初一数学期末复习指导

合集下载

初一上册数学期末复习资料

初一上册数学期末复习资料

初一上册数学期末复习资料初一上册数学期末复习资料数学作为一门学科,无论是在学校还是在社会生活中,都扮演着重要的角色。

它不仅是一种工具,更是一种思维方式和解决问题的能力。

对于初中学生来说,数学的学习不仅是为了应对考试,更是为了培养逻辑思维和数学思维,为将来的学习打下坚实的基础。

下面,我将为大家整理一份初一上册数学期末复习资料,希望能够帮助大家复习巩固知识。

一、整数与有理数整数与有理数是数学中最基础的概念之一。

初一上册主要涉及整数的加减乘除、有理数的比较大小和绝对值等内容。

在复习这部分知识时,可以通过做题来巩固记忆。

例如,计算下列各题的结果:1. (-3) + 5 = ?2. (-4) - (-7) = ?3. 0.2 × (-6) = ?4. 2.5 ÷ (-0.5) = ?此外,还可以通过实际生活中的例子来理解整数和有理数的概念。

比如,当我们在海拔为0的地方,向上爬升100米,我们的海拔就变成了正100米;而当我们向下走100米,海拔就变成了负100米。

二、代数式与方程式代数式与方程式是初中数学中的重要内容,也是后续学习的基础。

初一上册主要涉及代数式的加减乘除、代数式的值、方程式的解等内容。

在复习这部分知识时,可以通过做题来巩固记忆。

例如,计算下列各题的值:1. 若 x = 2,求 3x + 5 的值。

2. 若 y = -3,求 2y^2 - 4y 的值。

此外,还可以通过实际生活中的例子来理解代数式与方程式的应用。

比如,当我们知道一个矩形的长和宽,可以通过代数式计算出它的面积;而当我们知道一个方程式的解,可以通过方程式求解来解决实际问题。

三、图形的认识与初步应用图形的认识与初步应用是初中数学中的重要内容,也是几何学的基础。

初一上册主要涉及平面图形的认识、三角形的性质、平行线与垂直线等内容。

在复习这部分知识时,可以通过观察图形、比较图形的属性来巩固记忆。

例如,判断下列各题是否正确:1. 两条相交的直线一定是垂直线。

7年级数学(BS)复习考点知识讲解与练习4---有理数的加减法

7年级数学(BS)复习考点知识讲解与练习4---有理数的加减法

7年级数学(BS )复习考点知识讲解与练习第4讲 有理数的加减法【考点知识和基础题型】考点知识4. 1 有理数的加法 有理数分为2个部分:符号+数值因此,有理数的计算,我们需要完成2个工作。

(1)判断符号;(2)计算数值 规律:①同号相加,取相同的符号,并把绝对值相加②异号相加,取绝对值大数的符号,并用较大的绝对值减去较小的绝对值。

③一个数同0相加,结果仍然为0.例1.(2021·山东省初一期末)下列各式运算正确的是() A .()()770-+-= B .111326⎛⎫⎛⎫-+-=- ⎪ ⎪⎝⎭⎝⎭ C .()0101101+-= D .1101010⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭例2.(2021·山东省初一期中)如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最大值是( ) A .9 B .10 C .12 D .13例3.(2021·靖江外国语学校初一月考)下面结论正确的有( )①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数. ③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0. A .0个 B .1个 C .2个 D .3个例4.(2021·广东省初一月考)如果a b 、是有理数,则下列各式子成立的是() A .如果00a b <<、,那么0a b +>B .如果00a b <>、,那么0a b +> C .若00a b ><、,则0a b +<D .若00a b <>、,且a b >,则0a b +< 例5.(2021·全国初一课时练习)用“>”或“<”填空: (1)如果a >0,b >0,那么a + b 0; (2)如果a <0,b <0,那么a + b 0;(3)如果a >0,b <0,|a |>| b |,那么a + b 0; (4)如果a >0,b <0,|a |<| b |,那么a + b 0.考点知识4. 2 有理数的加法运算律 ①加法交换律:a +b =b +a②加法结合律:a +b +c =a +(b +c )例1.(2021·全国初一单元测试)计算:(+16)+(-25)+(+24)+(-35)=[____+____]+[____+____]=(+40)+(-60)=______.例2.(2021·全国初一课时练习)给下面的计算过程标明运算依据: (+16)+(-22)+(+34)+(-78) =(+16)+(+34)+(-22)+(-78)① =[(+16)+(+34)]+[(-22)+(-78)]② =(+50)+(-100)③ =-50.④①______________;②______________;③______________;④______________.考点知识4. 3 运用运算律简化计算 1)相反数结合——抵消 2)同号结合——符号易确定3)同分母结合法——无需通分(分母倍数的也可考虑) 4)凑整数5)同行结合法——分数拆分为整数和分数例1.(2021·全国初一课时练习)计算:1(3)8-+(-2.16)+814+318+(-3.84)+(-0.25)+45.例2.(2021·郑州市第三中学)计算 (1)(﹣63)+17+(﹣23)+68;(2)312+(﹣13)+(﹣312)+213;(3)8(2)(12)18---+-+;(4)331452(1)()4747-++---例3.(2021·全国初一课时练习)计算:(1)44413()()()13171317-+-++-(2)2111(4)(3)6(2)3324-+-++-(3)1625(2)2(7)21321-++-(4) 3152[3()][(3)(3)]8989+-+++-.例4.(2021·全国初一课时练习)计算:511133246565⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 嘉嘉的做法如下:[解]:原式5111(3)(3)(2)(4)6565⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+++-+-++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭①5111[(3)(3)(2)(4)]6565⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+++-+++-++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦②5111(4)6655⎧⎫⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++++⎨⎬ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎩⎭③…嘉嘉发现自己的做法出错了,请指出从第几步开始错误,并写出正确的解题过程.例5.(2021·全国初一课时练习)阅读下题的计算方法.计算:5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭解:原式=5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦=5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=0+54⎛⎫- ⎪⎝⎭=-54. 上面这种解题方法叫做拆项法,按此方法计算:522120192018403616332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭考点知识4. 4 有理数减法的意义有理数减法法则:减一个数,等于加上这个数的相反数a-b=a+(﹣b)例1.(2021·贵州省遵义十一中初一月考)下列结论错误的是()A.若a>0,b<0,则a-b>0B.a<b,b>0,则a-b<0C.若a<0,b<0,则a-(-b)<0D.若a<0,b<0,且|a|>|b|,则a-b>0 例2.(2021·全国初一课时练习)计算:(1)1.8-(-2.6);(2)42()()33---;(3)12(2)433--;(4)312-(-2.5).例3.(2021·浙江初一课时练习)计算下列各题:(1)⎛⎫⎛⎫--+⎪ ⎪⎝⎭⎝⎭1233.(2)17.52---.(3)⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭11123.(4)⎛⎫⎛⎫⎛⎫⎛⎫-+++--+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111212424.考点知识4. 5 有理数的加减混合运算1)可以把加号和括号省略,改写成几个正数或负数的形式(利用法则)例:(-2)+(+3)+(-5)+(+4)=-2+3-5+42)多重符号化简例:(-2)+(+3)-(+5)-(-4)=-2+3-5+4例1.(2021·陕西省初一月考)计算:(1)232321( 1.75)343⎛⎫⎛⎫⎛⎫------+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(3)121323883535⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(4)11(35)(41)(16)+---+-.例2.(2021·湖北宜昌中考模拟)用较为简便的方法计算下列各题:(1)123⎛⎫+⎪⎝⎭-1103⎛⎫+⎪⎝⎭+185⎛⎫-⎪⎝⎭-235⎛⎫+⎪⎝⎭;(2)-8 721+531921-1 279+4221;(3)-3255⎛⎫--- ⎪⎝⎭+1142⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭. (4)1135323(5)(1)(3)(10)10464675+----++-例3.(2021·浙江初一课时练习)计算:112-256+3112-41920+5130-64142+7156-87172+9190.【玩转重难点题型】题型1 有理数加法的应用 性质:有理数加法的运算法则解题技巧:该类题型的实质是有理数加法的计算,通过理解题干意思,列写有理数运算算式,利用有理数加法运算规律进行计算求值。

新版湘教版初一数学七年级下册期末复习教案

新版湘教版初一数学七年级下册期末复习教案

新版湘教版初⼀数学七年级下册期末复习教案⼆元⼀次⽅程组知识要点1、⼆元⼀次⽅程:含有两个未知数,并且所含未知数的项的次数都是⼀次的整式⽅程叫做~2、⼆元⼀次⽅程的解:适合⼆元⼀次⽅程的⼀组未知数的值叫做这个⼆元⼀次⽅程的⼀个解;3、⼆元⼀次⽅程组:由⼏个⼀次⽅程组成并含有两个未知数的⽅程组叫做⼆元⼀次⽅程组4、⼆元⼀次⽅程组的解:适合⼆元⼀次⽅程组⾥各个⽅程的⼀对未知数的值,叫做这个⽅程组⾥各个⽅程的公共解,也叫做这个⽅程组的解(注意:①书写⽅程组的解时,必需⽤“{”把各个未知数的值连在⼀起,即写成?==b y ax 的形式;②⼀元⽅程的解也叫做⽅程的根,但是⽅程组的解只能叫解,不能叫根)5、解⽅程组:求出⽅程组的解或确定⽅程组没有解的过程叫做解⽅程组6、解⼆元⼀次⽅程组的基本⽅法是代⼊消元法和加减消元法(简称代⼊法和加减法)(1)代⼊法解题步骤:把⽅程组⾥的⼀个⽅程变形,⽤含有⼀个未知数的代数式表⽰另⼀个未知数;把这个代数式代替另⼀个⽅程中相应的未知数,得到⼀个⼀元⼀次⽅程,可先求出⼀个未知数的值;把求得的这个未知数的值代⼊第⼀步所得的式⼦中,可求得另⼀个未知数的值,这样就得到了⽅程的解==by ax (2)加减法解题步骤:把⽅程组⾥⼀个(或两个)⽅程的两边都乘以适当的数,使两个⽅程⾥的某⼀个未知数的系数的绝对值相等;把所得到的两个⽅程的两边分别相加(或相减),消去⼀个未知数,得到含另⼀个未知数的⼀元⼀次⽅程(以下步骤与代⼊法相同)⼀、例题精讲例1.分别⽤代⼊法和加减法解⽅程组 5x+6y=162x-3y=1解:代⼊法:由⽅程②得:312-=x y ③将⽅程③代⼊⽅程①得:1631265=-?+x x 解得x =2将x =2代⼊⽅程②得: 4-3y=1解得y=1所以⽅程组的解为==12y x加减法:例2.从少先队夏令营到学校,先下⼭再⾛平路,⼀少先队员骑⾃⾏车以每⼩时12公⾥的速度下⼭,以每⼩时9公⾥的速度通过平路,到学校共⽤了55分钟,回来时,通过平路速度不变,但以每⼩时6公⾥的速度上⼭,回到营地共花去了1⼩时10分钟,问夏令营到学校有多少公⾥?分析:路程分为两段,平路和坡路,来回路程不变,只是上⼭和下⼭的转变导致时间的不同,所以设平路长为x 公⾥,坡路长为y 公⾥,表⽰时间,利⽤两个不同的过程列两个⽅程,组成⽅程组解:设平路长为x 公⾥,坡路长为y 公⾥依题意列⽅程组得:=+=+60101696055129y x y x解这个⽅程组得:==36y x经检验,符合题意x +y =9答:夏令营到学校有9公⾥⼆、课堂⼩结:回顾本章内容,总结⼆元⼀次⽅程组的解法和应⽤。

七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】

七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】

专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,≥0.备注:||00a aa aa a>⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根练习1的平方根为( )A.B.C.4D.4±2±练习2.(·辽宁初二期中)9的平方根是( )A.B.C.D.3813±81±例2.(2017·阜阳市第九中学初一期中)的算术平方根是( )14A.B.C.D.12±12-12116练习1_____.练习2.(·北京初二期中)16的算术平方根是。

例3.(·_________的算术平方根是_________.练习1.(·安徽初一月考)若2a-1和5-a是一个正数m的两个平方根,则m=_______练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.二. 立方根1.立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根.记作:.3x a=2.立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.3.求一个数a的立方根的运算叫开立方,其中a叫做被开方数.备注:①符号中的根指数“3”不能省略;②对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.例1.(·安徽初一期中)64的立方根是( )A .4B .±4C .8D .±8练习1.(·淮南初一期中)下列说法中,不正确的是( )A .8的立方根是2B .﹣8的立方根是﹣2C .0的立方根是0D .64的立方根是±4练习2.(·北京市昌平区阳坊中学初二期中)的立方根是__________.8-例2.(合肥市第四十五中学初一期中)已知a +3和2a ﹣15是某正数的两个平方根,b 的立方根是﹣2,c 算术平方根是其本身,求2a +b ﹣3c 的值.练习1.(·淮南初一期中)已知的立方根是3,的算术平方根是4,c 5a 2+3a b 1+-分.(1(求a ,b ,c 的值;(2)求的平方根.3a b c -+练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n 的值.例3.(安徽初一期中)求下列各式中x 的值:(1)2x 2=4; (2)64x 3 + 27=0专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,≥0.备注:||00a aa aa a>⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根A试题分析:A、B、C、D都可以根据平方根和算术平方根的定义判断即可.解:A、﹣5是25的平方根,故选项正确;B、25的平方根是±5,故选项错误;C、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误;D、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误.故选A.练习1的平方根为( )A.B.C.4D.4±2±B,又∵(±2)2=4,∴4的平方根是±2±2,故选B.练习2.(·辽宁初二期中)9的平方根是( )A.B.C.D.3813±81±C解:9的平方根是.3±故选:C.例2.(2017·阜阳市第九中学初一期中)的算术平方根是( )14A .B .C .D .12±12-12116C 本题解析: ∵ ,211()24=∴的算术平方根为,1412+故选C.练习1 _____.2,的算术平方根是2,4 2.练习2.(·北京初二期中)16的算术平方根是。

初一数学上册期末备考重难点归纳

初一数学上册期末备考重难点归纳

初一数学上册期末重难点归纳:一丰富的图形世界1.认识基础立体图形2.能由实物的形状想象出几何图形,由几何图形想象出实物的形状,会画常见几何体(直棱柱、圆柱、圆锥、球及组合几何体)的三视图(主视图、俯视图和左视图),能根据三视图描述基本几何体或实物图形。

3.了解直棱柱主要是正方体的11种展开图,每个展开图之间的关系。

4.截一个几何体,形成的截面形状5.会画小正方体组合而成的立方体的三视图,根据三视图能确定小立方体的个数。

本章内容主要是立体几何,对学生的空间思维要求比较高,不太好理解。

但是对于大多数的题目,做题时都是有规律可循,所以学生在复习时要注意总结。

初一数学上册期末重难点归纳:二有理数及其运算1.掌握正负数的概念及特殊的“0”;2.有理数的概念及分类;3.数轴的概念和画法及有理数与数轴的关系;4.相反数的概念及多重符号的化简;5.绝对值的概念、意义以及绝对值非负性的应用、零点分段法和绝对值几何意义的拓展;6.有理数比较大小;7.数形结合的思想:结合数轴上字母的位置去绝对值符号,化简;8.掌握有理数的加法、乘法法则以及运算律、乘方的概念、表示及符号法则。

特别是异号两数的加减法则,以及带括号的有理数的加减乘除运算以及幂、指数、底数的概念;9.科学计数法。

结合数轴分类探究有理数的加法法则,关键把握两点∶一是符号,二是绝对值,通过数形结合的方式突破该难点。

有理数的乘方是一种新的运算,教材通过实例引入定义及运算符号,乘方运算可归结为乘法运算,关键在于让学生搞清幂、底数、指数的意义及相互关系。

本章内容是后面学习的基础,是比较重要的一章。

每一部分内容都很重要,学生在复习时可以参考上面列出的知识点复习。

初一数学上册期末重难点归纳:三整式的加减1、代数式与整式2.整式的运算本章的重点是单项式多项式的系数、次数的区分。

学生复习时可以自己总结一下两者的区别去练习。

其次是去括号合并同类项,以及整式的化简等。

学生平时在练习时要注意去括号的法则,特别是括号前面是“-”时。

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

专题05 一元一次不等式及不等式组知识框架重难突破一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解及解集(1)使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

(2) 一元一次不等式的所有解组成的集合是一元一次不等式的解集。

(3)解集在数轴上表示3、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

备注:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变)a a a a < > ≤ ≥合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 例1.(2019·湖南广益实验中学初一期中)下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x +2y >0D .x <2x +1【答案】D【解析】解:A 、1x 是分式,因此1x>3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x +2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x +1是一元一次不等式,故此选项符合题意;故选:D .练习1.(2018·六安市裕安中学初一期中)下列不等式中,一元一次不等式有( )①2x 32x +> ②130x -> ③ x 32y -> ④x 15ππ-≥ ⑤ 3y 3>- A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】详解:①不是,因为最高次数是2;②不是,因为是分式;③不是,因为有两个未知数;④是;⑤是.综上,只有2个是一元一次不等式.故选B .例2.(2019·洋县教育局初二期中)若437m x -+≤是关于x 的一元一次不等式,则m =__________.【答案】3【解析】解:∵437m x -+≤是关于x 的一元一次不等式,∴4-m =1,∴m=3,故答案为:3.练习1.(2019·山东省初二期中)已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【答案】A【解析】根据题意|m|﹣3=1且m+4≠0解得:|m|=4,m≠﹣4所以m=4.故选:A.例3.(2018·浙江省初二期中)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【答案】B【解析】解: 2(x﹣1)≥3x﹣3去括号, 得2x-2≥3x-3,移项, 合并同类项, 得-x≥-1,得:x≤1故在数轴上表示为:故选B.练习1.(2020·万杰朝阳学校初一期中)如图,张小雨把不等式3x>2x-3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【解析】由3x>2x-3,解得:x>-3,∴阴影部分盖住的数字是:-3.故答案是:-3.例4.(2020·监利县新沟新建中学初一期中)解不等式:14232-+->-x x . 【答案】x <−2【解析】解:去分母:2(x −1)−3(x +4)>−12,去括号:2x −2−3x −12>−12,合并同类项:−x >2,系数化1:x <−2. 练习1.(2018·福建省永春第二中学初一期中)解不等式3(21)x +<13(43)x --,并把解集在数轴上表示出来.【答案】x <2,数轴见解析【解析】去括号,得 6x +3<13-4+3x ,移项,得 6x -3x <13-4-3,即3x <6,两边同除以3,得x <2,在数轴上表示不等式的解集如下:例5.(2019·重庆市凤鸣山中学初一期中)关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 【答案】A【解析】解:解不等式22x a -+≥,得22a x- ,∵由数轴得到解集为x ≤-1, ∴212a -=- ,解得:a =0. 故选:A .练习1.(2019·陕西省初二期中)不等式-4x -k ≤0的负整数解是-1,-2,那么k 的取值范围是( ) A .812k ≤<B .812k <≤C .23k ≤<D .23k <≤ 【答案】A【解析】解:∵-4x -k ≤0,∴x ≥-4k , ∵不等式的负整数解是-1,-2,∴-3<-4k ≤-2, 解得:8≤k <12,故选:A .二、一元一次不等式组1、一元一次不等式组定义: 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

初一上册期末数学复习提纲-第三章一次方程与方程组

初一上册期末数学复习提纲-第三章一次方程与方程组

-----------3.1一元一次方程及其解法①方程是含有未知数的等式。

②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。

③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

方程的解代入满足,方程成立。

⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。

a=b得:a+(-)c=b+(-)c2)等式两边同时乘以或除以同一个不为零的数,等式不变。

a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。

⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)--------3.2一次方程的应用:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;①解:设出未知数(注意单位),②根据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。

初一数学上期末复习总纲

初一数学上期末复习总纲
5.有理数的运算
有理数乘除法法则·
同号得,异号得,绝对值相乘(除).
“奇负偶正”的应用·
1、如下符号的化简(指负号的个数与结果符号的关系),如:-{+[-(-2)]}=-2
2、连乘式的积(指负因数的个数与结果符号的关系),如:
(-1)×(-2)×(-3)×(+4)=-24 (-1)×(-2)×(-3)×(-4)=24
练1.从运算上看式子an,可以读作;从结果上看式子an可以读作.
练2.33=;( )2=;-52=;22的平方是;
练3.下列各式正确的是()
A.-52=(-5)2B.(-1)1996=-1996C.(-1)2003-(-1)=0D.(-1)99-1=0
练4.下列说法正确的是()
A.如果a>b,那么a2>b2B.如果a2>b2,那么a>b
4,-|-2|,-4.5,1,0
练3.下列语句中正确的是( )
A.数轴上的点只能表示整数B.数轴上的点只能表示分数
C.数轴上的点只能表示有理数D.所有有理数都可以用数轴上的点表示出来.
练4.①比-3大的负整数是;②已知m是整数且-4<m<3,则m为.
③有理数中,最大的负整数是,最小的正整数是,最大的非正数是.
初一(上)期末复习总纲
【有理数】
1.正负数
统称整数,统称分数,统称有理数.
2.有理数分类:
基础练习
练1.把下列各数填在相应额大括号内:
1,-0.1,-789,25,0,-20,-3.14,-590,
·正整数集{…};·正有理数集{…};·负有理数集{…}
·负整数集{…};·自然数集{…};·正分数集{…}
1、和统称整式.

初一期末数学复习计划三篇

初一期末数学复习计划三篇

初一期末数学复习方案三篇1、通过复习使学生在回忆根底知识的同时,掌握“双基”,构建自己的知识体系,掌握解决数学问题的方法和能力,从中体会到数学与生活的密切联系。

2、在复习中,让学生进一步探索知识间的关系,明确内在的联系,培养学生分析问题和解决问题能力,以及计算能力。

3、通过专题强化训练,让学生体验成功的快乐,激发其学习数学的兴趣。

4、通过摸拟训练,培养学生考试的技能技巧。

1、第1章:有理数的运算。

2、第2章:整式的运算。

3、第3章:一元一次方程及应用题。

4. 第4章:几何图形1、总体思想:分章复习,同时综合测试二次。

2、单元复习方法:教师先做统领全章。

收集各小组反响的情况进展重点讲解,布置作业查漏补缺。

3、综合测试:教师及时认真阅卷,讲评找出问题及时训练、辅导。

第一阶段:章节复习12月16——20日:第一章、12月23日—27日:第二章;12月30-14年1月3日:第三章;1月6日--10日:第四章第二阶段:综合测试12月227日:综合测试1元月6日:综合测试2元月13.14.15日综合复习。

(一)分单元复习阶段的措施:1、复习教材中的定义、概念、规那么,进展正误辨析,教师引导学生回归书本知识,重视对书本根本知识的与再加工,标准解题书写和作图能力的培养。

2、在复习应用题时增加开放性的习题练习,题目的出现可以是信息化、图形化方法形式,或联系生活实际为背景出现信息。

让学生自主发现问题,解决问题。

题目有层次,难度适中,照顾不同层次学生的学习。

3、重视课本中的“数学活动”,挖掘教材的编写意图,防止命题者以数学活动为载体,编写相关“拓展延伸”的探究性题型以及对例、习题的改编题。

(二)综合测试阶段的注意点1、认真分析前两年的统考试卷,根本把握命题思想,掌握重难点,侧重点,根本点。

2、根据历年考试情况,精心汇编一些模拟试卷,教师给学生讲解一些应试技巧,提高应试能力。

3、在每次测试后注重分析讲评,多用鼓励性语言,不要挖苦、挖苦学生,更不要打击学生的学习积极性。

湘教版数学七年级下册期末知识点复习+各章节培优题

湘教版数学七年级下册期末知识点复习+各章节培优题

七年级下册总复习第一章二元一次方程【知识点归纳】1.含有个未知数,并且项的次数都是的方程叫做二元一次方程。

2.把个含有未知数的二元一次方程(或者一个二元一次方程,一个一元一次方程)联立起来组成的方程组,叫做二元一次方程组。

3.在一个二元一次方程组中,使每一个方程两边的值都的一组未知数的值,叫做这个二元一次方程组的解。

4.由二元一次方程组中的一个方程的某一个未知数用含有的代数式表示,再代入另一方程,便得到一个一元一次方程。

这种解方程组的方法叫做消元法,简称代入法。

5.两个二元一次方程中同一未知数的系数或时,把这两个方程相减或相加,就能消去这个未知数,从而得到一个一元一次方程。

这种解方程组的方法叫做消元法,简称加减法。

6.列二元一次方程组解决实际问题的关键是寻找。

【典型例题】1.已知方程组,甲同学正确解得,而乙同学粗心,把c给看错了,解得,求abc的值.2.已知关于x,y的方程组的解是,求关于x,y的方程组的解.3.先阅读,然后解方程组.解方程组时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得这种方法被称为“整体代入法”.请用这样的方法解方程组.4.阅读下列解方程组的方法,然后回答问题. 解方程组解:由①﹣②得2x +2y=2即x +y=1③ ③×16得16x +16y=16④ ②﹣④得x=﹣1,从而可得y=2 ∴方程组的解是.(1) 请你仿上面的解法解方程组.(2)猜测关于x 、y 的方程组的解是什么,并利用方程组的解加以验证.5.南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A 、B 两个园区,已知A 园区为矩形,长为(x +y )米,宽为(x ﹣y )米;B 园区为正方形,边长为(x +3y )米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11x ﹣y )米,宽减少(x ﹣2y )米,整改后A 区的长比宽多350米,C D 投入(元/平方米) 13 16 收益(元/平方米)1826且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)6.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?7.小明从家到学校的路程为3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小时行3千米.平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?第二章整式的乘法【知识点归纳】1.同底数幂相乘,不变,相加。

初一上册数学期末重点知识点复习总结11篇

初一上册数学期末重点知识点复习总结11篇

初一上册数学期末重点知识点复习总结优秀11篇初一数学上册复习资料篇一有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

七年级上册数学期末复习资料篇二第二章有理数1 、正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数。

与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。

2 、有理数(1) 正整数、0、负整数统称,正分数和负分数统称。

整数和分数统称。

0既不是数,也不是数。

(2) 通常用一条直线上的点表示数,这条直线叫数轴。

数轴三要素:原点、、单位长度。

在直线上任取一个点表示数0,这个点叫做。

(3) 只有符号不同的两个数叫做互为相反数。

例:2的相反数是;-2的相反数是;0的相反数是(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

3 、有理数的加减法(1)有理数加法法则:①同号两数相加,取相同的,并把绝对值相加。

②绝对值不相等的异号两数相加,取符号,并用减去较小的绝对值。

互为相反数的两个数相加和为0。

③一个数同0相加,仍得这个数。

(2) 有理数减法法则:减去一个数,等于加这个数的相反数。

4、有理数的乘除法(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

(2) 乘积是1的两个数互为倒数。

例:-的倒数是;绝对值是;相反数是。

(3) 有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。

有理数除法法则2:两数相除,同号得,异号得,并把相除。

初一期末七天全科复习计划

初一期末七天全科复习计划

初一期末七天全科复习计划第一天:语文复习- 复习课本中的重要知识点,包括诗词、文言文等。

- 阅读理解和写作技巧的复习,可以根据历年的中考题来进行练习。

- 针对易错题进行强化训练,如词语辨析和句子搭配。

第二天:数学复习- 复习数学中的重要知识点,包括四则运算、代数、几何等。

- 解决一些常见问题,如运算规律、方程式的解法等。

- 刷题巩固基础知识,注意理解题目中的问题,并运用合适的方法解决。

第三天:英语复习- 复习词汇量和语法,重点关注常见的单词和句型。

- 阅读理解和听力练习,提高对内容的理解和把握能力。

- 写作技巧的复习,练习常见的作文类型,如日记、书信等。

第四天:物理复习- 复习物理中的重要概念和公式,重点关注力学、光学等内容。

- 做一些实验和观察,提高对物理现象的理解和掌握能力。

- 刷题巩固知识,注意区分不同概念和应用不同公式的情况。

第五天:化学复习- 复习化学中的重要概念和知识点,包括元素周期表、化学反应等。

- 进行一些实验和观察,加深对化学原理和现象的理解。

- 做题巩固知识,特别是一些化学实际应用的题目。

第六天:生物复习- 复习生物中的重要知识点,包括细胞结构、遗传与进化等内容。

- 进行一些实验和观察,加深对生物原理和生态环境的理解。

- 刷题巩固基础知识,特别是一些生物现象和实际应用的题目。

第七天:历史和地理复习- 复习历史和地理中的重要知识点,关注历史事件和地理位置的关系。

- 阅读历史和地理相关的文章和材料,加深对历史地理的理解。

- 刷题巩固基础知识,特别是一些历史和地理实际应用的题目。

以上是初一期末七天全科复习计划的安排,每天抽出足够的时间进行复习和练习,同时注意做好笔记和总结。

最重要的是保持良好的学习态度和积极的学习心态,相信自己可以取得好成绩!。

初一数学 第一学期期末复习提纲(附答案)

初一数学  第一学期期末复习提纲(附答案)

初一数学第一学期期末复习(七册上)北京四中2009.12.28一. 知识网络:第一部分: 有理数有理数概念运算科有学理数数相倒绝比非运记的轴反对较负加减乘除乘算数分数数值大数法法法法方律法小类第二部分: 整式的加减列代数式单项式概念多项式整式的加减整式同类项加减运算第三部分: 一元一次方程等式、等式的性质方程、方程的解、估算方程的解一元一次方程一元一次方程的定义、一般式一元一次方程的解法利用方程解应用问题(注意应用题的类型)1近似数和有效数字第四部分: 图形的认识初步画一条线段等于已知线段(七册上P129) 作图: (尺规)*画一个角等于已知角余角和补角余角和补角的性质方位角角平面图形角的度量及分类角的比较与运算角平分线立体图形点、线、面、体从不同的方向看物体——三视图展开立体图形直线的性质直线、射线、线段线段的有关性质两点之间线段最短线段的中点比较大小几何图形二. 复习建议:1. 认真学习《数学课程标准》, 研究课本;制定出符合学生实际的复习计划和要求(包括具体的落实方案);2. 夯实基础:认真落实基础知识和基本能力(计算能力,审题能力,识图能力,分析能力等);3. 数学思想方法的渗透和培养:方程思想、数形结合、分类讨论、转化思想、函数思想等;4. 对几何图形的认识,渗透图形变换思想(平移、轴对称、旋转);几何语言文、图、式的互译;5. 注意培养学生应用数学的意识(阅读、归纳、应用的能力等)三.练习题:(一)填空题. 1. 12的相反数是__________, 它在数轴上的对应点到原点的距离是________. 72. 将149 500 000 保留三位有效数字为___________________.3. 大于 3.2 且小于1.9的整数是______________________.2x2y4. 单项式的系数是__________, 次数是__________ . 75. 2a2y n 1 与223ay是同类项, 则n = ________ . 36. 若x2y1+ (y +1)2 = 0, 则y x = ____________.7. 已知2a与2 a互为相反数, 则a = _______________. 28. 已知2.4682 = 6.091024, 则24.682 = ____________________.9. 已知关于x的方程ax + 5 = 2 3a与方程x = 10的解相同, 则a = _________.10. 已知数a , b , c 在数轴上的对应点如图所示,化简b + | a+b | | c| | b c | = __________ .11. 57.32 = ______________’ ______ &quot;12. 2714’24&quot; = ____________13. 1740’ 3 =______________.14. 计算: 180 375’ 4 + 93.1 5 = _________________.15. 互余两角的差是18, 其中较大角的补角是16. 一个角的补角和这个角的余角互为补角, 则这个角的一半是__________. ab2417. a,b,c,d为有理数,现规定一种运算:=ad bc,那么当=18时cd(1x)5x的值是.18. 有一个两位数, 个位数字与十位数字的和是9, 如果将个位数字与十位数字对调后所得新数比原数大9, 则原来的两位数是_____________.19. 用“”定义新运算: 对于任意的有理数a、b, 都有a b = b2 +1.例如: 7 4 = 42 +1 = 17. 那么5 3 = ________;当m为有理数时, 则m(m2) = ________.20. 观察下列等式:13 = 12, 13 + 23 = 32, 13 + 23 + 33 = 62, 13 + 23 + 33 + 43 = 102, ……想一想等式左边各项幂的底数与右边幂的底数有什么关系? 猜一猜有什么规律, 并把第n ( n为正整数) 个等式写出来: ____________________________.21. 在什么条件下, 下列等式成立(1) a b a b ___________________.(3) a b a b ___________________.22. 有理数a, b, c在数轴上对应的点如图:(2) a b a b __________________. (4) aa______________________. bb则a ba b acb cc a___________. acc ba c23. 在右边的日历中, 带阴影的方框里有四个数, 随着方框的移动,请你探究这四个数的关系. 设最小的一个数为a, 则这四个数之和为_________ (用含a 的代数式表示).324. 按如图所示的程序计算,若开始输入的x值为14,则第一次得到的结果为7,第2次得到的结果为10,……,请你探索第2009次得到的结果为___________.25. 定义一种对正整数n的“ F ” 运算:①当n为奇数时,结果为3n5;②当n为偶数时,结果为nn(其中k是使为奇数的正整数),并且运算重复进行,例如,取n=26,则:kk2211……若n=449,则第449次“ F ” 运算的结果是________.26. 将正偶数按下表排成五列:第一列第二列第三列4122028 第四列 6 10 22 26 24 第五列8 第一行2 第二行16 14 18 30 第三行第四行32…………………………………………………………根据上面排列规律, 则2010应在第______行,第_________列.27. 在五环图案15米和10米, 那么最高的地方比最低的地方高( ) .(A) 10米(B) 25米(C) 35米(D) 5米2. 下列说法中, 正确的是( )(A) 零除以任何有理数都得零(B) 倒数等于它本身的有理数只有1(C) 绝对值等于它本身的有理数只有1 (D) 相反数等于它本身的有理数只有043. 下面结论中正确的是( )(A) 21比大73(B) 3112的倒数是(C)最小的负整数是 1(D) 0.5 &gt; 2274. 下列各数中, 最小的数是( )23(A) ( 2 3)2 (B) 2(C) 32 (3)2 (D) (1) 4 3 25. 若 1 &lt; x &lt; 0时, 则x, x2, x3 的大小关系是( )(A) x &lt; x2 &lt; x3 (B) x &lt; x3 &lt; x2 (C) x3 &lt; x &lt; x2 (D) x2 &lt; x3 &lt; x6. 下列计算正确的是( )11 (A) 283(B) 1 4 411(C) 28 224(D) 42167. 如果数 a , b, 满足ab&lt;0, a+b&gt;0, 那么下列不等式正确的是( )(A) | a | &gt; | b | (B) | a | &lt; | b | (C) 当a&gt;0, b&lt;0时, | a | &gt; | b |(D) 当a&lt;0, b&gt;0时, | a | &gt; | b |8. 一根1m长的绳子, 第一次剪去一半, 第二次剪去剩下的一半, 如此剪下去, 第六次以后剩下的绳子的长度为( )1(A) m 231(B) m 251(C) m 261(D) m 2129. 9点30分这一时刻, 分针与时针的夹角是( )(A) 75°(B) 105°(C) 90°(D) 125°10. 下列说法正确的是( )(A) 近似数3.5和3.50精确度相同(B) 近似数0.0120有3个有效数字(C) 近似数7.05×104精确到百分位(D) 近似数3千和3000的有效数字都是311. 对方程(A)(C) x3x4 1.6的下列变形中, 正确的是( ) 0.50.3 (B) x3x416 53x3x4 1.6 5310x310x416 5310x4 1.6 3 (D) 2x312. 甲能在11天).(A) 10天(B) 12.1天(C) 9.9天(D) 9天13. 一个长方形的周长为26 cm, 这个长方形的长减少1 cm, 宽增加2 cm, 就可成为一个正方形, 设长方形的长为x cm, 则可列方程( ).(A) x126x 2 (B) x113x 2(C) x126x 2 (D) x1(13x) 214. 已知:2若1022445533,…,22,332,442,552331515242488bb102符合前面式子的规律,则a b的值为()aa(A) 179 (B) 140 (C) 109 (D) 210515. 一件工作甲独做要a天完成, 乙独做要b天完成, 如果两人合作3天完成此工作的( )1111(A) 3 (a + b) (B) 3 (a b) (C) 3(D) 3ab ab16. 某个体商贩在一次买卖中同时卖出两件上衣, 每件售价均为135元, 若按成本计算, 其中一件盈利25%, 一件亏本25%, 则在这次买卖中他( )(A) 不赚不赔(B) 赚9元(C) 赔18元(D) 赚18元17. 若一个角个角;……若一个角个角18. 如图, 射线OC, OD 将平角∠AOB三等分, OE平分∠AOC, OF平分∠BOD, 则∠EOF为( )F(A) 120(B) 150(C) 90(D) 6019. 甲从O点出发, 沿北偏西30方向走了50米到达A点, 乙也从O点出发, 沿南偏东35方向走了80米到达B点, 则∠AOB = ( )(A) 65 (B) 115 (C) 175(D) 18520. 如图,它们是一个物体的三视图,该物体的形状是( ).主视图左视图(A) (B) (C) (D)俯视图21. 桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()(A) (B) (C) (22. 右图是画有一条对角线的平行四边形纸片ABCD,用A围成一个无上下底面的三棱柱纸筒, 则所围成的三棱柱纸( )A(D)A(D)A(D)A(D)B(C)B(CB(C(C)(A) (B) (C)(D)6 此纸片可以筒可能是23. 右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是()24. 如图所示的是由几个小立方块所搭成的几何体的俯视图,小正方形中的ABC...位置小立方块的个数,请画出相应几何体的主视图和左视图.(三)计算下列各题.①13.742586.3335②54214412 29③252775367 6376④133 12520.533484⑤32162584⑥123234111224 2⑦111 123214 3342(四)解下列方程.①2x3116x②5x8562x7③x x1x 222 5④3x1 13x14x172x1⑤0.2x0.50.030.02xx 50.50.03 2⑥. 32x1 2483x336x9⑦c (d + x) = ab (x c) d (c + d0)7 D3.42数字表示在该21(五)化简求值.1. 3a (a + 4b 1) + 3 (b 2).131 2. 先化简, 再求值a2b a2b3abc a2c4a2c3abc, 其中a = 1, b = 3, c = 1. 2323. 已知2x2 + x 5 = 0, 求代数式6x3 +7x2 13x +11的值.(六)列一元一次方程解下列应用题.1. 用化肥给田施肥, 每亩用3千克还差8.5千克, 每亩用2.5千克还剩1.5千克. 求有多少千克化肥?2. A, B两地的路程为360千米, 甲车从A地出发开往B地, 每小时行驶72千米, 甲车出发25分钟后, 乙车从B地出发开往A地, 每小时行驶48千米, 两车相遇后, 各车仍按原速度原方向继续行驶, 直到两车相距100千米停止. 问: 甲车从出发开始到现在共行驶了多少小时?3. 某商品的价格是商场按获利润25%计算出的, 后因库存积压和急需回收资金, 决定降价出售. 如果每件商品仍能获得10%的利润, 试问应按现售价的几折出售?4. 在社会实践活动中, 某校甲, 乙, 丙三位同学一同调查了高峰时段北京的二环路, 三环路, 四环路的车流量(每小时通过观察点的汽车辆数), 三位同学汇报高峰时段的车流量情况如下:甲同学说: “二环路车流量为每小时10 000辆”;乙同学说: “四环路比三环路车流量每小时多2 000辆”;丙同学说: “三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”.请你根据它们所提供的信息, 求出高峰时段三环路, 四环路的车流量各是多少?5. 某车间加工A型和B型两种零件, 平均一个工人每小时能加工7个A型零件或3个B型零件. 而且3个A型与2个B型配套, 就可以包装进库房, 剩余不能配套的只能暂时存放起来. 如果B型零件单独存放, 对环境的要求远高于A型零件. 已知该车间原有工人69名.(1) 怎样分配工人工作才能保证生产出的产品及时包装运进库房?(2) 后来因为工作调动, 有4名工人调离了该车间. 那么你认为现在应该怎样分配工人工作最合适呢? 请通过计算说明你的依据.6. 一个两位数, 个位上的数字是十位上的数字的2倍, 先将这两位数的两个数字对调, 得到第二个两位数, 再将第二个两位数的十位数字加上1, 个位数字减去1, 得到的第三个两位数恰好是原两位数的2倍, 求原两位数.7. x表示一个2位数, y表示一个三位数, 若把x放在y的左边组成一个5位数记作M1, 把y放在x的左边组成一个5位数记作M2, 求证: M1 M2 是9的倍数88. (1) 据《北京日报》2000年5月16日报道: 北京市人均水资源占有量只有300立方米, 仅是全国人均占有量的, 世界人均占有量的方米? 世界人均水资源占有量是多少立方米?(2) 北京市一年漏掉的水, 相当于新建一个自来水厂. 据不完全统计, 全市至少有6105个水龙头, 2105个抽水马桶漏水. 如果一个关不紧的水龙头, 一个月能漏掉a立方米水; 一个漏水马桶, 一个月漏掉b立方米水. 那么一年造成的水流失量是多少立方米? (用含a, b的代数式表示);(3) 水源透支令人担忧, 节约用水迫在眉睫. 针对居民用水浪费现象, 北京市将制定居民用水标准, 规定三口之家楼房每月标准用水量, 超标部分加价收费.假设不超标部分每立方米水费1.3元, 超标部分每立方米水费2.9元. 某住楼房的三口之家每月用水12立方米, 交水费22元, 请你通过列方程求出北京市规定三口之家楼房每月标准用水量是多少立方米.9.北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,20XX年10月11日至20XX年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1 696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?(七)解答题.1. 已知∠的2倍与∠β的3倍互补, 且∠比∠β小20, 求∠与∠β2. 作线段MN = 10 mm, 向延长MN至P, 使MP = 15 mm, 反向延长MN 至Q, 使MQ =中点, B为NP的中点, 求A, B之间的距离AMNBP 181. 问: 全国人均水资源占有量是多少立321MP. 若A为QM的2求BC的长AD = 11.7 cm. DF 3. 已知A, B, C 三点共线, 且线段AB = 17 cm. 点D为BC中点, 4. 已知: 如图, ∠ABC=∠ADC, DE是∠ADC的平分线, BF是∠ABC的平分线求证: ∠1 = ∠2证明: ∵DE是∠ADC的平分线( )∴∠1 = _________ ( )∵BF是∠ABC的平分线( )∴∠2 = _________ ( )又∵∠ABC = ∠ADC ( )∴∠1 = ∠2 ( )5. 如图所示, ∠AOC = ∠DOB = 90, ∠BOC与∠AOD 的度数之比为3 : 7, 求∠BOC, ∠AOD的度数9DA E B6. 若∠AOB = 170, ∠AOC = 70, ∠BOD = 60, 求∠COD的度数7. 如图, 已知O是直线AC上一点, OB是一条射线,BD1OD平分AOB, OE在BOC BOE=EOC,2 DOE=70°, 求EOC的度数.A O CEOC8. 请将下面的三阶幻方补全,使得处于同一横行、同一竖列、同一斜对角线上的3个数相加都相等.9. a为何值时,3是关于x的方程3|a|-2x=6x+3的解10. 方程x(八)通过阅读, 探索、研究问题的解法. 1. 阅读下列材料: ∵1111111, 1323352 33 a的解是自然数, 其中a 是非负整数. 试求代数式a2 2(a + 1) 的值. 3 111111111, …, . ,5572571719217191111133557171911111111111=12323525721719111111119= =1233557171919解答问题:在和式111中, 第五项为________ , 第n项为________ , 上述求和的想法是: 通过逆133557用________________ 法则, 将和式中各分数转化为两个实数之差, 使得除首末两项外的中间各项可以________________ , 从而达到求和的目的.2. (1) 阅读下面材料:点A、B在数轴上分别表示实数a、b, A、B两点之间的距离表示为AB. 当A、B两点中有一点在原点时, 不妨设点A在原点, 如图甲, AB=OB=∣b∣=∣a b∣; 当A、B两点都不在原点时,10图乙图甲O (A) AB B①如图乙, 点A、B都在原点的右边, AB = OB OA = | b | | a | = b a = |a b |; ②如图丙, 点A、B都在原点的左边,AB = OB OA = | b | | a | = b (a) = | a b | ; ③如图丁, 点A、B在原点的两边AB = OA + OB = | a | + | b | = a + (b) = | a b |. 综上, 数轴上A、B两点之间的距离AB=∣a b∣.(2) 回答下列问题:①数轴上表示2和5的两点之间的距离是______ , 数轴上表示2和5的两点之间的距离是______ , 数轴上表示1和3的两点之间的距离是______ ;②数轴上表示x和1的两点分别是点A和B,则A、B之间的距离是______ , 如果AB=2, 那么x=________ ;③当代数式∣x +2∣+∣x 5∣取最小值时, 相应的x的取值范围是____________. ④当代数式x x2x5取最小值时, 相应的x的值是_________. ⑤当代数式x5x2取最大值时, 相应的x的取值范围是_________________.11图丁图丙BAO参考答案(若有质疑请发校友录上,以便及时更正)三、练习题:(一)填空题:1.127, 1272.1.50×1083.-3, -2, -1, 0, 14. 27, 35.46.-17.-28.609.10249.3710.b-a11.57°19′12″12.27.2413.5°53′20″14.57°17′12″15.126°16.22.5°17.318.4519.10, 26220.13+23+33+…n3=n(n1)221.(1)a、b同号或一项为0;(2)a、b且a b;(3)a、b为任意实数;(4)b≠0;22.原式=+a b b ca b c b c aa c(1) 1=-1-1+1-1-1=-31223.这四个数分别为:a+(a+1)+(a+7)+(a+8)=4a+1624.8第一次:7;第二次:10;第三次:5;第四次:8;第五次:4;︳第六次:7;… 7,10,5,8,4,︳7,10,5,8,4,︳…2009÷5=401 (4)25.14491352169152181…449,1352,169,152,1,8,︳1,8 …(449-3)÷2=22326.252,427.(二)1.C6.A11.D16.C19.D24.主视图左视图13 F①F②F①F②F①F②F①2.D 7.C 12.A 3.A 8.C 4.C 9.B 5.B 10.B 15.C 18.A 23.D 13.B 14.C 17.3,6,10,20.C (n1)(n2) 221.C 22.D(三)1.x abc d(13.7)(4235)86.335=-13.7+4.4-86.3+3.6 =-(13.6+86.3)+(4.4+3.6) =-100+8=-922.54214(4122)9 =5494( 29) 29=63.25(277)5(3667)37(6) =25(277)5(277)277(6) =277(2556) =27726 =70274.125342310.533(4)8 =122342(532) =12(234645) =10(235644)20 =361205.321625(84) =81615125(32)=50146.12311(24) 23412=12311(24)(24)(24)(24) 23412=12161822 127.11232231411342 =1 123 491 148 =11123 2 =1 16 2 =76(四)1.2x+3=11-6x解:8x=8x=12.5(x+8)-5=6(2x-7)解:5x+40-5=12x-427x=77X=113.x x 122x 25解:10x5x5202x 45x5162x7x11x117154.3x1 13x14x172x1解:132x1133x10132x133x1313230136x5136x 55.0.2x0.50.50.030.02xx 50.03 2 解:2x532xx53 5212x303020x15x75 8x15x75 23x75x75236.382(x1) 243x33(6x9) 解:2x x 124x 64x x18x125x13x1357.c(d x)ab(x c)d (c+d) (c d0)解:cd cx ab dx cd (c d)x abx abc d(五)1.3a (a + 4b 1) + 3 (b 2).=3a a4b +1 + 3b 6=.2a b 5162. 12a2b 32a2b3abc13a2c4a2c3abc = 12a2b(32a2b3abc a2c4a2c)3abc =132a2b2a2b3abc a2c4a2c3abc=2a2b3a2c将a1,b3,c1代入,原式=212(3)3(1)2 1=6+3=9答:代数式的值为9。

初一数学期末复习计划5篇

初一数学期末复习计划5篇

初一数学期末复习计划5篇(1470字)一、复习内容:第一章、基本的几何图形第二章、有理数第三章、有理数及其运算第四章、数据的收集与整理第五章、代数式与函数的初步认识第六章、整式的加减第七章、数值估算第八章、一元一次方程二、复习目标:1、整理本学期学过的知识与方法,用一张图把它们表示出来,并与同伴进行交流。

2、在自己经历过的解决问题活动中,选择一个最具有挑战问题性的问题,写下解决它的过程:包括遇到的困难、克服困难的方法与过程及所获得的体会,并选择这个问题的原因。

3、通过本学期的数学学习,让同学总结自己有哪些收获,有哪些需要改进的地方。

三、复习重点难点复习的重点放在的第二、三、六、八章。

第二章有理数复习重点:数轴、相反数与绝对值复习难点:了解数形结合的数学方法。

突破重点难点:数轴的建立以及利用数轴建立起来的数形结合的数学思想是学习本节的关键。

实际操作:一课时考试,一课时讲解。

第三章有理数的运算复习重点:掌握有理数的加法、乘法法则及运算律.乘方的概念、表示及符号法则是重点。

复习难点:有理数的加法特别是异号两数相加的法则,以及把有理数的加减混合算式省略加号写成和的形式是本章的难点。

幂、底数、指数的概念也是难点。

突破措施:创设实际情景,借助数轴分类探究有理数的加法法则,关键把握两点∶一是符号,二是绝对值,通过数形结合的方式突破该难点。

有理数的乘方是一种新的运算,教材通过实例引入定义及运算符号,乘方运算可归结为乘法运算,关键在于让学生搞清幂、底数、指数的意义及相互关系。

实际操作:一课时考试,一课时讲解。

第六章整式的加减复习重点:单项式及单项式的系数、次数的概念;多项式及多项式的项、次数的概念。

探究发现同类项的特征及合并同类项的法则。

去括号法则及其应用。

复习难点:准确迅速地确定一个单项式的系数和次数,写出多项式的项和次数。

括号前是-号,去括号时,括号内的各项都要改变符号,合并同类项及应用。

本章是研究整式的开始,知识由数向式转化,比较抽象,与学生的认知基础和思维能力有一定差距,学习中会有一定困难。

七年级数学下册期末复习计划

七年级数学下册期末复习计划

七年级数学下册期末复习计划复习是为了更有效地提高学生的知识,拓宽学生的视野。

下面是店铺收集整理的七年级数学期末下册复习计划以供大家学习。

七年级数学下册期末复习计划(一)期末考试到了,我们又进入了紧张的复习阶段,为了使最后的复习踏实而有效,特制定了四轮复习法:第一轮:系统梳理各章知识点,并将对应知识点的典型题目出成试卷,考练结合。

在这部分以基础知识、基本题型为主,重点让学生回顾各章知识,形成知识网络,加强知识之间的联系。

约用三天的时间。

第二轮:综合练习,以考代练。

依据历年期末考试试卷及学生在分章节复习中出现的的问题进行综合测试。

难度偏低,以巩固各章知识,形成综合解题能力和增强学生自信心为主要目的。

在订正试卷中以学生自己改正,小组讨论和教师点拨的形式为主,充分发挥学生学习的主动性,培养纠错能力。

第三轮:查找典型错误,弥补知识漏洞。

主要针对学生在第二轮检测中出现的共性问题、典型性错误,再出综合小卷进行训练或进行简单的变式练习。

主要形式是穿插于第二轮复习中,判完每次测试卷,抽出典型问题,出成小卷子(适当变式,不增加难度),订正完试卷后作为课上练习。

每三张综合测试卷后再出一张典型错误的大卷子,进行测试。

本轮与第二轮用时六天。

第四轮:实战演练。

用历年期末考试卷进行期末模拟考试,并配以适量提高难度的综合性题目,使学生增加考试经验,积累解题方法。

本轮主要以提高为目的,甄别出能力型学生与基础型学生,分别进行不同学习方法和应试方法的指导。

相信通过以上四轮复习,一定能帮学生夯实基础提高能力,在期末考试中取得理想成绩。

七年级数学下册期末复习计划(二)一、复习目标:1.系统归纳整理本学期学过的知识点与数学思想和解题方法。

2.在自己经历过的解决问题活动中,遇到对自己具有挑战性的问题,要克服困难、找到解决问题的方法,及时进行知识规律,建构自己的知识框架,形成自己的解题思想和方法,锻炼自己的思维能力,提高解答技能和技巧。

3.通过本学期的数学学习,盘点自己的收获和体会,提高学好数学的兴趣和信心。

初中七年级数学复习教案7篇

初中七年级数学复习教案7篇

初中七年级数学复习教案7篇初中七年级数学复习教案7篇七年级数学的教案很重要的。

优秀的老师往往都有自己风格的说课稿,渐渐形成自己独特的授课技巧,它会成为你的一种魅力。

下面小编给大家带来关于初中七年级数学复习教案,希望会对大家的工作与学习有所帮助。

初中七年级数学复习教案(篇1)最近,我在初一(4)班上了一节数学公开课,课题是《3.4实际问题与二元一次方程组》第二课时“销售中的盈亏”,本节课是探究课,在教学中我采用小组合作交流探究的教学方式,在老师的时事点评和引导下,让学生自己动手,动口,动脑,计算,归纳销售中的常用公式,力求体现自主,合作,探究式学习,让学生在“轻松,和谐”的课堂中高效完成本节学习任务。

本节课我的教学过程主要分六个环节:第一,设计情境,激发学生学习兴趣,引入本节课课题;第二,尝试练习,熟悉公式;第三,探究销售中的盈亏问题;第四,小组展示,解决探究问题;第五,巩固练习,提升能力;第六,归纳总结销售问题中常见的四个量之间的关系提炼解决问题的方法。

反思本节课的教学,成功之处有:1.设计情境,引入课题,体现教学来源于生活有服务于生活的理念,“汉滨初中对面的电脑城中销售一种路由器,先将进价提高20%,后再降20%出售,卖96元一台,问商家是盈是亏?”通过本问题,起到两个作用,一是引入课题,二是看待问题的方式不能只看表面而做出解答,必须用数量关系进行计算在做出判断。

2.练习,达到让学生熟悉公式的目的。

3.化解探究问题中的难点,把问题细化为6个小问题,便于小组分工合作,及时完成任务。

4.采用小组合作学习,充分展示学生探究问题的全过程。

5.在教学中能激励性的语言去鼓励学生大胆发言和展示,让学生在比较轻松和谐的课堂氛围中完成学习任务。

回顾本节课,我觉得在一些教学设计和教学过程中还存在着以下不足之处: 1.不能正确的把握各个环节的时间,为达到预期的学习效果。

学生的语言表达能力和概括能力也有待进一步的提高。

人教版七年级下册数学期末总复习课件

人教版七年级下册数学期末总复习课件

1
1
变式:已知9 13和9 13的小数部分分别为a和b
6、设a和b互为相反数,c和d互为负倒数,x的绝对值为 5,
4 5 则代数式x (a b cd)x ( a b 3 cd) ___________
2
1 4. m-27 + n-8=0,则 m- n =______
14、 如图4,∠1= ∠2, ∠C= ∠D, 求证: ∠A= ∠F 15、 如图5,∠D= ∠E, ∠ABE= ∠D+ ∠E, BC是∠ABE的平分线, 求证:BC∥DE
16、如图,已知AB∥CD,请猜想各个图中∠AMC 与∠MAB、 ∠MCD的关系
第六章实数的复习
?
本章知识结 构图 开平方
复习回顾
把下列各数填在相应的大括号内: 5 1, , , 3.14, 0 , 3. 3 3 3, 3, 7
tan30 ,
.
……};
0
cos600 ,
3
64,
2.1010010001
整数集合:{
-1,0,3 64
5 分数集合:{ ……}; , 3.14, 3. 3 3 3 , cos60° 7 5 3.14,0,3. 3 3 3 ,cos60°, 3 64 有理数集合:{ -1,, …}; 7
当方程中出现立方时,一般都有一个解
选择题
1、代数式 a a 1 a 2的最小值是( B )
1 2
A.0 B. C.0 D.不存在
2
2、若
m
m,则实数m在数轴上的对应点一定在(
C)
A.原点左侧 B.原点右侧 C.原点或原点左侧 D.原点或原点右侧
3、若式子 ( 4-a) 是一个实数,则满足这个条件的a的值有(B )

七年级数学期末复习计划

七年级数学期末复习计划

七年级数学期末复习计划一、复习指导思想很快一学期过去了,又到了总复习的时候,我们7 年级数学备课组几位老师通过集体备课时间商讨复习计划如下:这一册教材内容涉及的面比较广,基本概念比较多,也比较抽象,很多内容都是今后进一步学习的基础知识。

通过总复习把本册内容进行系统的整理和复习,使学生对所学概念、计算方法和其它知识更好地理结合掌握,并把各单元内容联系起来,形成较系统的知识,使计算能力和解答应用题的能力得到进一步的提高,圆满完成本学期的教学任务,另外通过总复习,查缺补漏,使学习比较吃力的孩子,能弥补当初没学会的知识,打好基础。

二、学生情况分析:新课结束后大约有二十天的复习时间,在本册书中基础计算较多也很严重,学生的计算能力有待加强,而在考试中计算也是严重的得分手段。

有理数和图形的初步认识是本册的重点也是难点,大部分学生应过基础关,对于较繁复的应用题要求优生掌握。

几何部分的学习是学生后续学生几何的关键,应加强练习。

三、复习分三个阶段:1、分章复习。

对全章知识进行复习之后,结合习题进行巩固。

2、综合练习。

以测验或作业的形式让学生练习,在课堂上教师精讲。

3、查缺补漏。

对于在复习中学生反映出的问题加以补充练习。

四、复习时间、复习内容1、时间;第十六周星期一至三。

复习内容复习第二,有理数。

抓住有理数、数轴、相反数、绝对值、大小比较等这些严重的概念极其相关知识,以判断的形式为主进行复习,强化训练有理数的加减乘除乘方极其混合运算。

2、时间;第十六周星期四至五。

复习内容复习第三章,整式的加减。

重点是同类项及合并同类项,求代数式的值,难点是列代数式和去括号,让学生清晰的掌握同类项和合并同类项,经过填空,判断练习,提高学生的熟练程度。

强化训练化简求值。

3、时间;第十七周星期一。

复习内容复习第四章。

图形的初步认识(一)从三个方面看。

让学生动手制造简单的几何,熟悉球体,圆柱体与圆锥体,棱柱体与棱锥体之间的区别和联系,通过填空选择判断,熟悉它们的相关概念,熟悉简单几何体几简单组合提的三视图,加强几何知识内容的联系,注意综合运用,灵敏掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学期末复习指导
很快就要期末考试了,最近网络上疯狂的流行“玛雅体”玛雅人靠谱吗?靠谱我就不准备期末考试了。

小编告诉你这个是假的,就算是真的,期末考试也会提前考的!开个玩笑,面临期末考试下面是给大家整理的初一期末考试复习指导,希望对你有所帮助。

一、适当多做题,养成良好的解题习惯。

要想学好初一数学,做一定量的题目是必需的,刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些初一数学辅导书上的课外习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的初一数学解题规律,熟悉掌握各种题型的解题思路。

对于一些易错题,可备有错题集,写出自己错误的解题思路和正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。

在平时要养成良好的解题习惯。

让自己的精力高度集中,思维敏捷,能够进入最佳状态,在考试中能运用自如。

实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

如果平时解题时随便、粗心、大意等,往往在大考中会充分暴露,故在平时养成良好的解题习惯是非常重要的。

二、细心地挖掘概念和公式
很多初一同学对数学概念和公式不够重视,这类问题反映在三个方面:一是,对初一数学概念的理解只是停留在文字表
面,对概念的特殊情况重视不够。

二是,对初一数学概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。

三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。

如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观察过程中指导。

我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。

有的孩子说“乌云跑得飞快。

”我加以肯定说“这是乌云滚滚。

”当幼儿看到闪电时,我告诉他“这叫电光闪闪。

”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。

”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。

雨后,我又带幼儿观察晴朗的天
空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。

”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。

我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。

通过联想,幼儿能够生动形象地描述观察对象。

三、总结相似的类型题目
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了数学这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。

这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。

其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。

久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。

四、收集自己的典型错误和不会的题目
其实,任何一门学科都离不开死记硬背,关键是记忆有技
巧,“死记”之后会“活用”。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

同学们最难面对的,就是自己的错误和困难。

但这恰恰又是最需要解决的问题。

同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。

另外一个就是,找出自己的不足,然后弥补它。

这个不足,也包括两个方面,容易犯的错误和完全不会的内容。

但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。

希望以上的整理能给你的数学复习找到适合自己的数学学习方法,打好初一数学基础。

加油!。

相关文档
最新文档