科二生化简答题及名词解释
生化名词解释、简答

试卷一五、写出下列物质的中文名称并阐明该物质在生化中的应用(共8分)DNS-C1 DNFB DEAE —纤维素 BOC 基1、DNS-Cl : 5一二甲氨基萘-1-磺酰氯,用作氨基酸的微量测定,或鉴定肽链的N —端氨基酸。
2、DNFB :2,4一二硝基氟苯,鉴定肽链的N —端氨基酸。
3、DEAE 一纤维素: 二乙氨基乙基纤维素,阴离子交换剂,用于分离蛋白质。
4、BOC 基: 叔丁氧羰酰基,人工合肽时用来保护氨基酸的氨基。
六、解释下列名词(共12分)1、肽聚糖:肽聚糖是以NAG 与NAM 组成的多糖链为骨干与四肽连接所成的杂多糖。
2、蛋白质的别构效应:含亚基的蛋白质由于一个亚基的构象改变而引起其余亚基和整个分子构象、性质和功能发生改变的作用称别构效应。
3、肽平面:由于肽键不能自由旋转,形成肽键的4个原子和与之相连的2个α-碳原子共处在1个平面上,形成酰胺平面,也称肽平面。
4、两面角:由于肽链中的C α-N 键和Cα—C 键是单键,可以自由旋转,其中绕C α-N 键旋转的角度称φ角,绕C α-C 键旋转的角度称ψ角,这两个旋转的角度称二面角。
5、波耳效应:pH 的降低或二氧化碳分压的增加,使血红蛋白对氧的亲和力下降的现象称波耳效应。
6、碘价:100克脂肪所吸收的碘的克数称碘价,碘价表示脂肪的不饱和度。
七、问答与计算(共30分)1、今从一种罕见的真菌中分离到1个八肽,它具有防止秃发的作用。
经分析,它的氨基酸组成是:Lys 2,Asp 1,Tyr 1,Phe 1,Gly 1,Ser 1和Ala 1。
此八肽与FDNB 反应并酸水解后。
释放出FDNB-Ala 。
将它用胰蛋白酶酶切后,则得到氨基酸组成为:Lys 1,Ala 1,Ser 1和Gly ,Phe 1,Lys 1的肽,还有一个二肽。
将它与胰凝乳蛋白酶反应后,释放出游离的Asp 以及1个四肽和1个三肽,四肽的氨基酸组成是:Lys 1,Ser 1,Phe 1和Ala 1,三肽与FDNB 反应后,再用酸水解,释放出DNP-Gly 。
生化名词解释及简答题

生化简答题一、蛋白质1、蛋白的结构的层次性怎么理解?(1)蛋白质的一级结构是氨基酸序列;(2)二级结构是肽链结构,包括α-螺旋,β-折叠等;(3)超二级结构是二级结构单元相互聚集形成更高一级有规律的结构;(4)结构域是相对独立的紧密球状实体;(5)三级结构是二级结构组合成的多肽链;(6)四级结构是两条或两条以上有独立三级结构的多肽链的四聚体.2、常用的蛋白质分离纯化方法有哪几种?各自的作用原理是什么?(1)盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。
凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。
(2)电泳法:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。
电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。
(3)透析法:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。
(4)层析法:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。
(5)凝胶过滤法:蛋白质溶液加于柱之顶部,任其往下渗漏,小分子蛋白质进入孔内,因而在柱中滞留时间较长,大分子蛋白质不能进入孔内而径直流出,因此不同大小的蛋白质得以分离。
(6)超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。
3、蛋白质的两性解离与等电点(1)两性解离:蛋白质分子中带有可解离的氨基和羧基,这些基团在不同的pH溶液中可解离成正离子或负离子,因此蛋白质分子即可带有正电荷又可带有负电荷,这种性质称为蛋白质的两性解离。
根据蛋白质的两性解离性质,可采取电泳法和离子交换层析法分离纯化蛋白质。
(2)等电点:氨基酸分子所带净电荷为零时,溶液的PH值即为氨基酸的等电点.4、为何蛋白质的含氮量能表示蛋白质相对量?实验中又是如何依此原理计算蛋白质含量的?因为蛋白质中氮的含量一般比较恒定,平均为16%,这是蛋白质元素组成的一个特点,也是凯氏定氮测定蛋白质含量的计算基础.蛋白质含量的计算为:每克样品中含氮克数 *6.25*100即为100克样品中蛋白质含量.5、氨基酸的分类非极性氨基酸(疏水氨基酸)8种丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)脯氨酸(Pro)苯丙氨酸(Phe)色氨酸(Trp)蛋氨酸(Met)极性氨基酸(亲水氨基酸):1)极性不带电荷:7种甘氨酸(Gly)丝氨酸(Ser)苏氨酸(Thr)半胱氨酸(Cys)酪氨酸(Tyr)天冬酰胺(Asn)谷氨酰胺(Gln)2)极性带正电荷的氨基酸(碱性氨基酸)3种赖氨酸(Lys)精氨酸(Arg)组氨酸(His) 3)极性带负电荷的氨基酸(酸性氨基酸)2种天冬氨酸(Asp)谷氨酸(Glu)二、酶1、酶的必需基团有哪几种,各有什么作用?酶的必需基团有活性中心的必需基团和非活性中心的必需基团,活性中心的必需基团有催化基团和结合基团,催化基团改变底物中某些化学键的稳定性,使底物发生反应生成产物,结合基团与底物相结合,使底物和一定构象的酶形成中间产物.非活性中心的必需基团为维持酶活性中心的空间构象所必需.2、酶蛋白与辅助因子的相互关系如何?(1)酶蛋白与辅助因子组成全酶,单独哪一种都没有催化活性;(2)一种酶蛋白只能结合一种辅助因子形成全酶,催化一定的化学反应;(3)一种辅助因子可与不同酶蛋白结合成不同的全酶,催化不同的化学反应;(4)酶蛋白决定反应的特异性,而辅助因子具体参加化学反应,决定酶促反应的性质。
生化名词解释与简答题

第一章蛋白质的结构与功能(一)名词解释1. 肽键2. 结构域 3. 蛋白质的等电点4. 蛋白质的沉淀5. 蛋白质的凝固(三)问答题1. 何谓蛋白质变性?影响变性的因素有哪些?2. 蛋白质变性后,为什么水溶性会降低?3. 举例说明一级结构决定构象。
答案(一)1.肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合所形成的结合键,称为肽键。
2.构域:蛋白质在形成三级结构时,肽链中某些局部的二级结构汇集在一起,形成发挥生物学功能的特定区域称为结构域。
3.蛋白质的等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。
4.蛋白质的沉淀:蛋白质分子从溶液中析出的现象称为蛋白质的沉淀。
5.蛋白质的凝固:蛋白质经强酸、强碱作用发生变性后,仍能溶解于强酸或强碱中,若将pH调至等电点,则蛋白质立即结成絮状的不溶解物,此絮状物仍可溶解于强酸或强碱中。
如再加热则絮状物可变成比较坚固的凝块,此凝块不再溶于强酸或强(三)问答题1. 蛋白质在某些物理因素或化学因素的作用下,蛋白质分子内部的非共价键断裂,天然构象被破坏,从而引起理化性质改变,生物活性丧失,这种现象称为蛋白质变性。
蛋白质变性的实质是维系蛋白质分子空间结构的次级键断开,使其空间结构松解,但肽键并未断开。
引起蛋白质变性的因素有两方面:一是物理因素,如紫外线照射等,一是化学因素如强酸、强碱、重金属盐、有机溶剂等。
2. 三级结构以上的蛋白质的空间结构稳定主要靠疏水键和其它副键,当蛋白质在某些理化因素作用下变性后,维持蛋白质空间结构稳定的疏水键、二硫键以及其它次级键断裂,空间结构松解,蛋白质分子变为伸展的长肽链,大量的疏水基团外露,导致蛋白质水溶性降低。
3. 牛胰核糖核酸酶溶液加入尿素和巯基乙醇后变性失活,其一级结构没有改变。
当用透析法去除尿素和巯基乙醇后,牛胰核糖核酸酶自发恢复原有的空间结构与功能,此例充分说明一级结构决定构象。
碱中,这种现象称为蛋白质的凝固作用。
生化名词解释:

生化名词解释、问答1、km:反应速度为最大反应速度一半时的底物浓度,它表示酶与底物的亲和力,是酶的特征性常数,代表酶的催化效率。
2、同工酶:在同一种属或同一个体中催化相同的化学反应而酶的分子结构不同的一组酶。
3、底物水平磷酸化:底物在分解过程中,由于脱氢脱水等作用,使能量在分子内部重新分布而形成高能磷酸化合物,然后将高能磷酸基因ADP形成ATP。
简单说是高能磷酸基因直接转移给ADP生成A TP。
4、蛋白质生理价值:吸收人体内氨基酸的量与用以合成蛋白质的量的百分比。
5、氧化磷酸化:在电子传递过程中,释放的能量使ADP磷酸化形成ATP的过程,又称电子传递水平磷酸化。
6、酶的活性中心:必需基因在酶分子的一定区域形成一定的空间排布,直接与底物结合,并发挥其催化作用的部位。
7、半保留复制:DNA复制时,亲代DNA二条链都作为模板,各自互成其互补链,结果两个子代DNA分别保留了一条亲代DNA链,各自与新合成的链构成双螺旋分子。
8、蛋白质变性:蛋白质在某些理化因素作用下,其特定的空间构成破坏而导致理化性质改变及生物学活性丧失。
9、巴士德效应:有氧氧化对生醇发酵的抑制现象。
10、P/O比值:每消耗一克,原子氧所消耗无机磷的克原子数。
11、联合脱氧作用:氨基酸与α-酮戊二酸在转氨酶作用下生成相应的α-酮酸和谷氨酸,后者经L-谷氨酸脱氢酶作用,脱去氨基生成氨及α-酮成二酸。
12、基因工程:在体外将不同来源的DNA进行重新组合,引入受体细胞使其表达的过程。
13、脂解激素与抗脂解激素:1、脂解激素:促进脂肪动员的激素;2、抗脂解激素:抑制脂肪动员的激素。
14、密码子与反密码于:密码子:mRNA上每3个小时相邻的核苷酸编成一组,代表某种氨基酸或肽链合成的起始或终止信号。
15、正氮平衡与负氮平衡:1、正氮平衡:蛋白质的合成代谢多于分解代谢,表现为摄入氮大于排出氮。
2、负氮平衡:组织蛋白质分解加强,摄入氮小于排出氮。
16、初级胆汁酸与次级胆汁酸:1、初级胆汁酸:肝细胞以胆固醇为原料合成的胆汁酸,包括胆酸和鹅脱氧胆酸等。
生化名词解释简答

生化名词解释简答生化名词解释、简答名词解释:1.蛋白质的一级、二级结构p87、89蛋白质一级结构是指蛋白质多肽链中氨基酸残基的排列顺序,也称化学结构;蛋白质二级结构是指多肽主链骨架有规则的盘曲折叠形成的构象,不涉及侧链基团的空间排布。
2.蛋白质的变(别)二重效应别构效应又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。
别构效应(allostericeffect)某种不直接涉及蛋白质活性的物质,结合于蛋白质活性部位以外的其他部位(别构部位),引起蛋白质分子的构象变化,而导致蛋白质活性改变的现象。
(底物或效应物和酶分子上的适当部位融合后,可以引发酶分子构象发生改变从而影响酶的催化活性的效应。
)3.等电点p102对某一蛋白质来说,在某一ph溶液中,它所带的正电荷与负电荷数恰好成正比,即为净电荷为0时,在电场中它既不向阳极也不向阴极移动,这时溶液的ph就称作蛋白质的等电点(pi)4.酶的活性中心p153通过肽链的卷曲、螺旋或织成构成了多种活性空间――酶的活性部位(或表示活性中心)5.酶的比活力p163比活力就是所指每毫克酶蛋白含有的酶活力单位数,即为比活力=活力单位数/每毫克酶蛋白6.核酸的增色效应核酸的光吸收值为各核苷酸光吸收值的和太少30-40%,当核酸变性或水解时光稀释值明显减少。
(将dna的叶唇柱盐溶液冷却至80~100℃时,双螺旋结构解体,两条链分离构成单链,由于双螺旋分子内部的碱基曝露,260nm紫外稀释值增高的现象。
)7.核酸的变复性p133-134核酸的变性指dna分子中的双螺旋结构解链为无规则线性结构的现象。
变性dna在适度条件下,又可以并使两条彼此分离的链再次键合称作双螺旋结构,此过程表示复性。
8.生物氧化p175有机物质在生物体内的氧化作用(充斥着还原作用)泛称为生物水解。
9.呼吸链p177一系列具备水解还原成特性的酶与辅酶做为氢和电子的传达体。
寄氢体和寄电子体按一定顺序排列在线粒体内膜上所形成的连锁氧化还原体系称为电子传递链。
生化问答题和名词解释重点

1.核酸杂交: 在DNA变性后的复性过程中,如果将不同种类的DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在着一定程度的碱基配对关系,在适宜的条件(温度及离子强度)下,就可以在不同的分子间形成杂化双链。
这种杂化双链可以在不同的DNA与DNA之间形成,也可以在DNA和RNA分子间或者RNA与RNA分子间形成。
这种现象称为核酸分子杂交。
(2分)2.P/O比值:每消耗1mol氧原子时 ADP磷酸化成ATP所需消耗的无机磷的mol数。
3.一碳单位:某些氨基酸在分解代谢过程中产生含有一个碳原子的基因,称为一碳单位。
体内的一碳单位有甲基(—CH3)、甲烯基(—CH2—)、甲炔基(—CH==)、甲酰基(—CHO)、亚氨甲基(—CH==NH)等。
(2分)4.外显子:在断裂基因及其初级转录产物上出现,并表达为成熟RNA的核酸序列。
(2分)5.遗传密码:mRNA分子上从5,至3,方向,由AUG开始,每3个核苷酸为一组,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码。
6.DNA变性: 在某些理化因素作用下,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,即为DNA变性。
(2分)7. 糖异生: 由非糖化合物 (乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖原的过程称为糖异生。
(2分)8. 底物水平磷酸化:ADP或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直接相偶联的反应过程称为底物水平磷酸化。
(2分)9.氨基酸代谢库:食物蛋白质经消化而被吸收的氨基酸(外源性氨基酸)与体内组织蛋白质降解产生的氨基酸(内源性氨基酸)混在一起,分布于体内各处,参与代谢,称为氨基酸代谢库。
(2分)10. 不对称转录: 转录模板DNA双链中,只有一股链可作为模板指引转录,另一股链不能作为模板;模板链并非永远在同一条单链上,不同基因的模板链可交叉分布在两股链上,这种选择性转录方式称为不对称转录。
生化简答题与名词解释(新)

针推生物化学(仅供参考)一、名词解释:1、肽键:一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。
2、电泳:带点粒子在电场中泳动时的现象。
3、蛋白质的变性:蛋白质变性是指蛋白质在某些物理和化学因素作用下其特定的空间构象被改变,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质变性。
4、亚基:是指在四级结构中具有独立三级结构的多肽链。
5、等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。
6、退火:退火是变性的逆转过程,它受温度、时间、DNA浓度、DNA顺序的复杂性等因素的影响。
7、Tm值:DNA熔解温度,指把DNA的双螺旋结构降解一半时的温度,亦即DNA 变性过程中,紫外吸收值达到最大值的50%时的温度称为DNA 的解链温度(Tm) 。
8、同工酶:催化同一化学反应而化学组成不同的一组酶。
它们彼此在氨基酸序列、底物的亲和性等方面都存在着差异。
9、酶原:通过有限蛋白水解能够由无活性变成具有催化活性的酶前体。
10、酶原的激活:酶原在某些因素的作用下向酶转化的过程,酶原的激活实际是酶的活性中心形成或暴露的过程。
11、化学修饰调节:酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰,从而引起酶活性的改变,这种调节称为酶的化学修饰。
(填空)12、别构调节:当小分子变构剂与酶活性中心的调节亚基结合后,使酶的空间构象发生改变,从而影响酶的活性。
(填空)13、酶的竞争性抑制作用:通过增加底物浓度可以逆转的一种酶抑制类型。
一个竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。
这种抑制使得Km增大,而Vmax不变。
14、呼吸链:是电子传递链,是定位于线粒体内膜,由一组排列有序的H+和电子传递体构成的功能单位。
15、底物水平磷酸化:底物水平磷酸化指在分解代谢过程中,底物因脱氢、脱水等作用而使能量在分子内部重新分布,形成高能磷酸化合物,然后将高能磷酸基团转移到ADP形成ATP的过程。
生化名词解释及问答题答案

名词解释1、血糖:血液中的单糖,主要是葡萄糖2、糖原合成与分解:由单糖合成糖原的过程称为糖原合成;糖原分解成葡萄糖的过程称糖原分解。
3、糖异生:由非糖物质合成葡萄糖的过程4、有氧氧化:在供氧充足时,葡萄糖在胞液中分解生成的丙酮酸进入线粒体,彻底氧化生成CO2和H2O,并释放大量能量5、三羧酸循环:在线粒体内,乙酰CoA和草酰乙酸缩合成生成柠檬酸, 柠檬酸经一系列酶促反应之后又生成成草酰乙酸,形成一个循环,该循环生成的第一个化合物是柠檬酸,它含有三个羧基,所以称为三羧酸循环6、糖酵解:在供氧不足时,葡萄糖在细胞液中分解成丙酮酸,丙酮酸进一步还原成乳酸,称为糖酵解途径。
7、血脂:血浆中脂类的总称。
主要包括甘油三酯、磷脂、胆固醇和游离脂肪酸。
8、血浆脂蛋白:是脂类在血浆中的存在形式和转运形式。
包括脂类和载脂蛋白。
9、脂肪动员:脂肪细胞内的甘油三酯被脂肪酶水解生成甘油和脂肪酸,释放入血,供给全身各组织氧化利用的过程。
10、酮体:包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸分解代谢的正常产物。
11、必需脂肪酸:人体生命活动所必不可少的几种多不饱和脂肪酸,在人体内不能合成,必需由食物来供给。
有亚油酸、亚麻酸及花生四烯酸三种。
12、必需氨基酸:体内需要而自身又不能合成、必需由食物供给的氨基酸。
包括异亮氨酸、苯丙氨酸、色氨酸、苏氨酸、亮氨酸、甲硫氨酸、赖氨酸和缬氨酸。
13、蛋白质互补作用:将不同种类营养价值较低的蛋白质混合食用,可以相互补充所缺少的必需氨基酸,从而提高其营养价值,称为蛋白质的互补作用。
14、转氨基作用:是指由氨基转移酶催化,将氨基酸的α- 氨基转移到一个α- 酮酸的羰基位置上,生成相应的α-酮酸和一个新的α-氨基酸。
该过程只发生氨基转移,不产生游离的NH3。
15、一碳单位:有些氨基酸在分解代谢过程中可以产生含有一个碳原子的活性基团,称为一碳单位。
16、遗传密码子:从mRNA编码区5’端向3’端按每3个相邻碱基为一组连续分组,每组碱基构成一个遗传密码,称为密码子或三联体密码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章1 DNA双螺旋结构模型的要点有哪些?此模型如何解释Chargaff定律?A天然DNA分子由两条反平行的多聚脱氧核苷酸链组成,一条链的走向为5’→3’,另一条链的走向为3’→5’。
两条链沿一个假想的中心轴右旋相互盘旋,形成大沟和小沟。
b磷酸和脱氧核糖作为不变的骨架成分位于外侧,作为可变成分的碱基位于内侧,链间的碱基按A=T(两个氢键),G=C配对(三个氢键)配对形成碱基平面,碱基平面与螺旋纵轴近于垂直。
c螺旋的直径为2nm,相邻碱基平面的垂直距离为0.34nm。
因此,螺旋结构每隔10bp重复一次,间距为3.4nmd DNA双螺旋结构是非常稳定的。
稳定力量主要有两个,一是碱基堆积力,二是碱基配对的氢键。
2 原核生物与真核生物mRNA的结构有哪些区别?①原核生物mRNA常以多顺反子的形式存在。
真核生物mRNA一般以单顺反子的形式存在。
②原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。
③原核生物mRNA半寿期很短,一般为几分钟,最长只有数小时(RNA噬菌体中的RNA除外)。
真核生物mRNA的半寿期较长,如胚胎中的mRNA可达数日。
④原核与真核生物mRNA的结构特点也不同。
原核生物mRNA一般5′端有一段不翻译区,称前导顺序,3′端有一段不翻译区,中间是蛋白质的编码区,一般编码几种蛋白质。
真核生物mRNA(细胞质中的)一般由5′端帽子结构、5′端不翻译区、翻译区(编码区)、3′端不翻译区和3′端聚腺苷酸尾巴构成分子中除m7G构成帽子外,常含有其他修饰核苷酸,如m6A等。
真核生物mRNA通常都有相应的前体。
从DNA转录产生的原始转录产物可称作原始前体(或mRNA前体)。
一般认为原始前体要经过hnRNA核不均-RNA 的阶段,最终才被加工为成熟的mRNA。
3从两种不同细菌提起DNA样品,其腺嘌呤核苷酸残基分别占其碱基总数的32%和17%,计算这两种不同来源DNA四种脱氧核苷酸残基相对百分组成,两种细菌中有一种是从温泉(64°C)种分离出来的,该细菌DNA具有何种碱基组成?为什么?腺嘌呤核苷酸残基分别占其碱基总数的32%:A 32% G 18% C 18% T 32% 腺嘌呤核苷酸残基分别占其碱基总数的17%:A 17% G 33% C 33% T 17% 由于含氢键越多,DNA越稳定,GC碱基对之间是三个氢键,AT碱基对之间是两个氢键,所以腺嘌呤核苷酸残基分别占其碱基总数的17%的这一种DNA比较稳定,是从温泉中分离出来的。
4正确写出下列寡核苷酸的互补的DNA和RNA序列(1)GATCAA(2)TGGAAC (3)ACGCGT (4)TAGCATDNA 5’UUGATC3’5’GTTCCA3’5’ACGCGT3’5’ATGCTA3’RNA 5’UUGAUC3’5’G UU CCA3’5’ACGCG U3’5’A UGCU A3’5 名词解释增色效应:DNA变性后在260nm处的紫外光吸收增加的效应称为增色效应减色效应:DNA复性后在260nm处的紫外光吸收减少的效应称为减色效应第三章名词解释蛋白质一级结构:蛋白质分子中氨基酸的排列顺序就是蛋白质的一级结构蛋白质二级结构:指具有一定程序规则氢键结构的多肽链主链的空间排布,而不涉及侧链的构象等电点氨基酸等电点:在某一特定的PH条件下,氨基酸分子在溶液中解离成阳离子和阴离子的数目和趋势相等,即氨基酸分子所带静电荷为零,在电场中级既不向阴极也不向阳极移动,这是氨基酸所处溶液的PH即为该氨基酸的等电点。
蛋白质等电点:当溶液在某一特定的PH时,使蛋白质多所带的正负电荷恰好相等,即静电荷为零,这时溶液的PH称为该蛋白质的等电点。
1在下述条件下计算含有45个氨基酸残基肽链的长度(以nm为单位)(1)70%为a螺旋,10%为平行式B折叠,20%为线性。
(2)全部为a螺旋。
①(45*70%/3.6)*0.54+(45*10%/2-1)*0.132+(45*20%-1)0.132=5.496②(45/3.6)*0.54nm=6.752已知:(1)卵清蛋白pI为4.6;(2)B乳球蛋白pI为5.2;(3)糜蛋白酶原pI为9.1。
问在PH5.2时上述蛋白质在电场中向阳极移动、向阴极移动还是不移动?a向阳极移动因为PI<5.2,所以蛋白质带负电荷,在电场中向阳极移动。
b不移动因为PI=5.2c向阴极移动因为PI>5.2,所以蛋白质带正电荷,在电场中向阴极移动。
3什么叫蛋白质的变性?哪些因素可以引起变性?蛋白质变性后有何性质和结构上的改变?蛋白质的变性有何实际应用?蛋白质变性指天然蛋白质因受某些物理或化学因素的影响,由氢键、盐键等次级键维系的高级结构遭到破坏,分子空间结构发生改变,致使其物理化学性质和生物活性改变的作用影响因素物理因素:加热、紫外线、X射线、超声波、剧烈震荡、搅拌等化学因素:强酸、强碱、脲,胍,重金属盐,三氯乙酸,磷钨酸,浓乙醇等物理性质的改变:黏度增加、溶解度减少、旋光值改变、渗透压和扩散速度降低。
化学性质的改变:容易被酶水解。
生物活性改变:活性降低或完全丧失结构改变:由于二级结构以上的高级结构破坏,由有序的紧密结构变成无序的松散结构,侧链基因暴露。
变性可涉及次级键和与二硫键的变化,但不涉及肽键的断裂。
蛋白质变性的应用:做豆腐利用蛋白质变性的原理,将大豆蛋白质的浓溶液加热加盐而成变性蛋白凝固体即豆腐。
医疗上的消毒杀菌是利用了蛋白质变性而使病菌失活。
在急救重金属盐中毒患者时,可给患者饮用大量牛乳或蛋清,其目的就是就是使牛乳或蛋清中的蛋白质在消化道中与重金属盐结合成不溶解的变性蛋白质,最后将沉淀物从肠胃中洗出,从而阻止对重金属离子的吸收第四章名词解释同工酶:存在于同一属性生物或同一个体中能催化同一种化学反应,但酶蛋白分子的结构,理化性质和生化特性(Km,电泳行为等)存在明显差异的一组酶。
别构酶:某种因素作用下,有些酶发生构象变化而改变活性,这类酶称为别构酶。
1磺胺类药物能抑制细菌的生长,其作用机理是什么?细菌不能直接利用其生长环境中的叶酸,而是利用环境中的对氨苯甲酸(PABA)和二氢喋啶、谷氨酸在菌体内的二氢叶酸合成酶催化下合成二氢叶酸。
二氢叶酸在二氢叶酸还原酶的作用下形成四氢叶酸,四氢叶酸作为一碳单位转移酶的辅酶,参与核酸前体物(嘌呤、嘧啶)的合成。
而核酸是细菌生长繁殖所必须的成分。
磺胺药的化学结构与PABA类似,能与PABA竞争二氢叶酸合成酶,影响了二氢叶酸的合成,因而使细菌生长和繁殖受到抑制。
2 有机磷农药的毒性机理?有机磷化合物如二异丙基氟磷酸能与胰蛋白酶或乙酰胆碱酯酶活性中心的丝氨酸残基反应,形成稳定的共价键而使酶丧失活性。
乙酰胆碱是昆虫和脊椎动物体内传导神经冲动和刺激的化学介质。
乙酰胆碱酯酶催化乙酰胆碱水解为乙酸和胆碱。
若乙酸胆碱酯酶被抑制,则会导致乙酸胆碱的积累,因而引起一系列神经中毒症状,因过度兴奋引起功能失调,最终导致死亡,这就是有机磷化物的毒性原理。
3请分析下列现象的生化机理:“酵母汁将蔗糖变成酒精称为乙醇发酵;酵母汁经透析或加热至50°C,失去发酵能力,而透析的酵母汁与加热的酵母汁混合后又具有发酵能力”。
酵母发酵活性取决于两类物质,一类是热不稳定的不可透析的成分,酶蛋白。
另一种是热稳定可透析的成分,辅因子。
第五章维生素与辅酶什么是维生素?维生素是维持生物体正常生命活动所必需的一类小分子有机化合物。
大多数维生素作为酶地辅酶或辅基的组成成分参与体内的代谢过程,具有外源性、微量性、调节性和特异性。
试述维生素与辅酶、辅基的关系。
很多维生素是在体内转变成辅酶或辅基,参与物质的代谢调节。
所有 B 族维生素都是以辅酶或辅基的形式发生作用的,但是辅酶或辅基则不一定都是由维生素组成的,如细胞色素氧化酶的辅基为铁卟啉,辅酶 Q 不是维生素等。
第七章糖类代谢糖酵解(EMP 三位德国科学家:Embden、Meyerhof、Parnas):是在无氧条件下,葡萄糖转变为丙酮酸并释放ATP的一系列反应,是普遍存在生物界最基本代谢过程。
葡萄糖异生作用:是指生物体利用非碳水化合物的前体物质合成葡萄糖的过程。
糖酵解与三羧酸循环中调节酶有哪几个?三羧酸循环主要生理意义?糖酵解(EMP)调节酶:a.己糖激酶,b.磷酸果糖激酶,c.丙酮酸激酶;三羧酸循环调控酶:丙酮酸脱氢酶、柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶系、琥珀酸脱氢酶三羧酸循环(TCA)主要生理意义:(1)TCA是三大营养素彻底氧化的最终代谢通路;(2)TCA是三大营养素代谢联系的枢纽;(3)TCA为其他合成代谢提供小分子前体;(4)TCA为氧化磷酸化提供还原当量。
第八章生物氧化和能量转换生物氧化:是指细胞内的糖、蛋白质和脂肪进行氧化分解而生成CO2和H2O,并释放能量的过程。
氧化磷酸化:是指生物氧化过程中释放自由能驱动ADP磷酸化形成ATP的过程。
化学渗透假说(Mitchell 1961年)的主要内容是什么?电子传递链各组分在线粒体内膜中不对称分布,当高能电子沿其传递时,所释放的能量将H+从基质泵到膜间隙,形成H+电化学梯度。
在这个梯度驱使下,H+穿过ATP合成酶回到基质,同时合成ATP,电化学梯度中所蕴藏的能量储存1到ATP的高能磷酸键。
电子及质子通过呼吸链上电子载体和氢载体的交替传递,在线粒体内膜上形成3次回路,导致3对H+抽提至膜间隙,生成3个ATP分子。
生物氧化中CO2、H2O、能量的形成。
CO2:糖、脂、蛋白质等有机物转变成含羧基的中间化合物,然后在酶催化下脱羧而生成CO2。
类型:α-脱羧和β-脱羧氧化脱羧和单纯脱羧H2O:代谢物在脱氢酶催化下脱下的氢由相应的氢载体(NAD+、NADP+、FAD、FMN 等)所接受,再通过一系列递氢体或递电子体传递给氧而生成H2O 。
生成能量的过程主要途径:1、底物水平磷酸化 2、电子传递链磷酸化。
第九章1.名词解释β氧化:是指在一系列酶的作用下,脂肪酸的α碳原子和β碳原子之间发生氧化作用,β碳原子被氧化形成酮基,然后裂解成乙酰coA和较原来少2个碳原子的脂肪酸.5,脂肪酸从头合成需要那些原料及能源物质?他们分别来自哪些代谢途径?原料:乙酰coA,来自糖酵解产物丙酮酸.部分来自脂肪酸β氧化和氨基酸氧分解.能源:NADPH+H,约百分之60来自磷酸戊糖途径6-磷酸葡萄糖脱氢酶和6-磷酸葡萄糖酸脱氢酶的催化反应,其余的可来自苹果酸酶催化反应.6.计算1分子软脂酸经氧化作用后彻底分解为co2和H2O时,生成ATP的分子数.一分子软脂酸彻底氧化分解要经过7β次氧化,共产生8分子乙酰coA,7分子FADH2,7分子NADH+H.每分子乙酰coA进入三羧酸循环彻底氧化生成10分子ATP.8分子乙酰coA共产生80个ATP;7分子FADH2经FADH2电子传递链共产生10.5个ATP(1.5乘以7),7分子NADH+H经NADH电子传递链共产生17.5个ATP(2.5乘以7).那么一分子软脂酸经氧化作用生成ATP总数为108(80+10.5+17.5=108).脂肪酸活化成脂酰coA需要消耗2个ATP,所以一分子软脂酸氧化分解co2和H2O共获得106个ATP.8.脂肪酸的β氧化与饱和脂酸的从头合成有哪些相同点和不同点?详见课本202页表9-2.第十章1.名词解释联合脱氨基:联合脱氨基作用是由转氨酶催化的转氨基反应和L-谷氨酸脱氢酶催化的脱氨基反应偶联在一起的脱氨基方式.3.联合脱氨基为什么是生物体内脱去氨基的主要方式?联合脱氨基的过程:首先转氨酶催化一种氨基酸的氨基转移到α-酮戊二酸的酮基上生成L-谷氨酸,然后体内活性很高的L-谷氨酸脱氢酶将L-谷氨酸的氨基脱去,生成α-酮戊二酸和氨,NADPH, α-酮戊二酸再继续参与转氨基作用。