弹簧各类基本尺寸
1.线径(丝径); 2.弹簧外径(弹簧圆圈部 最外端直径); 弹簧中径(除一线径) 弹簧内径(弹簧圆圈部 最内端直径); 3.弹簧自由长(即弹簧两 端最高点之间的距离)
因具有弹性的特殊特性,故测量时要让弹 簧自由落下一瞬时所视值
六.定型处理
• 凡由各类钢丝经冷卷绕制成型的弹 簧均需做低温回火处理(即热处理 或定型处理); • 热处理的目的:消除弹簧卷绕成形 过程中产生的内应力,使产品尺寸、 性能稳定,具有良好的弹性;
七.电镀
一。电镀的作用: 1.用碳钢、琴钢生产的弹簧在热处理后表 面易形成氧化层,在空气中放置易生锈, 从而导致品质下降,功能尚失,需电镀 处理防止生锈; 2.有些产品需要具备可焊接性能,通过电 镀使产品具有这种功能; 3.导电性或连接的作用; 4.美观或防腐蚀性等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧基础知识
1、概述
1.1弹簧功用
弹簧是利用自身的变形产生力或储存能量的机械零件。
其主要功能有:①控制机械的运动:如内燃机中的阀门弹簧、离合器中的控制弹簧;②吸收振动和冲击能量,如车辆中的缓冲弹簧、联轴器的吸振弹簧;③储存及输出能量作为动力,如钟表弹簧;④用做测力元件,如测力器和弹簧秤中的弹簧等。
1.2弹簧种类
按照所承受的载荷不同,弹簧可以分为拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧等四种;按照弹簧的形状不同,弹簧有可以分为螺旋弹簧、环形弹簧、碟形弹簧、板簧和盘簧等。
其中螺旋弹簧是用弹簧丝卷绕制成的,结构简单且可以根据受载情况制成各种型式,应用最广泛。
1.3弹簧各部分名称及尺寸关系
⑴、弹簧丝直径d:制造弹簧的钢丝直径。
⑵、弹簧外径D:彈簧的最大外直径
⑶、弹簧内径D1:弹簧的最小外径
⑷、弹簧中径D2:弹簧的平均直径
⑸、t:除支撑圈外,弹簧相邻两圈对应点在中径上的轴向距离成为节距。
⑹、支撑圈数n2:为了使弹簧在工作时受力均匀,保证轴线垂直端面、制造时,常将弹簧两端并紧。
并紧的圈数仅起支撑作用,一般由1.5d、2d、2.5d,常用的是2d
⑺、有效支撑圈数n:弹簧能保持相同节距的圈数
⑻、总圈数n1:有效圈数与支撑圈数的和.
⑼、自由长度L:弹簧在未受外力作用下的长度.
⑽、螺旋方向:有左右之分,常用右旋,图纸未注明时用右旋.
⑾、弹簧刚度E:弹簧的载荷变量与变形变量之比.
⑿、旋绕比C:也称弹簧指数,C=D2/d,其它条件相同时,C值越小,弹簧内、外侧的应力差越悬殊,材料利用率就越低。
所以在设计弹簧时一般规定C>4。
⒀、螺旋升角α:α=arctgt/πD2,圆拄螺旋压缩弹簧一般应在5°~9°范围内选取。
2、弹簧使用材料及用途
弹簧材料应具有高的弹性极限、疲劳极限、冲击韧性和良好的热处理性能。
在选择弹簧材料时,应考虑到弹簧的使用条件、功用及其重要程度。
所谓使用条件时指载荷性质、大小及其循环特性,工作温度和周围介质情况等。
目前,钢时最常用的弹簧材料。
受力较小而又要求防腐蚀、防磁等特性时,可以采用有色金属如铍铜、磷铜等。
非金属弹簧材料主要是
橡胶,近年来正发展用塑料制造弹簧。
软木、空气也可以用做弹簧材料。
3、弹簧的制造
弹簧的制造工艺包括:1)卷制;2)端面圈(支撑圈)的精加工;3)热处理;4)工艺试验;5)表面处理
3.1卷制
弹簧的卷绕是把合乎技术条件规定的弹簧丝卷绕在芯棒上。
大量生产时,是在万能自动卷簧机上卷制。
卷制分冷卷及热卷两种。
弹簧丝直径在8㎜以下的用冷卷法,以上的用热卷法。
冷态下卷制的弹簧多用冷拉的、经预热处理的优质碳素弹簧钢丝,卷成后一般不再经淬火处理,只经低温回火以消除内应力。
热卷时的弹簧温度随弹簧丝的粗细再800~1000℃的范围内选择,热卷的弹簧卷成后必须经过热处理。
采用任一种卷饶方法卷制后的弹簧均应视具体情况对弹簧的节距作必要的调整。
3.2端面圈的加工
弹簧两端各有0.75~1.25圈弹簧相接触的支承圈,支承圈不参加弹性变形,其端面应垂直于弹簧轴线。
在变载荷的重要过程中,应采用并紧磨平端。
磨平长度应不小于一圈弹簧圆周长度的四分之一,末端厚度大约为0.25d。
3.3热处理
弹簧在完成上述工序之后,均应进行热处理。
热处理是在固态范围内通过一定的加热、保温以及冷却改变其组织和性能的工艺,常用的热处理方法为淬火及回火,淬火为提高弹簧硬度及刚性;回火是为了消除弹簧加工及淬火过程中产生的内应力,提高弹簧使用寿命。
淬火温度根据弹簧丝材质及实际使用要求在800~1100℃之间选择,回火温度在400~600℃之间选择。
对于重要的弹簧还要进行强压处理。
强压处理是使弹簧在极限载荷作用下受载持续6~48小时,从而使弹簧丝内部产生塑性变形和有意的残余应力,由于残余应力的符号与工作应力相反,可提高弹簧的承载能力,一次强压处理可提高25%的承载能力。
为保持有益的残余应力,强压处理后的弹簧不允许再进行任何热处理也不宜再较高温度和长期振动的环境下使用;由于金属的性质,冷作变形会使腐蚀过程加速,因此在有腐蚀性介质的环境中不宜采用强压处理的弹簧。
3.4工艺试验
弹簧在完成上述工序后必须进行工艺试验和根据弹簧技术条件的规定进行精度、冲击、疲劳等试验,以检验其是否符合技术要求。
3.5表面处理
弹簧的防腐方法一般采用保护层,根据保护层的性质可分为:金属保护层、化学保护、非金属保护层和暂时性保护层。
着重介绍前面三种:
不锈钢弹簧和铜线弹簧本身就具有一定的防腐性能,一般不进行防腐处理。
3.5.1 弹簧的金属保护层
金属保护层种类很多,就弹簧而言,一般是用电镀金方法以获得金属保护层。
电镀保护层不但可以保护不受腐蚀,同时能改善弹簧的外观。
有些电镀金属还能改善弹簧的工作性能,例如提高表面硬度,增加抗磨损力,提高热稳定性,防止射线腐蚀等。
但如果单纯为了弹簧的腐蚀,一般应选用电镀锌层与电镀镉层。
下表为弹簧常用电镀层及性能表:
3.5.2弹簧的化学保护层
利用化学反应的方法使弹簧表面生成一层致密的保护膜,以防止弹簧腐蚀。
通常采用氧化处理与磷化处理。
1)氧化处理:氧化处理成本低、工艺配方较简单、生产效率高、氧化膜有一定的弹性,基本上不影响弹簧的特性曲线,所以氧化处理较广泛地作为成形螺旋弹簧、弹簧垫圈及片弹簧等的防腐和装饰措施。
钢的氧化处理亦称发蓝、发黑、煮黑。
氧化处理后,弹簧表面生成保护性的磁性氧化铁,此氧化膜一般呈蓝色或黑色,也有时呈黑褐色。
其颜色决定于弹簧的表面状态、弹簧材料的化学成分和氧化处理工艺。
氧化处理的方
法有:咸性氧化法、无碱氧化法和电解氧化法。
以采用碱性氧化法为多。
弹簧经氧化处理后的质量检验包括外观检查和抗蚀性检查。
2)磷化处理:弹簧放进含有锰、铁、锌的磷酸盐溶液中,在金属表面形成一层不溶于水的磷酸盐薄膜的方法叫做磷化。
磷化膜具有显微孔隙结构,对漆类、油类有良好的吸附能力,因此磷化常与涂漆等涂覆方法配合使用。
在磷化后进行重铬酸盐填充、浸油或涂漆,能进一步提高其耐腐蚀性。
弹簧在磷化过程中产生大量的氢气,因此经磷化后的弹簧具有氢脆现象。
对于关键部位的弹簧,经磷化处理后应进行去氢处理。
3.5.3弹簧的非金属保护层
非金属保护层是在弹簧表面上浸涂或喷涂一层有机物质,如油漆、沥青、塑料等,以保护弹簧免遭腐蚀。
非金属保护层,膜层较厚,化学稳定性好,有较好的机械防腐蚀作用,但硬度较低,易于刮伤损坏,同时膜层有老化现象。
4、影响弹簧疲劳强度的因素
1)屈服强度:一般来说,材料的屈服强度越高,疲劳强度也越高。
为了提高弹簧的疲劳强度应设法提高弹簧材料的屈服强度,或采用屈服强度和抗拉强度比值高的材料。
对同一材料来说,细晶粒组织具有更高的屈服强度。
2)表面状态:最大应力多发生在弹簧材料的表层,所以弹簧的表面质量对疲劳强度的影响很大。
弹簧材料轧制、拉拔和卷制过程中造成的裂纹和伤痕等缺陷往往是造成弹簧疲劳断裂的主要原因。
材料表面的粗糙度越小,应力集中越小,疲劳强度越高;在同一粗糙度的情况下,不同钢种及不同卷制方法疲劳极限降低程度也不同,如冷卷弹簧降低程度就比热卷弹簧小。
因为热卷弹簧及其热处理加热由于氧化使弹簧材料表面变粗糙和产生脱碳现象,降低弹簧的疲劳强度。
对材料表面进行磨削、强压、抛丸和滚压等都可以提高弹簧的疲劳强度。
3)腐蚀介质:弹簧在腐蚀介质中工作时,由于表面产生点蚀或表面晶界被腐蚀而成为疲劳源,在交变应力作用下就会产生裂纹而导致断裂。
例如在淡水中工作的弹簧钢,疲劳极限仅为空气中的10~25%。
4)温度:碳钢的疲劳强度,从室温到120℃时下降,从120℃到350℃又上升,温度高于350℃又下降,在高温时没有疲劳极限。
在高温条件下工作时的弹簧,要考虑采用耐热钢。
在低于室温的条件下钢的疲劳极限有所增加。