初中数学教程全等三角形教案

合集下载

(完整版)全等三角形教案

(完整版)全等三角形教案

《全等三角形》授课设计授课内容: 《全等三角形》的复习课程目标: 1、回顾全等三角形的定义、性质和判断2、会依照规定书写全等三角形的证明过程3、认识中考中全等三角形的相关例题, 并学会用辅助线合理构造全等三角形。

授课重点: 全等三角形证明的书写格式,合理构造全等三角形。

授课难点: 经过条件搜寻全等关系,或构造全等关系。

授课准备: ppt 课件学情解析:该部分内容为初三中考前的复习,学生对内容已经比较认识,只需要加强记忆和牢固复习。

同时也需要学生掌握中考动向,认识全等三角形在中考中的出题种类。

授课过程:前面我们已经对三角形的性质和特点进行了特地的复习,那么今天我们要对两个三角形的关系——三角形的全等关系进行复习。

我们都知道两个三角形能都完满重合我们就说这两个三角形全等, 而在本质应用中全等的三角形常常是经过平移或旋转获取。

既然能够重合,那么我们也就获取三角形的性质是对应边相等, 对应角也相等。

而在这六个关系中我们只需要获取指定的三种等量关系就可以判断两个三角形全等。

那我们一起来看看书上57 页,一起完成知识梳理的内容。

一、知识梳理: (该部分内容设计由全班同学一起回忆并口答,教师在课件上板书。

时间为 3 分钟) 1、全等三角形:能够完满重合的三角形叫全等三角形。

2、三角形全等的判断方法: SSS、SAS 、 ASA 、 AAS 。

直角三角形全等的判断除以上的方法还有 HL。

3、全等三角形的性质:全等三角形 对应边相等 、 对应角也相等 。

4、全等三角形的面积 相等 、周长相等、对应高、 对应边的中线应角的角均分线 相等。

二、预习自测: (该部分内容由学生自行完成,时间为 2 分钟) 1、如图以下条件中,不能够证明△ ABD △ ACD 的是( D)A.BD=DC,AB=ACB. ∠ ADB= ∠ ADC,BD=DCC.∠ B=∠ C, ∠ BAD= ∠ CADD. ∠ B=∠ C,BD=DC2、两组邻边分别相等的四边形叫做“筝形”,如图,四边形BABCD 是一个筝形, 其中 AD=CD,AB=CB, 詹姆斯在研究筝形的性质时, 获取以下结论:① AC ⊥ BD ;② AO=CO=1AC; ③△ ABD ≌△ CBD ,其中2A正确的结论有(D )、 对AD CDCOBA.0 个个个个三、典例解析:例 1、 (该题比较简单,由教师引导解题思路学生自行解答,不在课堂安排时间)已知:在四边形ABCD 中 AB ∥ CD, E 是 BC 的中点,直线AE 与 DC 的延长线交于点 F. 求证: AB=CF.解析:求证△ CFE≌△ BAE例 2、(该题将作为本节课一道证明三角形全等的典型例题进行解析,主要要修业生在证明题过程书写时吻合规范,时间设计为 3 分钟)如图。

初中数学教案:三角形全等的判定教案

初中数学教案:三角形全等的判定教案

初中数学教案:三角形全等的判定教案一、教学目标:1. 让学生理解三角形全等的概念,掌握三角形全等的判定条件。

2. 培养学生运用全等三角形的性质解决实际问题的能力。

3. 培养学生的观察能力、动手能力和逻辑思维能力。

二、教学内容:1. 三角形全等的定义:如果两个三角形的所有对应边和对应角都相等,这两个三角形叫做全等三角形。

2. 三角形全等的判定条件:SSS(边-边-边)、SAS(边-角-边)、ASA (角-边-角)、AAS(角-角-边)。

三、教学重点与难点:1. 教学重点:三角形全等的判定条件及其应用。

2. 教学难点:三角形全等判定条件的理解和运用。

四、教学方法:1. 采用直观演示法,让学生通过观察和动手操作,加深对三角形全等概念的理解。

2. 采用案例分析法,让学生通过分析实际案例,掌握三角形全等的判定条件。

3. 采用小组合作学习法,培养学生的团队合作精神和沟通能力。

五、教学步骤:1. 导入新课:通过复习已学的几何知识,引导学生进入三角形全等的新课学习。

2. 讲解三角形全等的定义和判定条件:详细讲解三角形全等的概念,以及SSS、SAS、ASA、AAS四种判定条件。

3. 案例分析:给出几个实际案例,让学生运用判定条件判断三角形是否全等。

4. 动手操作:让学生自行取材,进行三角形全等的实际操作,加深对全等三角形性质的理解。

5. 课堂练习:布置一些有关三角形全等的练习题,巩固所学知识。

6. 总结与反思:对本节课的内容进行总结,引导学生思考如何运用三角形全等的知识解决实际问题。

7. 作业布置:布置一些有关三角形全等的家庭作业,巩固所学知识。

8. 课后反思:对课堂教学进行反思,总结教学过程中的优点和不足,为下一步教学做好准备。

六、教学评价:1. 通过课堂提问、练习和作业,评价学生对三角形全等概念和判定条件的掌握程度。

2. 观察学生在动手操作和小组合作学习中的表现,评价其观察能力、动手能力和团队协作能力。

3. 结合学生的课堂表现和作业完成情况,对学生的学习态度和思维能力进行评价。

全等三角形数学教案

全等三角形数学教案

全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。

2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。

3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。

二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。

2. 教学难点:准确判断两个三角形是否全等。

三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。

然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。

(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。

2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。

(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。

以此来帮助他们理解和掌握全等三角形的定义和性质。

(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。

(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。

四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。

同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。

数学全等三角形教学设计教案

数学全等三角形教学设计教案

数学全等三角形教学设计教案经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。

全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。

全等三角形是几何中全等之一。

下面就是小编给大家带来的数学全等三角形教学设计教案,希望能帮助到大家!数学全等三角形教案1一、教学目标【知识与技能】掌握三角形全等的“角角边”条件,会把“角边角”转化成“角角边”。

能运用全等三角形的条件,解决简单的推理证明问题。

【过程与方法】经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。

【情感、态度与价值观】在探索归纳论证的过程中,体会数学的严谨性,体验成功的快乐。

二、教学重难点【教学重点】“角角边”三角形全等的探究。

【教学难点】将三角形“角边角”全等条件转化成“角角边”全等条件。

三、教学过程(一)引入新课利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)(四)小结作业提问:今天有什么收获?还有什么疑问?课后作业:书后相关练习题。

数学全等三角形教案2全等三角形课题:全等三角形教学目标:1、知识目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发现这两个三角形有什么美妙的关系吗?一般学生都能发现这两个三角形是完全重合的。

数学全等三角形教案8篇

数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。

另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。

遵循启发式教学原则,采用引探式教学方法。

用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。

四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。

2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。

全等三角形教案6篇

全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。

全等三角形教案(精选3篇)

全等三角形教案(精选3篇)

全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。

于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。

然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。

(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。

应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。

(3)、此公理与前面学过的公理区别与联系。

(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。

在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

全等三角形教案(5篇)

全等三角形教案(5篇)

全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。

2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。

3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。

(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。

(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。

至于D,由于AD 和BC是对应边,因此AD=BC。

C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

《全等三角形》教学设计

《全等三角形》教学设计

《全等三角形》教学设计教学设计:全等三角形一、教学目标1. 知识目标:学生能够了解全等三角形的定义、性质以及判定全等三角形的方法;2. 能力目标:培养学生的逻辑思维能力和问题解决能力;3. 情感目标:激发学生对几何知识的兴趣,培养学生的数学学习兴趣和学习动力。

二、教学重点难点1. 教学重点:全等三角形的定义、性质以及判定方法;2. 教学难点:全等三角形的判定方法及其应用。

四、教学过程1. 导入:通过一个具体的生活例子引入全等三角形的概念,引发学生对全等三角形的兴趣。

2. 提出问题:通过提出问题的方式,引导学生思考全等三角形的性质和判定方法。

3. 学习新知识:介绍全等三角形的定义和性质,让学生理解全等三角形的概念。

4. 深化理解:通过实例演示,让学生了解全等三角形的判定方法。

5. 拓展应用:通过实际问题,引导学生应用全等三角形的知识解决问题。

6. 练习巩固:布置一些练习题,巩固学生对全等三角形的理解和运用能力。

7. 总结提高:总结全等三角形的知识点,强调全等三角形在实际生活中的应用,并提出下节课的预习内容。

五、教学手段1. 教师讲解2. 多媒体教学3. 实例演示4. 学生讨论5. 课堂练习六、教学评价1. 课堂表现评价:观察学生在课堂上的积极参与情况和答题情况。

2. 作业评价:批改学生的作业,了解学生对全等三角形知识的掌握情况。

3. 能力评价:通过课堂练习和课后练习,评估学生运用全等三角形知识解决问题的能力。

七、教学反思通过本次教学设计,希望能够让学生对全等三角形的概念和性质有所了解,并能够掌握全等三角形的判定方法和应用。

在教学过程中,需要注重引导学生思考和讨论,培养学生的逻辑思维能力和问题解决能力。

也要关注学生的学习情况,及时调整教学策略,确保教学效果。

初中数学《全等三角形》教案

初中数学《全等三角形》教案

两角和它们的夹边分别相等 的两个三角形全等。
两角和其中一个角的对边分 别相等的两个三角形全等。
在直角三角形中,斜边和一 条直角边分别相等的两个三 角形全等。
典型例题解析
1. 题目
解析
2. 题目
解析
已知△ABC和△DEF中,AB = DE,BC = EF,∠B = ∠E,求 证:△ABC ≌ △DEF。
结合生活实际,设计具有实际 背景的题目,提高学生兴趣。
鼓励学生自行编题并相互交换 解答,培养其创新能力和合作 意识。
学生自主完成练习
学生独立完成课堂练习,巩固所学知 识。
教师巡视课堂,及时给予指导和帮助。
对于较难的题目,鼓励学生相互讨论、 合作解决。
教师点评与总结
教师对学生的练习进行批改和点评,指出错误和不足。 针对普遍存在的问题进行集中讲解和纠正。
典型例题解析
第一季度
第二季度
第三季度
第四季度
例题1
已知△ABC和△DEF中, AB=DE,BC=EF, ∠B=∠E,求证: △ABC≌△DEF。
解析
根据已知条件和三角形 的SAS全等判定定理, 可以证明△ABC和△DEF 全等。具体步骤为:在 △ABC和△DEF中,已知
AB=DE,BC=EF, ∠B=∠E,根据SAS全等
准确,避免出现逻辑漏洞。
分析法证明全等三角形
分析法的基本思路
从所要证明的结论出发,逆向分析,寻找使结论成立的条件。
分析法在全等三角形证明中的应用
根据所要证明的两Βιβλιοθήκη 三角形全等的结论,逆向分析需要满足的条件,并与已知条件进行比较。
注意事项
在使用分析法证明全等三角形时,需要确保逆向分析的过程逻辑清晰、严密,避免出现错误 的推导。

全等三角形教案六篇

全等三角形教案六篇

全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。

同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。

二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。

因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。

《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。

为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。

2.方法与过程:争论、引导教学法。

3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。

三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。

第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。

全等三角形的定义:两个能够重合的三角形称为全等三角形。

全等三角形的性质:全等三角形的对应边、对应角相等。

活动目的:回忆前面学习过的学问,为探究新学问作预备。

全等三角形教案

全等三角形教案

全等三角形教案一、教学目标1.知识与技能目标:掌握全等三角形的判定条件、全等三角形的性质和全等三角形的应用。

2.过程与方法目标:培养学生的观察能力、推理能力和解决问题的能力。

3.情感态度目标:培养学生对几何学的兴趣,增强学生的合作意识和团队精神。

二、教学重点1.掌握全等三角形的判定条件。

2.掌握全等三角形的性质。

三、教学难点1.掌握全等三角形的判定条件的推理过程。

2.掌握全等三角形的性质的推理过程。

四、教学过程设计1.导入(活动1:发现全等条件)教师出示三个等边三角形的剪纸模型,请学生观察并发现其中的规律。

引导学生发现:等边三角形的三边相等。

教师简单地解释:等边三角形的三个边长相等。

确定本课的学习目标:学习全等三角形的判定条件。

2.规范学习(1)概念的引入教师展示两个三角形的剪纸模型,先是发现三角形的一些性质,并将这些性质进行比较。

(2)知识的讲解a.全等三角形的判定条件教师通过例题引导学生总结全等三角形的判定条件:(1)两边和夹角相等;(2)三边相等;(3)两边和对应角相等。

b.全等三角形的性质教师引导学生讨论全等三角形的特点,并总结全等三角形的性质:(1)对应边和对应角相等;(2)对应角的对立面相等;(3)全等三角形的周长和面积相等。

3.拓展学习(1)巩固与提高教师出示一道全等三角形的练习题,请学生自主解答并将解题思路进行讲解。

(2)学以致用教师出示一些应用题,引导学生运用全等三角形的判定条件和性质进行解题,如计算图形的周长、面积等。

5.知识运用与实践(1)巩固练习教师出示几道练习题,请学生分组完成,并进行讲解,加深对全等三角形的理解和巩固所学知识。

(2)拓展练习教师布置一些练习题供学生自主练习,鼓励学生运用全等三角形的知识解决实际问题。

(3)课堂总结教师对本节课的学习内容进行总结,并针对学生提出的问题进行解答。

五、板书设计判定条件:1.两边和夹角相等。

2.三边相等。

3.两边和对应角相等。

性质:1.对应边和对应角相等。

全等三角形教案【优秀7篇】

全等三角形教案【优秀7篇】

全等三角形教案【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!全等三角形教案【优秀7篇】在教学工作者开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。

初中数学《全等三角形》教案

初中数学《全等三角形》教案

初中数学《全等三角形》教案初中数学《全等三角形》教案(精选11篇)作为一名辛苦耕耘的教育工作者,就不得不需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。

我们该怎么去写教案呢?以下是小编整理的初中数学《全等三角形》教案,仅供参考,大家一起来看看吧。

初中数学《全等三角形》教案1一、教学目标1、使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式、2、使学生掌握化简一个二次根式成最简二次根式的方法、3、使学生了解把二次根式化简成最简二次根式在实际问题中的应用、二、教学重点和难点1、重点:能够把所给的二次根式,化成最简二次根式、2、难点:正确运用化一个二次根式成为最简二次根式的方法、三、教学方法通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的`方法、四、教学手段利用投影仪、五、教学过程(一)引入新课提出问题:如果一个正方形的面积是0.5m 2,那么它的边长是多少?能不能求出它的近似值?了、这样会给解决实际问题带来方便、(二)新课由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、总结满足什么样的条件是最简二次根式、即:满足下列两个条件的二次根式,叫做最简二次根式:1、被开方数的因数是整数,因式是整式、2、被开方数中不含能开得尽方的因数或因式、例1?指出下列根式中的最简二次根式,并说明为什么、分析:说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、例2?把下列各式化成最简二次根式:说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、例3?把下列各式化简成最简二次根式:说明:1.引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简、2.要提问学生问题,通过这个小题使学生明确如何使用化简中的条件、通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题、注意:①化简时,一般需要把被开方数分解因数或分解因式、②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化、(三)小结1、满足什么条件的根式是最简二次根式、2、把一个二次根式化成最简二次根式的主要方法、(四)练习1、指出下列各式中的最简二次根式:2、把下列各式化成最简二次根式:六、作业教材P、187习题11、4;A组1;B组1、七、板书设计初中数学《全等三角形》教案2一、教学目标知识与技能理解并掌握全等三角形的概念及性质。

全等三角形全章教案

全等三角形全章教案

课题11.2.1 三角形全等的条件(二)学习目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3.能运用“SAS”证明简单的三角形全等问题.学习重难点学习重点:三角形全等的条件.学习难点:寻求三角形全等的条件.学习过程(主要环节)学习程序个性展示一、创设情境,复习提问1.怎样的两个三角形是全等三角形?2.全等三角形有哪些性质?3.三角形全等的判定Ⅰ的内容是什么?二、导入新课1.三角形全等的判定(二)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO.如果把△OAB绕着O点顺时针方向旋转180°,因为OA=OC,所以可以使OA 与OC重合;又因为∠AOB =∠COD,OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?3.从以上实验可得到一般结论:有两边和它们的夹角对应相等的两个三角形全等(简称或)三、例题与练习1.填空:(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是__________;还需要一个条件_________(这个条件可以证得吗?).(2)如图4,已知AB=AE,AD=AC,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:和,还需要一个条件_____________(这个条件可以证得吗?).2、例1 已知:AD∥BC,AD=CB,AE=CF.(图3).求证:△ADC≌△CBA.分析:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌△CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件( )?怎样证明呢?练习3:OABCD如图,线段AB与CD 的中点重合于O点,那么AB与CD平行吗?为什么?四、小结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.五、作业:1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.思考题:有两边及其中一边的对角对应相等的两个△一定全等吗?我学到了什么学后反思C斜边与一直角边对应相等的两个直角三角形(即)(二)巩固练习:1.如图,△ABC中,AB=AC,AD是高,则△ADB △ADC,根据2.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据(4)若AC=BD,AE=BF,CE=DF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【过渡】在三角形中,存在有对应点、对应边和对应角这三个概念。
(1)对应的顶点(三个)---重合的顶点
(2)对应边(三条)---重合的边
(3)对应角(三个)---重合的角
如图所示的两个全等三角形,你能找到其对应元素吗?
课件展示。
【过渡】如果两个三角形全等,我们一般用特殊的符号表示。即:
“全等”用符号“≌”,读作“全等于”。
谁能回答这两三角形的全等应该如何写?
(学生回答)
【过渡】在书写三角形全等的时候,我们需要注意:
记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
【过渡】现在,大家一起来进行一个游戏,每个人画两个全等的三角形,在画的过程中,你能得到对应的元素之间有什么关系呢?
(学生活动,老师指导)
(学生回答)
(学生回答)
【过渡】其实,大家的答案都是一样的,它们的大小和形状都是一样的,这就是我们今天要学习到的全等图形。
观察图片,通过提示的问题,从形状和大小两个方面对其进行分析回答,从而对全等图形有一个初步的概念。
通过现实生活中大量的形状、大小相同的图形,注重从一般到特殊并运用贴近学生生活的图案,激发学生探究的兴趣,由此说明数学来源于生活。
1、通过动画展示,让学生体会变化前后的两个三角形全等的问题,从而起到巩固新概念的作用。
2、学生动手对全等三角形的性质进行探究,通过实践得到结论,更清晰的对性质认识。
通过动画演示全等变换的过程及学生动手实践,让学生形成直观感觉,从而分析总结出图形变换的本质,进一步加深对图形变换的理解,培养学生动态研究几何图形的意识。
【牛刀小试】1、若△AOC≌△BOD,AC=;∠A=。
2、若△ABD≌△ACE,BD=,∠BDA=。
3、若△ABC≌△CDA,AB=,∠BAC=。
【过渡】大家仔细看一下着三个问题,你能发现什么结论吗?
其实,这三个问题中包含了特殊的全等三角形的对应关系。
找全等三角形对应边、对应角的方法
1、大边对应大边,大角对应大角;
课堂小结
这节课师生教与学活动是建立在学生的认知发展水平和已有的经验基础上,教师激发学生的学习兴趣和积极性,让学生自主的对问题进行探究,在参与活动的同时对所学知识有进一步的认识。
板书
1、全等三角形
2、全等三角形的性质
上边的图片,相信大家都不陌生,两只米奇有什么一样或者不一样的地方吗?我们经常看到的剪纸,大家观察一下,又有什么特点?它们的大小和形状一样吗?
(学生回答)
这两种图形形状一样吗?大小一样吗?
【过渡】除了这个之外,我们再来看一下这两个五角星。
【过渡】和刚刚的问题一样,你能说出这两个图形的大小和形状一样吗?
A.3B.4C.5D.6
2.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为( )
A.20°B.30°
C.35°D.40°
3.如图,已知△ABC≌△EDF,下列结论正确的是
( )
A.∠A=∠EB.∠B=∠DFE
C.AC=EDD.BF=DF
4:如图,已知ΔABC≌ΔFED, BC=ED,求证:AB∥EF
讲授新课
1.全等三角形
【过渡】刚刚我们看了几个不同的全等图形,谁能来总结一下什么样的图形是全等图形呢?
全等图形的概念:
能完全重合Leabharlann 图形称为全等图形。现在我们来思考一个问题,如果两个图形全等,它们的形状大小一定都相同吗?
课件展示动画。
【过渡】通过刚刚的动画,我们看到,这两个五角星是可以完全重合的,结合日常生活,大家对重合是如何理解的呢?
【过渡】我们回到最开始的问题,明信片上的两个三角形邮戳的大小有什么关系呢?
两个三角形全等,形状和大小均相同。
【过渡】现在,我们一起来看一下课本思考的内容。
首先,我们来看一下第一个问题。
课件展示平移的动画。
【过渡】大家能得到什么结论?
结论:经过平移后的两个三角形全等。
【过渡】接下来我们看一下第二个问题。
【过渡】通过刚刚的动手,大家对三角形全等的性质都有了一定的认识。
全等三角形的性质:
全等三角形的对应边相等,对应角相等。
全等三角形性质的几何语言:
∵△ABC≌△DEF(已知)
∴AB=DE,,AC=DF,BC=EF(全等三角形对应边相等)
∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等)
【过渡】现在我们大家一起来练习一下吧。
课件展示翻折的动画。
结论:经过翻折后的两个三角形全等。
课件展示旋转的动画。
结论:经过旋转后的两个三角形全等。
【过渡】从刚刚的思考中,你能得到什么结论?
结论:平移、翻折、旋转前后的两个三角形的位置改变,但形状、大小不变。平移、翻折、旋转前后的图形全等。
【过渡】在了解了上述问题之后,我们来看一下关于全等三角形的基本知识。
(学生回答)
【过渡】重合就意味着这两个图形的大小和形状是完全一样的。因此,我们知道,全等图形的特点就是:
全等图形的形状和大小都相同。
【过渡】在全等图形中,我们今天重点来学习一下全等三角形,结合刚刚全等图形的定义,谁能告诉我全等三角形该如何定义呢?
全等三角形的概念:
能够完全重合的两个三角形称为全等三角形。
人教版数学八年级上册12.1全等三角形教学设计
课题
12.1全等三角形
单元
第十二单元
学科
数学
年级
八年级
学习
目标
1.知识与技能
(1)了解全等形和全等三角形的概念,掌握全等三角形的性质。
(2)能正确表示两个全等三角形,能找出全等三角形的对应元素。
2.过程与方法
通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质
2、公共边是对应边,公共角是对应角;
3、对应边所对的角是对应角,对应角所对的边是对应边;
4、有对顶角的,对顶角一定是对应角
5、根据书写规范,按照对应顶点找对应边或对应角。
【过渡】通过今天的学习,希望大家能正确的理解全等三角形。
【知识巩固】
1、已知:如图,△ABC与△DEF是全等三角形,则图中相等的线段的组数是()
3.情感态度和价值观
通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
重点
理解并掌握全等三角形的对应边相等,对应角相等
难点
正确寻找全等三角形的对应元素
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
课件展示:问题引入。
【过渡】在日常生活中,我们总能看到这样的情景:
相关文档
最新文档