高考文科数学导数专题复习(最新整理)

合集下载

高考文科导数考点汇总完整版

高考文科导数考点汇总完整版

高考文科导数考点汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

导数概念与运算知识清单1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim→∆x x y ∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

高考文科导数考点汇总

高考文科导数考点汇总

高考导数文科考点总结一、考试内容导数的见解,导数的几何意义,几种常有函数的导数;两个函数的和、 差、基本导数公式, 利用导数研究函数的单一性和极值, 函数的最大值和最小值。

导数见解与运算知识清单 1.导数的见解函数 y=f(x), 若是自变量 x 在 x 0处有增量x,那么函数 y 相应地有增量y=f (x 0+ x)-(f x 0 ),yy f ( x 0x) f ( x 0 )比值x叫做函数 y=f (x )在 x 0 到 x 0+x之间的平均变化率,即x=x。

y若是当x 0 时,x 有极限,我们就说函数y=f(x) 在点 x 0 处可导,并把这个极限叫做f ( x )在点 x 0处的导数,记作f ’( x 0)或 y ’|x x 0 。

ylimf ( x 0x)f ( x 0 )limx即 f ( x 0 ) = x 0 x = x 0。

说明:yy( 1)函数 f ( x )在点 x 0 处可导,是指 x 0 时,x 有极限。

若是x 不存在极限,就说函数在点 x 0 处不可以导,或说无导数。

( 2)x是自变量 x 在 x 0处的改变量,x时,而y是函数值的改变量,能够是零。

由导数的定义可知,求函数y=f (x )在点 x 0 处的导数的步骤(可由学生来概括):( 1)求函数的增量y=f ( x 0+ x)- f ( x 0 );y f (x 0x) f (x 0 )( 2)求平均变化率x =x ;limyx 。

( 3)取极限,得导数 0 x 0f ’(x)=2.导数的几何意义函数 y=f ( x )在点 x 0 处的导数的几何意义是曲线 y=f ( x )在点 p (x 0 ,f (x 0 ))处的切线的斜率。

也就是说,曲线y=f ( x )在点 p ( x 0 , f ( x 0 ))处的切线的斜率是 f ’( x 0)。

相应地,切线方程为 y - y 0 =f/ ( x 0 )( x - x 0 )。

文科导数复习与题型归纳

文科导数复习与题型归纳

导数复习知识点一、 导数的概念 导数xy x f x ∆∆=→∆00lim )('; 二、 导数的几何意义函数y=fx 在点0x 处的导数,就是曲线y=x 在点),(00y x P 处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:1求出函数y=fx 在点0x 处的导数,即曲线y=fx 在点),(00y x P 处的切线的斜率; 2在已知切点坐标和切线斜率的条件下,求得切线方程为三、 常见函数的导数及运算法则1 八个基本求导公式)('C = ; )('n x = ;n∈Q )(sin 'x = , )(cos 'x = )('x e = , )('x a = )(ln 'x = , )(log 'x a =2 导数的四则运算)('±v u = ])(['x Cf =)('uv = ,)('v u = )0(≠v 3 复合函数的导数设)(x u θ=在点x处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且)(x f '= ,即x u xu y y '⋅'=' 四、 导数的应用要求:明白解题步骤1. 函数的单调性(1) 设函数y=fx 在某个区间内可导,若)(/x f >0,则fx 为增函数;若)(/x f <0,则fx 为减函数;(2) 求可导函数单调区间的一般步骤和方法;①分析 )(x f y =的定义域; ②求导数 )(x f y '='③解不等式0)(>'x f ,解集在定义域内的部分为 区间解不等式0)(<'x f ,解集在定义域内的部分为 区间 例如:求函数xx y 1+=的减区间 2. 可导函数的极值采用表格或画函数图象(1) 极值的概念设函数fx 在点x 0附近有定义,且若对x 0附近所有的点都有fx <fx 0或fx >fx 0,则称fx 0为函数的一个极大小值,称x 0为极大小值点;(2) 求可导函数fx 极值的步骤① 求导数)(x f ';② 求方程)(x f '=0的 ;③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负先增后减,那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正先减后增,那么函数y =)(x f 在这个根处取得 .3. 函数的最大值与最小值⑴ 设y =)(x f 是定义在区间a ,b 上的函数,y =)(x f 在a ,b 内有导数,则函数y =)(x f 在a ,b 上 必 有最大值与最小值;但在开区间内 未必 有最大值与最小值.2 求最值可分两步进行:① 求y =)(x f 在a ,b 内的 值;② 将y =)(x f 的各 值与)(a f 、)(b f 比较,其中最大的一个为最大值,最小的一个为最小值.3 若函数y =)(x f 在a ,b 上单调递增,则)(a f 为函数的 ,)(b f 为函数的 ;若函数y =)(x f 在a ,b 上单调递减,则)(a f 为函数的 ,)(b f 为函数的 .4.求过函数上一点的切线的斜率或方程例题1:分析函数x x y 33-=单调性,极值,最值,图象例题2:函数ax x y 33-=在)1,(--∞上为增函数,在)1,1(-上为减函数,求实数a 例题3:求证方程1lg =⋅x x 在区间)3,2(内有且仅有一个实根.分析解本题要用的知识点一.求值1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是.2.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=3.已知函数fx 的导函数为)(x f ',且满足fx=3x 2+2x )2('f ,则)5('f = .4.设fx 、g x 分别是定义在R 上的奇函数和偶函数,当x <0时,fx g ′x +f ′x g x >0且g -3=0,则不等式fx g x <0的解集是__________.5.2008海南、宁夏文设()ln f x x x =,若0'()2f x =,则0x =A. 2eB. eC.ln 22 D. ln 2 二.切线11 曲线31y x x =++在点(1,3)处的切线方程是 ;2已知函数x x x f 3)(3-=,过点)6,2(-P 作曲线)(x f y =的切线的方程 .变式.1曲线y =x 3-3x +1在点1,-1处的切线方程为 2已知3:()2C f x x x =-+,则经过(1,2)P 的曲线C 的切线方程为 3曲线fx=x 3-3x,过点A0,16作曲线f x 的切线,则曲线的切线方程为 ; 2 .1曲线3)(x x f =在点A 处的切线的斜率为3,则该曲线在A 点处的切线方程为 ; 2 过曲线x x x f -=4)(上点P 处的切线平行于直线03=-y x ,则点P 的坐标为 3 若直线y x =是曲线323y x x ax =-+的切线,则a = ;3.垂直于直线2x-6y+1=0,且与曲线5323-+=x x y 相切的直线的方程是________.4.已知直线1+=kx y 与曲线b ax x y ++=3切于点1,3,则b 的值为A .3B .-3C .5D .-55.若点P 在曲线23+-=x x y 上移动,经过点P 的切线的倾斜角为α,则α的取值范围为A.⎥⎦⎤⎢⎣⎡2,0π B.⎪⎭⎫⎢⎣⎡⎪⎭⎫⎢⎣⎡πππ,432,0 C.⎥⎦⎤⎢⎣⎡ππ,43 D.⎥⎦⎤ ⎝⎛⎪⎭⎫⎢⎣⎡43,22,0πππ 6.08全国Ⅱ设曲线2ax y =在点1,a 处的切线与直线062=--y x 平行,则=aA .1B .12C .12-D .1- 7.09宁夏曲线21x y xe x =++在点0,1处的切线方程为 ; 809全国卷Ⅱ理曲线21x y x =-在点()1,1处的切线方程为 A. 20x y --= B. 20x y +-= C.450x y +-= D. 450x y --= 9若曲线()2f x ax Inx =+存在垂直于y 轴的切线,则实数a 的取值范围是 . 10.08海南理曲线12e x y =在点2(4e ),处的切线与坐标轴所围三角形的面积为三.单调性1.1设fx=x 22-x,则fx 的单调增区间是A.0,)34B.,34+∞C.-∞,0D.-∞,0∪34,+∞2函数y=x+1x 2-1的单调递增区间为A.-∞,-1B.-1,+∞C. -∞,-1 与-1,+∞D. -∞,-1 ∪-1,+∞3函数13)(23+-=x x x f 是减函数的区间为A .),2(+∞B .)2,(-∞C .)0,(-∞D .0,22.1若函数fx=x 3-ax 2+1在0,2内单调递减,则实数a 的取值范围为2设ax x x f a -=>3)(,0函数在),1[+∞上是单调函数. 则实数a 的取值范围为 ;3函数y =ax 3-x 在-∞,+∞上是减函数,则实数a 的取值范围为 ;3.1若函数fx =ax 3-x 2+x -5在R 上单调递增,则a 的范围是 .2已知函数13)(23+-+=x x ax x f 在R 上是减函数,则a 的取值范围是: .4.若32()(0)f x ax bx cx d a =+++>在R 上是增函数,则A 240b ac ->B 0,0b c >>C 0,0b c =>D 230b ac -<5、函数3y x ax b =++在(1,1)-上为减函数,在(1,)+∞上为增函数,则A 1,1a b ==B 1,a b R =∈C 3,3a b =-=D 3,a b R =-∈四.极值1、函数331x x y -+=的极大值,极小值分别是A. 极小值-1,极大值1B. 极小值-2,极大值3C. 极小值-2,极大值2D. 极小值-1,极大值32.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =A2 B3 C4 D53.函数fx=x 3-ax 2-bx+a 2,在x=1时有极值10,则a 、b 的值为=3,b=-3,或a=-4,b=11=-4,b=11 =3,b=-3 D.以上都不正确4、已知函数)(x f 的导数为x x x f 44)(3-=',且图象过点0,-5,当函数)(x f 取得极大值-5时,x 的值应为A. –1B. 0C. 1D. ±15.若函数fx=x 3-3bx+3b 在0,1内有极小值,则<b<1 <1 >0 <216.若fx=x 3+3ax 2+3a+2x+1没有极值,则a 的取值范围为 .7. 已知函数y=2x 3+ax 2+36x -24在x=24处有极值,则该函数的一个递增区间是A.2,3B.3, +∞C.2, +∞D. -∞,38.2009辽宁卷文若函数2()1x a f x x +=+在1x =处取极值,则a = 五.最值1.函数5123223+--=x x x y 在0,3上的最大值、最小值分别是A .5,-15B .5,-4C .-4,-15D .5,-162.06浙江文32()32f x x x =-+在区间[]1,1-上的最大值是A-2 B0 C2 D4 3函数y =x 3+x3在0,+∞上的最小值为4.07湖南理函数3()12f x x x =-在区间[33]-,上的最小值是 .507江苏已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=____________变式、函数3()3f x x x a =--在区间[]0,3上的最大值、最小值分别为M,N,则M -N 的值为 ;6.2008安徽文设函数1()21(0),f x x x x=+-< 则()f xA .有最大值B .有最小值C .是增函数D .是减函数 六.综合1.07福建理、文已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<, 2.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤C. (0)(2)2(1)f f f +≥D. (0)(2)2(1)f f f +>3.2009陕西卷文设曲线1*()n y x n N +=∈在点1,1处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为 A 1n B 11n + C 1n n + D 1 图1所示,4 设函数)(x f 在定义域内可导,)(x f y =的图象如右则导函数y =f x 可能为5.浙江卷11设f 'x 是函数fx 的导函数,y =f 'x 的图象如右图所示,则y =fx 的图象最有可能的是A B C D 6.2009湖南卷文若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是x y y x y xyx O 1 2 O 1 2 O 1 2 1 2 xy O 1 2 a b a b a o x o x y b a o x y o xyb yx y O A x y O B x y O xyO DCA .B .C .D .7、已知函数32()(6)1f x x mx m x =++++既有极大值又存在最小值,则实数m 的取值范围是 ;8、若函数()f x 的定义域为()0,+∞,且/()0,()0f x f x >>,那么函数()y xf x = A 存在极大值B 存在最小值C 是增函数D 是减函数9、当[]0,2x ∈时,函数2()4(1)3f x ax a x =+--在x=2时取得最大值,则a 的取值范围是 ;七.解答题重点题型一:利用导数研究函数的单调性、极值、最值;1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1Ⅰ若函数2)(-=x x f 在处有极值,求)(x f 的表达式;Ⅱ在Ⅰ的条件下,求函数)(x f y =在-3,1上的最大值;Ⅲ若函数)(x f y =在区间-2,1上单调递增,求实数b 的取值范围2:已知三次函数32()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-. 1 求函数()y f x =的表达式;2 求函数()y f x =的单调区间和极值;3 若函数()()4(0)g x f x m m m =-+>在区间[3,]m n -上的值域为[4,16]-,试求m 、n 应满足的条件.3.海南文 本小题满分12分设函数2()ln(23)f x x x =++Ⅰ讨论()f x 的单调性;Ⅱ求()f x 在区间3144⎡⎤-⎢⎥⎣⎦,的最大值和最小值. 4、已知32()(0)f x ax bx cx a =++≠在1x =±取得极值,且(1)1f =;1试求常数,,a b c 的值;2试判断1x =±是函数的极大值还是极小值,并说明理由;5.已知函数fx=-x 3+3x 2+ax +b 在x =1,f1处的切线与直线12x -y -1=0平行.1求实数a 的值;2求fx 的单调递减区间;3若fx 在区间-2,2上的最大值为20,求它在该区间上的最小值.题型二:利用导数研究不等式恒成立;1.已知两个函数x x x f 287)(2-=,c x x x x g +-+=4042)(23.Ⅰ,)()(图像关于原点对称图像与x f x F 解不等式3)()(--≥x x f x FⅡ若对任意∈x -3,3,都有≤)(x f )(x g 成立,求实数c 的取值范围;2.已知函数fx=x 3-21x 2+bx+c.1若fx 在-∞,+∞上是增函数,求b 的取值范围;2若fx 在x=1处取得极值,且x∈-1,2时,fx<c 2恒成立,求c 的取值范围.3.天津卷21本小题满分14分已知函数432()2f x x ax x b =+++x R ∈,其中R b a ∈,.Ⅰ当103a =-时,讨论函数()f x 的单调性; Ⅱ若函数()f x 仅在0x =处有极值,求a 的取值范围;Ⅲ若对于任意的[2,2]a ∈-,不等式()1f x ≤在[1,1]-上恒成立,求b 的取值范围. 训练题1.本小题12分设函数d cx bx x a x f +++=43)(23的图象关于原点对称,)(x f 的图象在点(1,)P m 处的切线的斜率为6-,且当2=x 时)(x f 有极值. Ⅰ求a b c d 、、、的值;Ⅱ求()f x 的所有极值.2.设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数;(1) Ⅰ求b 、c 的值;(2) Ⅱ求()g x 的单调区间与极值;3.2005北京理科、文科 已知函数fx =-x 3+3x 2+9x +a .I 求fx 的单调递减区间;II 若fx 在区间-2,2上的最大值为20,求它在该区间上的最小值.4.2006安徽文设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数;Ⅰ求b 、c 的值; Ⅱ求()g x 的单调区间与极值;5.2008全国Ⅱ卷文 设a ∈R ,233)(x ax x f -=. Ⅰ若2=x 是函数)(x f y =的极值点,求a 的值; Ⅱ若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围.6. 2008湖北文 已知函数322()1f x x mx m x =+-+m 为常数,且m >0有极大值9. Ⅰ求m 的值; Ⅱ若斜率为-5的直线是曲线()y f x =的切线,求此直线方程. 7 已知函数1)(3--=ax x x f .Ⅰ若)(x f 在实数集R 上单调递增,求a 的范围; Ⅱ是否存在实数a 使)(x f 在)1,1(-上单调递减.若存在求出a 的范围,若不存在说明理由.09福建理科14.若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________.20、本小题满分14分 已知函数321()3f x x ax bx =++,且'(1)0f -= 1 试用含a 的代数式表示b,并求()f x 的单调区间; 2令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点M 1x ,1()f x ,N 2x ,2()f x ,P ,()m f m , 12x m x <<,请仔细观察曲线()f x 在点P 处的切线与线段MP 的位置变化趋势,并解释以下问题: I 若对任意的m ∈1x , x 2,线段MP 与曲线fx 均有异于M,P 的公共点,试确定t 的最小值,并证明你的结论;II 若存在点Q n ,fn , x ≤n< m ,使得线段PQ 与曲线fx 有异于P 、Q 的公共点,请直接写出m 的取值范围不必给出求解过程 09福建文科15. 若曲线()2f x ax Inx =+存在垂直于y 轴的切线,则实数a 的取值范围是 . 21.本小题满分12分已知函数321(),3f x x ax bx =++且'(1)0f -= I 试用含a 的代数式表示b ; Ⅱ求()f x 的单调区间;Ⅲ令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点1122(,()),(,())M x f x N x f x ,证明:线段MN 与曲线()f x 存在异于M 、N 的公共点;08福建理科11如果函数y=fx 的图象如右图,那么 导函数y=fx 的图象可能是 19本小题满分12分 已知函数321()23f x x x =+-.Ⅰ设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-n ∈N 在函数y =f ′x 的图象上,求证:点n ,S n 也在y =f ′x 的图象上;Ⅱ求函数fx 在区间a -1,a 内的极值. 文科21本小题满分12分已知函数32()2f x x mx nx =++-的图象过点-1,-6,且函数()()6g x f x x '=+的图象关于y 轴对称.Ⅰ求m 、n 的值及函数y =fx 的单调区间; Ⅱ若a >0,求函数y =fx 在区间a -1,a +1内的极值. 07福建11.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时 A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,22.本小题满分14分 已知函数()e x f x kx x =-∈R ,Ⅰ若e k =,试确定函数()f x 的单调区间;Ⅱ若0k >,且对于任意x ∈R ,()0f x >恒成立,试确定实数k 的取值范围; Ⅲ设函数()()()F x f x f x =+-,求证:12(1)(2)()(e2)()n n F F F n n +*>+∈N .全国一文 20设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.Ⅰ求a 、b 的值;Ⅱ若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. 陕西文21已知cx bx ax x f ++=23)(在区间0,1上是增函数,在区间),1(),0,(+∞-∞上是减函数,又.23)21(='f Ⅰ求)(x f 的解析式;Ⅱ若在区间],0[m m >0上恒有)(x f ≤x 成立,求m 的取值范围.12.已知函数3211()(1)32f x x b x cx =+-+,① 若()f x 在1,3x x ==处取得极值,试求常数,b c 的值;② 若()f x 在()()12,,,x x -∞+∞上都是单调递增,在()12,x x 上单调递减,且满足211x x ->,求证:22(2)b b c >+14.设0≠t ,点P t ,0是函数c bx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线. Ⅰ用t 表示a,b,c ;Ⅱ若函数)()(x g x f y -=在-1,3上单调递减,求t 的取值范围.例1已知曲线x x x y S 432:23++-=及点)0,0(P ,求过点P 的曲线S 的切线方程. 正解:设过点P 的切线与曲线S 切于点),(00y x Q ,则过点P 的曲线S 的切线斜率4220200++-='==x x y k x x ,又00x y k PQ =,00020422x yx x =++-∴;① 点Q 在曲线S 上,.432020300x x x y ++-=∴②,②代入①得002030020432422x x x x x x ++-=++-化简,得0342030=-x x ,00=∴x 或430=x .若00=x ,则4=k ,过点P 的切线方程为x y 4=;若430=x ,则835=k ,过点P 的切线方程为.835x y =∴过点P 的曲线S 的切线方程为x y 4=或.835x y =例2已知函数13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 错解:,163)(2-+='x ax x f )(x f 在R 上是减函数,0)(<'∴x f 在R 上恒成立,01632<-+∴x ax 对一切R x ∈恒成立,0<∆∴,即01236<+a ,3-<∴a .正解:+='23)(ax x f 16-x ,)(x f 在R 上是减函数,∴)(x f '0≤在R 上恒成立,0≤∆∴且0<a ,即01236≤+a 且0<a ,3-≤∴a .例5函数5)()(,133)('3--=-+=ax x f x g ax x x f ,其中)('x f 是)(x f 的导函数.1对满足-1≤a ≤1的一切a 的值,都有)(x g <0,求实数x 的取值范围;2设a =-2m ,当实数m 在什么范围内变化时,函数y =)(x f 的图象与直线y =3只有一个公共点.解:1由题意()2335g x x ax a =-+-令()()2335x x a x ϕ=-+-,11a -≤≤对11a -≤≤,恒有()0g x <,即()0a ϕ<∴()()1010ϕϕ<⎧⎪⎨-<⎪⎩ 即22320380x x x x ⎧--<⎨+-<⎩解得213x -<<故2,13x ⎛⎫∈- ⎪⎝⎭时,对满足-1≤a ≤1的一切a 的值,都有()0g x <. 2()'2233f x x m =-①当0m =时,()31f x x =-的图象与直线3y =只有一个公共点 ②当0m ≠时,列表:极大极小∴()()2211f x f x m m ==--<-极小又∵()f x 的值域是R ,且在(),m +∞上单调递增∴当x m >时函数()y f x =的图象与直线3y =只有一个公共点. 当x m <时,恒有()()f x f m ≤-由题意得()3f m -<即3221213m m m -=-<解得()()332,00,2m ∈-综上,m 的取值范围是()332,2-.例6、 1是否存在这样的k 值,使函数 在区间1,2上递减,在2,+∞上递增,若存在,求出这样的k 值;2若 恰有三个单调区间,试确定 的取值范围,并求出这三个单调区间;解:1由题意,当时 ,当x∈2,+∞ 时 ,∴由函数的连续性可知 ,即整理得解得或验证:Ⅰ当时,∴若 ,则;若 , 则 , 符合题意;Ⅱ当时,,显然不合题意;于是综上可知,存在使在1,2上递减,在2,+∞上递增;2若 ,则 ,此时只有一个增区间 ,与题设矛盾;若 ,则 ,此时只有一个增区间 ,与题设矛盾;若 ,则并且当时,;当时,∴综合可知,当时,恰有三个单调区间:减区间;增区间点评:对于1,由已知条件得 ,并由此获得k的可能取值,进而再利用已知条件对所得k 值逐一验证,这是开放性问题中寻求待定系数之值的基本策略;例7、已知函数 ,当且仅当时,取得极值,并且极大值比极小值大4.1求常数的值;2求的极值;解:1 ,令得方程∵在处取得极值∴或为上述方程的根,故有∴ ,即①∴又∵仅当时取得极值,∴方程的根只有或 ,∴方程无实根,∴即而当时,恒成立,∴的正负情况只取决于的取值情况当x变化时,与的变化情况如下表:1 1,+∞ +0 —0 +极大值极小值∴在 处取得极大值,在 处取得极小值 ;由题意得整理得②于是将①,②联立,解得2由1知,点评:循着求函数极值的步骤,利用题设条件与 的关系,立足研究 的根的情况,乃是解决此类含参问题的一般方法,这一解法体现了方程思想和分类讨论的数学方法,突出了“导数”与“在处取得极值”的必要关系;1.已知函数2)12()(23+-+=x a ax x f ,若1-=x 是)(x f y =的一个极值点,则a 值为A .2 C. 722.已知函数223)(a bx ax x x f +++=在1=x 处有极值为10,则)2(f = . 3.给出下列三对函数:①1)(,1)(--=-=x x g xx f ②)0()(2>=a ax x f ,ax x g =)( ③x x f )31()(-=,)log()(x x g --=;其中有且只有一对函数“既互为反函数,又同是各自定义域上的递增函数”,则这样的两个函数的导函数分别是)(x f ' ,=')(x g .4.已知函数1)2(33)(23++++=x a ax x x f 有极大值和极小值,求a 的取值范围.5.已知抛物线22+-=x y ,过其上一点P 引抛物线的切线l ,使l 与两坐标轴在第一象限围成的三角形的面积最小,求l 的方程.6.设43241)(y xy x y g -+-=在[]0,1-∈y 上的最大值为)(x f ,R x ∈,1求)(x f 的表达式;2求)(x f 的最大值.设a ∈R ,233)(x ax x f -=.Ⅰ若2=x 是函数)(x f y =的极值点,求a 的值;Ⅱ若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 解:Ⅰ2()363(2)f x ax x x ax '=-=-.因为2x =是()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ·········· 4分 Ⅱ由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥, 即02024a -≥.故得65a ≤. ············ 9分反之,当65a ≤时,对任意[02]x ∈,,23(210)5x x x =+-3(25)(2)5xx x =+-0≤, 而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ················· 12分3 已知 是函数的一个极值点,其中Ⅰ求 与 的关系表达式;Ⅱ求 的单调区间;Ⅲ当时,函数的图象上任意一点的切线斜率恒大于3m,求的取值范围;解析:1本小题主要考查了导数的概念和计算,应用导数研究函数单调性的基本方法以及函数与方程的思想,第2小题要根据的符号,分类讨论的单调区间;第3小题是二次三项式在一个区间上恒成立的问题,用区间端点处函数值的符号来表示二次三项式在一个区间上的符号,体现出将一般性问题特殊化的数学思想;解答:Ⅰ ,是函数的一个极值点∴∴;Ⅱ令 ,得与的变化如下表:1—0 + 0 —单调递减极小值单调递增极大值单调递减因此,的单调递减区间是和;的单调递增区间是;Ⅲ由Ⅱ即令 ,且 ,即m的取值范围是 ;4已知函数 ;Ⅰ求的单调区间和值域;Ⅱ设 ,函数 ,若对于任意 ,总存在 ,使得成立,求的取值范围;解析:本题考查导数的综合运用,考查综合运用数学知识解决问题能力,考查思维及推理能力以及运算能力,本题入手点容易,Ⅰ中对分式函数定区间内单调性与值域问题,往往以导数为工具,Ⅱ是三次函数问题,因而导数法也是首选,若成立,则二次函数值域必满足关系,从而达到求解目的;解:Ⅰ由得或 ;∵∴舍去则 , ,变化情况表为:0 1—0 +↘↗因而当时为减函数;当时为增函数;当时,的值域为;Ⅱ因此,当时因此当时为减函数,从而当时有又 ,即当时有任给 , ,存在使得则由1得或 ,由2得又故的取值范围为 ;5 已知 ,函数1当为何值时,取得最小值证明你的结论;2设在上是单调函数,求的取值范围;解析:本题考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力,本题Ⅰ常规题型,方法求 ,解的根,列表,确定单调性,并判断极值点,对Ⅱ由Ⅰ在上单调,而 ,因此只要即满足题设条件,从中解出的范围;解答:Ⅰ令则从而,其中当变化时, ,的变化情况如下表+ 0 —0 +↗极大值↘极小值↗∴在处取得极大值,处取得极小值当时 , ,且在为减函数,在为增函数而当时 ,当时∴当时取最小值;Ⅱ当时在上为单调函数的充要条件是,解得综上,在上为单调函数的充要条件为 ,即的取值范围为 ;6.已知 ,函数Ⅰ当时,求使成立的成立的的集合;Ⅱ求函数在区间上的最小值;答案:Ⅰ{0,1,}。

高考数学导数题型归纳(文科)

高考数学导数题型归纳(文科)

文科导数题型归纳请同学们高度重视:首先,关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决―不等式恒成立问题‖以及―充分应用数形结合思想‖,创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令f(x)0得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:‘第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(&gt;0,=0,&lt;0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);(请同学们参看2010省统测2)例1:设函数y f(x)在区间D上的导数为f(x),f(x)在区间D上的导数为g(x),若在区间D上,g(x)0恒成立,则称函数y f(x)在区间D上为―凸函数‖,已知实数m是常数,x4mx33x2f(x) 1262(1)若y f(x)在区间0,3上为―凸函数‖,求m的取值范围;(2)若对满足m2的任何一个实数m,函数f(x)在区间a,b上都为―凸函数‖,求b a的最大值.x4mx33x2x3mx23x 解:由函数f(x)得f(x)126232g(x)x2mx 3(1)y f(x)在区间0,3上为―凸函数‖,则g(x)x mx30 在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于gmax(x)02030g(0)m 2 09m330g(3)解法二:分离变量法:∵当x0时, g(x)x mx330恒成立,当0x3时, g(x)x mx30恒成立22x233等价于m x的最大值(0x3)恒成立,xx3而h(x)x(0x3)是增函数,则hmax(x)h(3) 2 xm 2(2)∵当m2时f(x)在区间a,b上都为―凸函数‖2则等价于当m2时g(x)x mx30 恒成立变更主元法2 再等价于F(m)mx x30在m2恒成立(视为关于m的一次函数最值问题)20F(2)x2x301x 12F(2)02x x30b a 2请同学们参看2010第三次周考:例2:设函数f(x)13x2ax23a2x b(0a1,b R) 3(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)若对任意的x[a1,a2],不等式f(x)a恒成立,求a的取值范围. (二次函数区间最值的例子)解:(Ⅰ)f(x)x4ax3a x3a x a 220a 1令f(x)0,得f(x)令f(x)0,得f(x)的单调递减区间为(-,a)和(3a,+)∴当x=a时,f(x)极小值=233a b; 当x=3a时,f(x)极大值=b. 42 (Ⅱ)由|f(x)|≤a,得:对任意的x[a1,a2],a x4ax3a a恒成立①gmax(x)a22则等价于g(x)这个二次函数g(x)x4ax3a的对称轴x2a gmin(x) aa1a a2a(放缩法)0a1,即定义域在对称轴的右边,g(x)这个二次函数的最值问题:单调增函数的最值问题。

高考文科导数考点汇总

高考文科导数考点汇总

高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

导数概念与运算知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00; (3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

3.几种常见函数的导数:①0;C '= ②()1;nn x nx-'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x xe e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x ex '=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv += 若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -(v ≠0)。

高考文科导数考点汇总

高考文科导数考点汇总

高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

导数概念与运算知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00; (3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

3.几种常见函数的导数:①0;C'=②()1;n nx nx-'=③(sin)cosx x'=; ④(cos)sinx x'=-;⑤();x xe e'=⑥()lnx xa a a'=; ⑦()1ln xx'=; ⑧()1l g loga ao x ex'=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:(.)'''vuvu±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uvvuuv+=若C为常数,则'''''0)(CuCuCuuCCu=+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu=法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛vu‘=2''vuvvu-(v≠0)。

高三文科导数知识点

高三文科导数知识点

高三文科导数知识点导数是高中数学中的一个重要概念,也是文科生在学习数学时必须要掌握的内容之一。

本文将介绍高三文科导数的知识点,包括导数的意义、导数的计算、导数的性质和导数的应用等方面,希望能够帮助同学们更好地理解和应用导数知识。

一、导数的意义导数是函数在某一点上的变化率,可以描述函数图像在该点的切线斜率。

具体来说,如果函数f(x)在点x=a处的导数存在,则称函数f(x)在点x=a处可导,记为f'(a)。

导数的意义主要有以下几个方面:1. 切线斜率:导数可以用来求解函数图像在某一点的切线斜率。

2. 变化率:导数可以表示函数在某一点的变化速率,如物理中的速度、加速度等概念。

3. 极值点:导数可以帮助判断函数图像的极值点。

二、导数的计算导数的计算方法主要有以下几种:1. 函数基本求导法则:常见的函数求导法则包括常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。

2. 链式法则:对于由多个函数复合而成的复合函数,可以利用链式法则求导。

3. 隐函数求导法则:对于隐函数所表示的方程,可以利用隐函数求导法则求解。

4. 参数方程求导法则:对于通过参数方程给出的曲线,可以利用参数方程求导法则求解。

三、导数的性质导数具有一些重要的性质,包括:1. 导数的线性性质:即导数运算具有加法性和乘法性。

2. 可导函数的连续性:可导函数必然是连续函数,但连续函数未必可导。

3. 导数与函数的单调性和极值点的关系:函数在单调区间上的导数具有确定的符号,并且函数的极值点对应导数为零的点。

四、导数的应用导数在实际问题中具有广泛的应用,主要包括以下几个方面:1. 最优化问题:导数可以帮助求解最大值、最小值等最优化问题。

2. 几何问题:导数可以帮助求解切线、法线、曲率等几何性质。

3. 物理问题:导数可以描述速度、加速度、变化率等物理量。

4. 经济学问题:导数可以描述边际效应、弹性等经济学概念。

综上所述,高三文科导数是数学中的重要知识点,掌握导数的意义、计算方法、性质和应用可以帮助同学们更好地理解和运用导数知识,提高数学解题能力。

[整理]人教版高考数学(文科)题型复习:导数

[整理]人教版高考数学(文科)题型复习:导数

导数及其应用导数复习概念及其应用一、定义及意义1. 定义及概念: 0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的意义,①物理意义:瞬时速率,变化率 ②几何意义:切线斜率000()()lim ()n x n f x f x k f x x x ∆→-'==-③代数意义:函数增减速率 二、导数的计算1.基本初等函数的导数公式 ① (c 为常数),即常数的导数等于0。

②③;④; ⑤;2.导数的运算法则①[()()]()()f x g x f x g x '''±=±②[()()]()()()()f x g x f x g x f x g x '''∙=∙+∙③2()()()()()[]()[()]f x f xg x f x g x g x g x ''∙-∙'= 3.复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=∙三、导数在研究函数中的应用 1.函数的单调性一般的,在某个区间(,)a b 内,如果()0f x '>(等于),那么函数()y f x =在这个区间单调递增;如果()0f x '<(等于),那么函数()y f x =在这个区间单调递减;如果恒有,则在这一区间上为常函数。

(单调增或单调减区间内,可以存在'()=0f x )2.函数的极值与导数极值:设函数在点 附近(区间)有定义,如果对附近的所有点,都有,则说是函数的一个极大值,记作 ;如果对附近的所有点,都有,则说是函数的一个极小值,记作。

设函数 可导,且在点 处连续,判定是极大(小)值的方法是: (Ⅰ)如果在点 附近的左侧 ,右侧 ,则 为极大值; (Ⅱ)如果在点附近的左侧,右侧,则为极小值;注意:导数为0的不一定是极值点,如;函数y=f(x)在一点的导数值为0是函数y=f(x)在这点取极值的既不充分又不必要条件;3.函数的最大值与最小值(最大值是函数在整个定义区间上所有函数值中的最大值;最小值是函数在整个定义区间上所有函数值中的最小值。

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)高考数学文科导数真题汇编答案一、客观题组4.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是。

5.设函数f(x)=x^2-2x,则f(x)的单调递减区间为。

7.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=2处取得极大值,则函数y=xf'(x)的图象可能是。

8.设函数f(x)=1/(2x-lnx),则x=2为f(x)的极小值点。

9.函数y=1/(2x-lnx)的单调递减区间为(0,1]。

11.已知函数f(x)=x^2+bx+c的图象经过点(1,2),且在点(2,3)处的切线斜率为4,则b=3.12.已知函数f(x)=ax^2+bx+c的图象过点(1,1),且在点(2,3)处的切线斜率为5,则a=2.二、大题组2011新课标】21.已知函数f(x)=aln(x/b)+2,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1) 求a、b的值;(2) 证明:当x>1,且x≠b时,f(x)>2ln(x/b)。

解析】1) f'(x)=a/(xlnb)+2/x,由于直线x+2y-3=0的斜率为-1/2,且过点(1,f(1)),解得a=1,b=1.2) 由(1)知f(x)=ln(x)+1,所以f(x)-2ln(x/b)=ln(x/b)+1>0,当x>1,且x≠b时,f(x)>2ln(x/b)成立。

2012新课标】21.设函数f(x)=ex-ax-2.(1) 求f(x)的单调区间;(2) 若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值。

解析】1) f(x)的定义域为(-∞,+∞),f'(x)=ex-a,若a≤0,则f'(x)>0,所以f(x)在(-∞,+∞)单调递增。

高考文科导数知识点总结

高考文科导数知识点总结

高考文科导数知识点总结高考是每个学生都渴望成功的重要考试,其中文科类科目的一项重点是数学。

在数学中,导数是一个关键的知识点。

本文将对高考文科中与导数相关的知识点进行总结和归纳,以帮助学生更好地掌握和应用导数。

一、导数的定义与求法导数是函数与自变量之间的变化率关系。

在数学中,我们通常使用极限的概念来定义一个函数的导数。

对于一个函数f(x),它的导数可以表示为f'(x)或df/dx。

求函数的导数可以使用以下几种方法:1. 函数基本求导法则:常数法则、幂法则、指数函数求导法则、对数函数求导法则、三角函数求导法则等;2. 利用导数定义进行求导:利用导数的定义进行求导是一种基础的方法,根据导数定义计算极限得到准确的导数值;3. 复合函数求导法则:根据复合函数的求导法则可以求得复合函数的导数。

二、导数在函数图像中的应用导数在研究函数图像中有着重要的应用。

下面列举了一些常见的应用:1. 切线和法线:导数有助于确定函数图像上某点的切线和法线,切线的斜率等于该点的导数值,法线的斜率为导函数的负倒数;2. 函数的增减与极值:导数为正说明函数单调递增,导数为负说明函数单调递减,导数为零的点可能是函数的极值点;3. 函数的凹凸性与拐点:利用导数的二阶导数可以判断函数图像的凹凸性,凹函数和凸函数在导数的正负变化处有转折点,即拐点。

三、导数在变化率问题中的应用导数在变化率问题中也有着广泛的应用,比如速度、密度等问题。

以下是几个常见的应用场景:1. 平均变化率与瞬时变化率:平均变化率是指在两个点之间的变化率,瞬时变化率是指在某一点的瞬时速度;2. 边际变化与边际效益:导数还可以用来表示某一变量的边际变化,比如边际利润、边际成本等;3. 最优化问题:通过求解导数为零的点可以得到函数的最值点,这在最优化问题中十分常见。

四、常见的导数公式在高考文科中,以下是一些常见的导数公式,学生们可以熟练掌握和应用:1. 常数函数的导数为零;2. 幂函数的导数公式:(x^n)' = n*x^(n-1),其中n为常数;3. 指数函数的导数公式:(e^x)' = e^x;4. 对数函数的导数公式:(log_a(x))' = 1/(x * ln(a)),其中a为底数;5. 三角函数的导数公式:(sin(x))' = cos(x),(cos(x))' = -sin(x),(tan(x))' = sec^2(x);6. 反三角函数的导数公式:(arcsin(x))' = 1/sqrt(1-x^2),(arccos(x))' = -1/sqrt(1-x^2),(arctan(x))' = 1/(1+x^2)。

高中文科导数知识点汇总

高中文科导数知识点汇总

高中文科导数知识点汇总高中文科导数知识点汇总高中文科中,导数是数学分析中的重要概念之一。

导数可以帮助我们研究函数的变化情况以及求解函数的极值等问题。

下面是一些高中文科中常见的导数知识点的汇总:1. 定义:导数可以被视为函数在某一点处的变化率。

如果函数f(x)在点x=a处导数存在,则导数的定义为:f'(a)=lim(x→a) (f(x)-f(a))/(x-a)。

其中,lim表示极限。

2. 导数记号:函数的导数可以用不同的符号表示。

除了上面提到的f'(a),还可以用dy/dx、f(x)、y′等来表示。

3. 导函数:如果一个函数在定义域上的每个点都存在导数,那么我们可以得到一个新的函数,称为原函数的导函数。

导函数的表示可以是f'(x)或者y'。

4. 在数值上求导:对于函数f(x),如果我们要求它在某点x=a 处的导数,可以通过计算函数在该点附近的斜率来近似求得。

具体方法有使用差商和利用求极限。

差商的计算方式为:(f(a+h)-f(a))/h,其中h→0。

5. 导数的几何意义:函数在某一点的导数可以表示函数在该点处的切线的斜率。

切线的斜率是函数在该点的局部增长率的表示。

6. 导数的运算法则:导数满足一些有用的运算法则,这些法则可以帮助我们简化求导的过程。

常见的导数运算法则包括:常数法则、幂函数法则、和差法则、乘积法则、商法则、复合函数法则等。

7. 高阶导数:除了一阶导数,我们还可以计算高阶导数。

高阶导数表示导函数求导的结果。

例如,f''(x)表示函数f(x)的二阶导数。

8. 反函数和导数:如果一个函数f(x)在某一区间上是可递增或可递减的,并且在该区间上的导数不为零,那么它的反函数f^(-1)(x)在相应区间上也有导数,并且具有以下关系式:(f^(-1))'(y)=1/f'(x),其中y=f(x)。

9. 隐函数和导数:隐函数是指不能直接用y=f(x)的形式表示的函数,而是以xy的关系表示的函数。

高考数学导数题型归纳(文科)

高考数学导数题型归纳(文科)

文科导数题型1.基础题型:函数的单调区间、极值、最值;不等式恒成立; 此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:画两图或列表; 第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题2.不等式恒成立常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262xm x x f x =--(1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.解:由函数4323()1262xm x x f x =--得32()332xm x f x x '=-- 2()3g x x m x ∴=--(1) ()y f x = 在区间[]0,3上为“凸函数”, 则 2()30g x x m x ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于m ax ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩ 解法二:分离变量法:∵ 当0x =时, 2()330g x x m x ∴=--=-<恒成立, 当03x <≤时, 2()30g x x m x =--<恒成立等价于233x m x xx->=-的最大值(03x <≤)恒成立,而3()h x x x=-(03x <≤)是增函数,则m ax ()(3)2h x h == 2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数”则等价于当2m ≤时2()30g x x m x =--< 恒成立变更主元法:再等价于2()30F m m x x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)22(2)023011(2)0230F x x x F x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩ 2b a ∴-=例2:设函数),10(3231)(223R b a b x a axx x f ∈<<+-+-=(Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围. (二次函数区间最值的例子)解:(Ⅰ)()()22()433f x x ax a x a x a '=-+-=---01a <<令,0)(>'x f 得)(x f 的单调递增区间为(,3)a a令,0)(<'x f 得)(x f 的单调递减区间为(,)(3,)a a -∞+∞和∴当x=a 时,)(x f 极小值=;433b a+-当3x a =时,)(x f 极大值b =(Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立①则等价于()g x 这个二次函数m ax m in ()()g x a g x a ≤⎧⎨≥-⎩ 22()43g x x ax a =-+的对称轴2x a =01,a << 12a a a a +>+=(放缩法)即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

word完整版高考文科导数考点汇总推荐文档

word完整版高考文科导数考点汇总推荐文档

高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值, 函数的最大值和最小值。

导数概念与运算知识清单 1 .导数的概念函数y=f(x),如果自变量x 在X 。

处有增量 X,那么函数y 相应地有增量y=f (x 0+ X ) —f(x 0),yy f(x 。

x) f(x 。

)比值 x 叫做函数y=f f x )在x 0到x 0+ x 之间的平均变化率,即x =x。

_y如果当 x 0时,x 有极限,我们就说函数 y=f(x)在点X 。

处可导,并把这个极限叫做f ( x )在点x 0处的导数,记作f '(x 0 )或y'x/。

y f(x 。

x) f(x 。

) lim lim即 f (x 0) = X 0 X = x 0 x说明:(1) 函数f (X )在点X 0处可导,是指 X 数在点X 0处不可导,或说无导数。

(2)X是自变量X 在X 0处的改变量,X由导数的定义可知,求函数 y=f (X )在点X 0处的导数的步骤(可由学生来归纳): (1)求函数的增量 y=f (x 0+ x )- f (x 0 );y f(x °x) f(x °)(2) 求平均变化率 x =x;.. ylim —(3) 取极限,得导数f ' (X )= x 0 x 。

2 •导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线 y=f (x )在点p (x 0, f (x 0))处的切线的斜 率。

也就是说,曲线 y=f (x )在点p (x 0, f (x 0))处的切线的斜率是 f' (x 0)。

相应地,切线y y0时, X 有极限。

如果 x 不存在极限,就说函0时,而 y 是函数值的改变量,可以是零。

方程为y—y0=f/ (x0) (x-x0)。

4 •两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和 (或差), 即:(U V ) u v.法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个III函数乘以第二个函数的导数,即:(uv ) uv uv .若C 为常数,则(Cu ) Cu Cu 0 Cu Cu .即常数与函数的积的导数等于常数乘以函数II的导数:(Cu ) Cu .法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除U u'v uv'2以分母的平方: v‘ =v( v 0)。

高考文科导数考点汇总

高考文科导数考点汇总

高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

导数概念与运算知识清单1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim→∆x x y ∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明: (1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (.)'''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv += 若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -(v ≠0)。

高中文科数学导数复习

高中文科数学导数复习

导数常见基本初等函数的导数公式和导数的四则运算法则:C ' 0 (C 为常数);(x n )' nx n 1, n Q*;(sin x)' cosx; (cos x)' sin x;1 (e x )' e x ;(a x )' a x lna(a 0,a 1); (ln x)'; x1(log a x)'- (a 0,a 1). xln a法则 1 : [u(x)v(x)]' u '(x)v'(x);法则 2: [u(x)v(x)]u'(x)v(x)u(x)v'(x);、导数在研究函数中的应用1、 了解函数的单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间2、 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值, 会求在闭区间上函数的最大值、最小值。

3、 会用导数解决某些实际问题。

导数的概念与和、差、积、商的导数5、导数的几何意义:是曲线y f (x)上点(X 。

,f (X 。

))处的切线的斜率。

因此,如果y f (x)在点x °可导,则曲线y f (x)在点(x °, f (x °))处的切线方程为 y f(x °) f /(X 0)(x x °), K 切 f (x °), K 法6、导函数(导数):如果函数y f (x)在开区间(a,b)内的每点处都有导数,此时对于每一个x (a,b),都对应着一个确定的导数f /(x),从而构成了一个新的函数 f /(x),称这个函数f /(x)为函数yf (x)在开区间内的导函数,简称导数,法则3:u(x) v(x)(v(x) 0).v (x)4、导数的定义:设函数y f (x)在x x 0处附近有定义,如果x 0时,y 与x 的比」(也叫函数的平均变化率)有极限即x丄 无限趋近于某个常数,我们把这个极限值叫x做函数y f (x)在x x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点一 导数的计算
【例 1】 求下列函数的导数:
( ) 1 1
(1)y=exln x;(2)y=x x2+ + ; x x3
( ) 1
1
1
解 (1)y′=(ex)′ln x+ex(ln x)′=exln x+ex = ln x+ ex.(2)因为 y=x3+1+ ,
x
x
x2
( )1
2
所以 y′=(x3)′+(1)′+ ′=3x2- .
【训练 2】(2017·威海质检)已知函数 f(x)=xln x,若直线 l 过点(0,-1),并且与曲线 y=f(x)相切,则直
线 l 的方程为( )A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0
(2)∵点 (0, - 1)不 在 曲 线 f(x)= xln x 上 , ∴设 切 点 为 (x0, y0).又 ∵f′(x)= 1+ ln x, ∴
3
3
9
( )4 16a 8
1
- = - =0,解得 a= .
3 33
2
( ) ( ) ( ) ( ) 1
3
1
15
1
(2)由(1)得 g(x)= x3+x2 ex 故 g′(x)= x2+2x ex+ x3+x2 ex= x3+ x2+2x ex= x(x+1)(x+4)ex.令
2
2
2
22
2
g′(x)<0,得 x(x+1)(x+4)<0.解之得-1<x<0 或 x<-4.所以 g(x)的单调减区间为(-1,0),(-∞,-4).
xx
( ) ( ) 1
1
1
由 f′(x)=0 有 x= ,当 x∈ 0, 时,f′(x)<0,f(x)单调递减;当 x∈ ,+∞ 时,f′(x)>0,
2a
2a
2a
f(x)单调递增.(2)证明 令 s(x)=ex-1-x,则 s′(x)=ex-1-1.当 x>1 时,s′(x)>0,所以 ex-1>x,从而 g(x)=
函数 f(x)=ln x+ax 的图象存在与直线 2x-y=0 平行的切线,即 f′(x)=2 在(0,+∞)上有解,而 f′(x)=
1
1
1
1
+a,即 +a 在(0,+∞)上有解,a=2- ,因为 a>0,所以 2- <2,所以 a 的取值范围是(-∞,2).答案
x
x
x
x
(2)(-∞,2)
2.点 P 是曲线 x2-y-ln x=0 上的任意一点,则点 P 到直线 y=x-2 的最小距离为( )
4 x2 x
2
4
5
x5
3
x2-4x-5
-2,解得 a= .(2)由(1)知 f(x)= + -ln x- ,(x>0).则 f′(x)=
.令 f′(x)=0,解得 x=-
4
4 4x
2
4x2
1 或 x=5.但-1∉(0,+∞),舍去.当 x∈(0,5)时,f′(x)<0;当 x∈(5,+∞)时,f′(x)>0.∴f(x)的增区间
切线方程是________.解析 (1)设 x>0,则-x<0,f(-x)=ex-1+x.又 f(x)为偶函数,f(x)=f(-x)=ex-1+x,
所以当 x>0 时,f(x)=ex-1+x.因此,当 x>0 时,f′(x)=ex-1+1,f′(1)=e0+1=2.则曲线 y=f(x)在点(1,
2)处的切线的斜率为 f′(1)=2,所以切线方程为 y-2=2(x-1),即 2x-y=0. 答案 2x-y=0
{ ) y0=x0ln x0,
y0+1=(1+ln x0)x0, 解得 x0=1,y0=0.∴切点为(1,0),∴f′(1)=1+ln 1=1.∴直线 l 的方程为 y=x-
1,即 x-y-1=0.答案 B
命题角度二 求切点坐标
1 【例 3】 (2017·西安调研)设曲线 y=ex 在点(0,1)处的切线与曲线 y= (x>0)上点 P 处的切线垂直,则 P 的坐
命题角度三 求与切线有关的参数值(或范围)
【例 4】 (2015·全国Ⅱ卷)已知曲线 y=x+ln x 在点(1,1)处的切线与曲线 y=ax2+(a+2)x+1 相切,则 a=
________.
1
解析 由 y=x+ln
x,得
y′=1+ ,得曲线在点(1,1)处的切线的斜率为 x
k=y′|x=1=2,所以切线方程为
xa
3
【训练 2】
已知函数 f(x)=4+x-ln
x- ,其中 a∈R,且曲线 y=f(x)在点(1,f(1))处的切线垂直于直线 y= 2
1 x.(1)求 a 的值;(2)求函数 f(x)的单调区间. 2
1a1
1
3
解 (1)对 f(x)求导得 f′(x)= - - ,由 f(x)在点(1,f(1))处的切线垂直于直线 y= x 知 f′(1)=- -a=
为(5,+∞),减区间为(0,5).
考点三 已知函数的单调性求参数 1
【例 3】 (2017·西安模拟)已知函数 f(x)=ln x,g(x)= ax2+2x(a≠0). 2
(1)若函数 h(x)=f(x)-g(x)存在单调递减区间,求 a 的取值范围;
(2)若函数 h(x)=f(x)-g(x)在[1,4]上单调递减,求 a 的取值范围.
f′(1)=3,则 a 的值为________.
( )1
(2)f′(x)= a ln x+x· = a(1+ ln x).由 于 f′(1)= a(1+ ln 1)= a, 又 f′(1)= 3, 所 以 a= 3.答 案 x
(2)3
考点二 导数的几何意义
命题角度一 求切线方程
【例 2】 (2016·全国Ⅲ卷)已知 f(x)为偶函数,当 x≤0 时,f(x)=e-x-1-x,则曲线 y=f(x)在点(1,2)处的
高考文科数学导数专题复习
第 1 讲 变化率与导数、导数的计算
知识梳理
1.导数的概念
f(x0+Δx)-f(x0)
(1)函数 y=f(x)在 x=x0 处的导数 f′(x0)或 y′|x=x0,即 f′(x0)= lim x0
Δx
.
f(x+Δx)-f(x)
(2)函数 f(x)的导函数 f′(x)= lim
1
1
解 (1)h(x)=ln x- ax2-2x,x>0.∴h′(x)= -ax-2.若函数 h(x)在(0,+∞)上存在单调减区间,则当 x>0
2
x
( ) 1
12
12
12
时,x-ax-2<0
有解,即
a> - 有解.设 x2 x
G(x)= - ,所以只要 x2 x
a>G(x)min.(*)又
G(x)=
y-1=2(x-
1),即 y=2x-1.又该切线与 y=ax2+(a+2)x+1 相切,消去 y,得 ax2+ax+2=0,∴a≠0 且 Δ=a2-8a=0,
解得 a=8.答案 8
【训练 4】1.函数 f(x)=ln x+ax 的图象存在与直线 2x-y=0 平行的切线,则实数 a 的取值范围是________.
x2
x3
【训练 1】 (1) 已知函数 f(x)的导函数为 f′(x),且满足 f(x)=2x·f′(1)+ln x,则 f′(1)等于( )
A.-e B.-1 C.1 D.e 1
解析 由 f(x)=2xf′(1)+ln x,得 f′(x)=2f′(1)+x,∴f′(1)=2f′(1)+1,则 f′(1)=-1.答案 B (2)(2015·天津卷)已知函数 f(x)=axln x,x∈(0,+∞),其中 a 为实数,f′(x)为 f(x)的导函数.若
x
2
ln x 上和直线 y=x-2 平行的切线经过的切点坐标为(1,1),点(1,1)到直线 y=x-2 的距离等于 2,∴点
P 到直线 y=x-2 的最小距离为 2.答案 D
第 2 讲 导数在研究函数中的应用
知识梳理
函数的单调性与导数的关系函数 y=f(x)在某个区间内可导,则:(1)若 f′(x)>0,则 f(x)在这个区间内单调递
3
A.1
B.
2
5 C.
2
D. 2
解析 点 P 是曲线 y=x2-ln x 上任意一点,当过点 P 的切线和直线 y=x-2 平行时,点 P 到直线 y=x-2 的距
1
1
离最小,直线 y=x-2 的斜率为 1,令 y=x2-ln x,得 y′=2x- =1,解得 x=1 或 x=- (舍去),故曲线 y=x2-
a
a
1e 【训练 1】(2016·四川卷节选)设函数 f(x)=ax2-a-lnx,g(x)= - ,其中 a∈R,e=2.718…为自然对数的
x ex
底数.(1)讨论 f(x)的单调性;(2)证明:当 x>1 时,g(x)>0.
1 2ax2-1
(1)解 由题意得 f′(x)=2ax- =
(x>0).当 a≤0 时,f′(x)<0,f(x)在(0,+∞)内单调递减.当 a>0 时,
【训练 3】若曲线 y=xln x 上点 P 处的切线平行于直线 2x-y+1=0,则点 P 的坐标是________.解析 (1)由题 1
意得 y′=ln x+x·x=1+ln x,直线 2x-y+1=0 的斜率为 2.设 P(m,n),则 1+ln m=2,解得 m=e,所以 n=eln e=e,即点 P 的坐标为(e,e). 答案 (1)(e,e)
a
a
a
( ) ( ) 1
相关文档
最新文档