水煤气变换反应(WGSR)AuFe2O3催化剂的相关影响因素
水煤气变换反应
.2011-2012 学年第二学期《专外与文献检索》 课程考查成绩细则成绩组成及比重具体项目及分数检索策略(15)基本格式(5)摘要(5)关键词(5)论文(80%)前言、正文、结论(30) 文中是否按顺序标明文献出处(5)参考文献的编排格式(10)中英文文献数量(5)摘要原文及翻译(20)合计(100)作业(10%)出勤(10%)成绩:得分..《专外与文献检索》课程考查课题名称(2 分)中文 低温水煤气变换反应研究进展 英文 Low-Temperature Water-Gas ShiftReactionResearchProgress一.课题简介(4 分)水煤气变换反应( Water- Gas Shift Reaction, 简称 WGSR) 的工业应用已有90 多年历史,在以煤、石油和天然气为原料的制氢工业和合成氨工业具有广泛的应用,在合成气制醇、制烃催化过程中,低温水气变换反应通常用于甲醇重整制氢反应量 CO 的去除,同时在环境科学甚至在民用化学方面所起作用也不可忽视,如汽车尾气的处理、家用煤气降低 CO 的含量等。
近年来由于在燃料电池电动车上的应用,这一经典化学反应的研究再次引起国外同行极大关注。
近年来近年来,负载型催化剂一直是低温水煤气变换反应催化剂研究的热点,尤其是负载金超微粒子催化剂研究,因此,探究低温水煤气变换反应研究进展,研究起催化剂发展状况具有重要意义。
二.中文检索词及基本检索策略(列出检索字段及逻辑运算关系)(3 分)中国知网 具体日期 2005.1.1-今天..题名:水煤气变换反应 并含主题:低温三.英文检索词及基本检索策略(列出检索字段及逻辑运算关系)(3 分)数据库:Elsevier Science 电子期刊检索方法:"water-gas shift reaction" orWGSR or "WGS reaction" (title)(一行)AND "low temperature"(title)(一行)Data range: 2005 to present数据库:ISI Web of Knowledge 检索方法:"water-gas shift reaction" orWGSR or "WGS reaction" (title)(一行) AND "low temperature"(title)(一行)时间跨度 2005 到 2012数据库:EI(工程索引)—compendexWebSearch forsearch in"water-gas shift reaction"titleOr WGSR or "WGS reaction"title"low temperature"title Limit by 2005-2012 注释:引号在英文半角输入四.所用电子资源名称及最终检出结果数(3 分).电子资源名称 中国知网 Elsevier Science 电子期刊 ISI Web of Knowledge EI(工程索引)—compendexWeb.检出结果数 11 篇 43 篇 66 篇 56 篇低温水煤气变换反应研究进展摘要:低温水煤气变化反应由于它在许多工业过程起着重要作用,引起了研究者的极大兴趣, 一直是研究领域的一个热点问题。
水煤气变换反应催化研究
水煤气变换反应催化研究作者:***摘要:能源问题是全球人民关注日益密切的问题,能源的高效利用和开发发新能源成为各国科学家要努力攻破的课题。
氢能是一种很好的替代能源,并且燃料电池制氢系统具有高效、可靠、灵活、低污染、操作性能优良等特点,而且燃烧过程不产生任何环境污染物,使氢成为真正最清洁的燃料, 氢能无疑是最环保的能源,没有之一,所以各国都在大力开发氢燃料电池技术。
制氢技术的发展有利于氢能源的广泛利用,目前水煤气变换反应(WGS, CO+H2O=CO2+H2, kJ/mol)能够有效的使等量的CO与H20反应,转变成C02和H2,因此水煤气变换反应在制氢工业中有着广泛的应用。
关键词:水煤气变换反应低温催化剂前言:随着新型燃料电池工业的兴起, 负载型金催化剂在水煤气变换 (WGS)反应中的应用逐渐成为研究热点[1]。
燃料电池具有能量效率高、环境友好等优点, 作为固定式电源和移动式电源具有广阔的应用前景。
其中, 质子交换膜燃料电池被认为是最适宜的动力电源。
烃类和醇类 (如天然气、甲醇 )等富氢燃料通过现场重整的方式为燃料电池提供氢源, 是近期乃至中期最现实的燃料电池氢源解决方案[2]。
正文:水煤气变换(WGS)反应主要用于精华合成气,为合成氢的反应过程提供洁净的H2来源,近年来,,由于以纯氢为原料的车载质子交换膜燃料电池(PEMPC)技术的兴起,是的这一静电反应再次引起研究者的极大兴趣,负载Au催化剂具有较高的低温活性、较宽的活性温区、较好的抗氧化性能及抗水性能,因而被认为是最适合用于PEMFC苛刻操纵环境的WOS催化剂之一。
目前,具有较好WGS催化活性的负载Au 催化体系包括Au/Fe2O3, Au/TiO2, Au/ThO2, Au/Cu x Mn y O z,Au/CeZrO4及Au/ZrO2等。
其中,Au/ZrO2因性能友谊而成为近年来的研究热点。
研究发现,ZrO2的晶型、颗粒及晶粒大小、表面羟基的浓度以及比表面积等性质对Au/ZrO2催化剂的性能有显著影响。
水煤气变换催化剂
水煤气变换催化剂摘要:水煤气变换反应(WGRS)在化工生产中起着积极而重要的作用,一是人们研究的课题之一。
催化反应进行的催化剂是近年来的研究热点。
本文对各种催化剂的制备及性能、影响因素做了详细的阐述,并就我国低温水煤气变换催化剂的研发提出了一些见解。
关键词:水煤气;催化剂;发展0 引言众所周之,氢是工业领域中一种至关重要的天然材料,它已经在合成氨工业中广泛应用,分解高分子的天然油脂和脱硫。
除此之外,氢也是一种不平常的燃料,它的能量密度或者发热量远高于其他气体或者液体燃料。
氢的天然存在量很少,需要工业大量合成,水煤气变换反应是工业用氢气的主要来源。
水煤气变换反应(CO+H2O==CO+H2,△H=一41.9 Kmol/mo1),在合成氨、合成甲醇等制氢工业中)是一重要的反应过程。
水煤气变换反应速度相对较慢,需高性能的催化剂使放映得以进行。
工业化的变换催化剂均是固体催化剂,如铁系高温变换催化剂、铜锌系低温变换催化剂、钴钼系耐硫宽温变换催化剂等,且均采用固定床反应器[1]。
国外对气一水溶液体系水煤气变换反应一直没有间断过研究,研究主要从两个方面进行。
一是对各种无机化合物作为催化剂反应系统的效能进行考察,另一方面是对各种贵金属有机化合物作为催化剂进行研究,无机化合物作为催化剂的反应体系适用性较好,对氧气有一定的承受能力,而金属有机化合物作为催化剂的反应体系,对氧非常敏感,几乎要求在无氧条件下进行,PPM 级的杂质氧就能使催化剂失活[2],国内在这方面的研究也在不断进行。
1 水煤气变换反应关于水煤气变换反应的反应机理,目前普遍接受的是表面氧化还原机理,可表示为[3]:H 2O(g)一H2O(S) (1)H2O(S)一OH(S)+H(S) (2) OH(S)一O(S)+H(S) (3)2H(S)一H2(g) (4)CO(g)一CO(S) (5)CO(S)+O(S)一CO(S) (6)CO2(S)一CO2(g) (7)式中,g表示气态,S表示表面吸附态。
制备参数对AuFe2O3催化剂水煤气变换性能的影响(论文)
(National research c enter of che m ical Fertilizer cat al ysts , Fuzhou unioersit y , Fuzhou 35
Abstract : The Au/ Fe 2 O3 catal yst f or water- gas shift reacti on was prepared by copreci pitati on met hod . Under , (NO3 ) ・ vi gorous stirri ng t he aCueous sol uti on of ~AuC l 4・ 4 ~2 Oand Fe i xed , t hen t he aCue3 9 ~2 O was firstl y m ous m i xt ure and t he aCueous sol uti on of Na 2 CO3・ 10 ~2 O were si multaneousl y added drop w ise t o dei onized water at 60 C kept t hrough flow i ng water and at a constant p ~ val ue adj usted by dil uted Na 2 CO3 . The brown suspensi on was kept under stirri ng f or desired ti me . A fter cooli ng t o roo m te mperat ure , t he resulti ng preci pitate was alter nati vel y centrif uged and washed until no Ag C l preci pitate was noted on droppi ng Ag NO3 sol uti on i nto t he filtrate . Furt her , t he paste was dried at 120 C , t hen heated t o desired te mperat ure at a heati ng rate of 5 / C m i n and calci ned at t he correspondi ng te mperat ure f or desired ti me . The eff ect of t he preparati on para meters was syste matcall y explored on t he WGS reacti vit y . The results showed t hat , so me preparati on para meters , such , , , , , as gol d loadi ng preci pitant preci pitati on manner p ~ val ue duri ng preci pitati on calci nati on at mosp here te m etc , can exert much i nfl uence on t he catal yst acti vit y . The gol d i ntroduced by copreci pitati on can perat ure , hi ghl y disperse on t he surf ace of Fe 2 O3 support . M oreover , t he nano meter gol d particles can depress t he cr ystallizati on of t he su pport and si gnificantl y reduce t he reducti on te mperat ure of t he su pport toward Fe 3 O4 . The hi gh catal ytic acti vit y of Au/ Fe 2 O3 catal yst under low te mperat ure can be attri buted to t he sy ner gis m bet ween nanowhile t he latter still wor ks at hi gh reacti on te mperat ure . If t he aggregati on scale gol d particle and Fe 3 O4 p hase , of t he nano-scale gol d particles occurs , t he catal ytic acti vit y decreases . Key words : iron oxi de , su pported catal yst , water- gas shift reacti on , gol d , preparati on para meter
2024-2025学年高考化学一轮复习专题卷: 晶体结构与性质(含解析)
2025届高考化学一轮复习专题卷: 晶体结构与性质一、单选题1.下列推论正确的( )A.的沸点高于,可推测的沸点高于B.为正四面体结构,可推测出也为正四面体结构C.晶体是分子晶体,可推测晶体也是分子晶体,D.是碳链为直线型的非极性分子,可推测也是碳链为直线型的非极性分子2.有四种不同堆积方式的金属晶体的晶胞如图所示,有关说法正确的是( )A.①为简单立方堆积②为六方最密堆积③为体心立方堆积④为面心立方最密堆积B.每个晶胞含有的原子数分别为:①1个,②2个,③2个,④4个C.晶胞中原子的配位数分别为:①6,②8,③8,④12D.空间利用率的大小关系为:①<②<③<④3.下列叙述错误的是( )A.金属键无方向性和饱和性,原子配位数较高B.晶体尽量采取紧密堆积方式,以使其变得比较稳定C.因共价键有饱和性和方向性,所以原子晶体不遵循“紧密堆积”原理D.金属铜和镁均以ABAB…方式堆积4.环六糊精(D-吡喃葡萄糖缩合物)具有空腔结构,腔内极性较小,腔外极性较大,可包合某些分子形成超分子。
图1、图2和图3分别表示环六糊精结构、超分子示意图及相关应用。
下列说法错误的是( )4SiH 4CH 3PH 3NH 4NH +4PH +2CO 2SiO 26C H 38C HA.环六糊精属于寡糖B.非极性分子均可被环六糊精包合形成超分子C.图2中甲氧基对位暴露在反应环境中D.可用萃取法分离环六糊精和氯代苯甲醚5.下列反应的离子方程式正确的是( )A.去除废水中的:B.过氧化钠在潜水艇中作为的来源:C.沉淀溶于氨水:D.在溶液中滴加少量溶液:6.碳硼烷酸是一类超强酸,也是唯一能质子化富勒烯(如)但不会将其分解的酸,2Na S 2Hg +2+2-Hg +S HgS ↓2O 22222O 2H O 4OH O --++↑AgCl ()332AgCl 2NH Ag NH Cl⎡⎤+⎣⎦NaOH ()442NH AlSO ()34Al 4OHAl OH -+-⎡⎤+⎣⎦60C其结构如图所示。
费-托合成中的水煤气变换反应
费-托合成中的水煤气变换反应蔡丽萍 沈菊李 唐浩东 刘化章* 杨霞珍(浙江工业大学工业催化研究所 杭州 310014)摘 要 评述了近年来有关费-托合成中的水煤气变换反应的研究进展,着重介绍了费-托反应条件下发生的水煤气变换反应的热力学分析、反应机理和动力学。
同时介绍了催化剂制备、操作参数等因素对水煤气变换反应的影响。
关键词 水煤气变换反应 费-托合成 机理 动力学The Water Gas Shift Reaction in Fischer-Tropsch SynthesisCai Liping, Shen Juli, Tang Haodong, Liu Huazhang *, Yang Xiazhen(Catalysis Institute of Zhejiang University of Technology, Hangzhou 310014)Abstract In this paper, the development of research on the water gas shift(WGS) reaction in theFischer-Tropsch synthesis (FTS) was reviewed. The WGS reaction is important when synthesis gas with nonstoichiometric amounts of hydrogen is used, whereas CO efficiency is decreased accordingly. Its thermodynamic analysis, reaction mechanism and kinetics in conjunction with the FTS are presented. The WGS reaction is equilibrium or close to equilibrium reaction under Fischer-Tropsch conditions on catalysts with a high water gas shift activity such as iron-based FTS catalysts, which may operate via a mechanism with a formate species or via a direct oxidation mechanism. The kinetic studies assumed that the WGS reaction proceeds on a different catalytic site than the FTS. The effects of catalyst preparation and operation parameters on the WGS reaction activity are also summarized. The importance and prospect of research on the WGS reaction under the Fischer-Tropsch conditions are proposed.Key words Water gas shift reaction(WGS reaction), Fischer-Tropsch synthesis(FTS), Mechanism,Kinetics21世纪,世界能源的需求量仍将继续增长,费-托合成(Fischer-Tropsch synthesis ,简称为FTS)作为一个清洁利用煤炭和天然气资源的途径,受到各国能源部门的重视。
Fe2O3含量对Cu-Fe/铝土矿水煤气变换催化剂结构和性能的影响
关键词 : 氧化铁含量 ; 铝 土矿 ; 铜一 铁/ 铝土矿催化剂 ; 水 煤 气 变 换
中图 分 类 号 : 0 6 4 3
文 献标 识码 : A
文章编号 : 1 0 0 1 — 4 8 6 1 ( 2 0 1 3 ) 1 1 - 2 2 9 7 — 0 8
DOI :1 0 . 3 9 6 9 / j . i s s n . 1 0 0 1 — 4 8 6 1 . 2 0 1 3 . 0 0 . 3 3 8
Wa t e r Ga s S hi f t Re a c t i o n
J I ANG L i - L o n g L I U Xi a n C AO Ya n — Ni n g Z ENG J i e - Ka i L I N S h i - T u a n WE I Ke — Me i ( N a t i o n a l E n g i n e e r i n g R e s e a r c h C e n t e r f o r C h e i c l a F e r t i l i z e r C t a l a y s t a t F u z h o u U n i v e r s i t y , F u z h o u 3 5 0 0 0 2 , C h i n a )
江 莉 龙 刘 弦 曹 彦 宁 曾杰 凯 林 施 团 魏 可镁
( 福 州大 学化肥 催 化 剂 国家工程研 究 中心 , 福州 3 5 0 0 0 2 )
摘要 : 利 用 具 有 高 比表 面积 和介 孔 结 构 的改 性 铝 土 矿 为 载 体 , 采用并 流共沉淀法 制备不同 F e : O 含量 的 C u — F e / 铝土矿催化剂 。
Abs t r a c t : Us i ng mo d i ie f d ba ux i t e wi t h l a r g e s u r f a c e a r e a a nd me s o p o r o us s t r u c t ur e a s t h e s u p po r t ,a s e r i e s o f Cu —
催化剂设计对提高碳氢化合物转化反应效率影响因素分析
催化剂设计对提高碳氢化合物转化反应效率影响因素分析催化剂是化学反应中起到催化作用的物质,能够加速反应发生并提高反应的效率。
在碳氢化合物转化反应中,催化剂的设计起着至关重要的作用。
本文旨在分析催化剂设计对提高碳氢化合物转化反应效率的影响因素。
1. 催化剂的成分和结构催化剂的成分和结构对碳氢化合物转化反应的效率有重要影响。
首先,催化剂的活性材料应具有适合的能级结构,以提高反应发生的能力。
对于氢化反应而言,催化剂通常由贵金属(如铂)或过渡金属(如镍、钴)组成,这些金属具有较好的催化性能。
其次,催化剂的结构也需要考虑。
催化剂的表面形貌、晶格结构和孔结构等都会影响反应物质在催化剂表面的吸附和扩散行为,进而影响反应的速率和选择性。
2. 催化剂的活性位点在催化剂设计中,活性位点的选择是非常重要的。
合理设计催化剂的活性位点可以增强催化剂与反应物之间的相互作用,提高反应速率和选择性。
常见的活性位点包括吸附位点、活性中心和晶体缺陷等。
通过在催化剂表面引入适当的活性位点,可以提供与反应物分子之间的相互作用所需的键合能,从而改善反应效率。
3. 催化剂的尺寸效应尺寸效应是指催化剂颗粒尺寸对反应性能的影响。
研究表明,催化剂颗粒的尺寸对反应速率和选择性有明显影响。
较小的催化剂颗粒具有更大的比表面积和更多的晶格缺陷,有利于提高反应物吸附和扩散速率,从而增强反应效率。
此外,尺寸效应还会影响反应物质在催化剂表面的吸附位点的可访性和反应活性,进一步改变反应过程。
4. 催化剂的修饰催化剂的修饰是通过向催化剂表面引入特定的功能基团或异质原子来改变催化剂的性质。
修饰可以改变催化剂的吸附性能、电子状态以及酸碱性等重要特性,从而影响反应速率和选择性。
例如,通过在催化剂表面修饰金属或半导体颗粒,可以调节反应物在催化剂表面的吸附等特性,提高催化剂的活性和稳定性。
5. 反应条件的优化除了催化剂设计外,反应条件的优化也非常重要。
反应温度、气体流速、反应物浓度等条件会对反应速率和选择性产生明显影响。
水煤气变换催化剂研究新进展【文献综述】
水煤气变换催化剂研究新进展【文献综述】毕业论文文献综述化学工程与工艺水煤气变换催化剂研究新进展一、前言部分水煤气是通过炽热的焦炭而生成的气体,主要成份是一氧化碳,氢气,燃烧后排放水和二氧化碳,有微量CO、HC和NO X。
燃烧速度是汽油的7.5倍,抗爆性好,据国外研究和专利的报导压缩比可达12.5。
热效率提高20-40%、功率提高15%、燃耗降低30%,尾气净化近欧IV标准,还可用微量的铂催化剂净化。
比醇、醚简化制造和减少设备,成本和投资更低。
压缩或液化与氢气相近,但不用脱除CO,建站投资较低。
还可用减少的成本和投资部分补偿压缩(制醇醚也要压缩)或液化的投资和成本。
有毒,工业上用作燃料,又是化工原料。
二、主题部分(阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述)1负载金超微粒子WGS催化剂金由于化学惰性和难于高度分散,一般不用作催化剂。
传统上金催化剂的制备大多采用浸渍法,无法制得具有高活性的金超微粒子。
因此,并未显示出较其它金属催化剂更好的催化性能。
80年代以来,人们通过改变制备方法获得高度分散态金催化剂,显示出其超常的催化性能。
它对许多反应都具有极高的催化活性,如CO,H2氧化、烃类完全氧化、N0直接分解或用CO还原、CO加氢反应等;而且催化反应温度较低,如在200K 就能催化氧化CO。
亦适宜作金属和载体相互作用及其催化反应机理的研究模型。
因此,近年来有关金催化剂的研究和开发日趋活跃。
本节简述负载型金催化剂在水煤气变换反应方面的研究进展。
1.1载体种类的影响采用不同载体制备负载型金催化剂,其催化活性、选择性及稳定性都表现出很大的差异。
文献【14~24】中采用的载体有α -Fe2O3,Al2O3,TiO2,ZnO,ZrO2,CeO2,Ni(OH)2,Co3O4和沸石分子筛等。
研究发现,以Fe2O3,CeO2,ZrO2或TiO2为载体制备的负载型金催化剂具有较好的催化性能。
Andreeva等比较了Au/Fe2O3,Au/Al2O3,CuO/ZnO/Al2O3催化剂的水煤气变换反应活性。
焙烧温度对低温水煤气变换AuFe 2O3催化剂性能的影响
物理化学学报(Wuli Huaxue Xuebao )Acta Phys.鄄Chim.Sin .,2008,24(6):932-938Received:January 23,2008;Revised:March 3,2008;Published on Web:April 7,2008.English edition available online at ∗Corresponding author.Email:qizheng2005@.国家自然科学基金(20271012)和福建省科技计划项目(2002H026)资助ⒸEditorial office of Acta Physico ⁃Chimica Sinica[Article]June焙烧温度对低温水煤气变换Au/Fe 2O 3催化剂性能的影响李锦卫詹瑛瑛林性贻郑起∗(福州大学化肥催化剂国家工程研究中心,福州350002)摘要:采用改性沉积⁃沉淀法制备了系列低温水煤气变换Au/Fe 2O 3催化剂,发现经300℃焙烧的样品具有较好的催化活性和稳定性.并运用N 2物理吸附、原位X 射线粉末衍射(in situ XRD)、程序升温还原(H 2⁃TPR)和X 射线光电子能谱(XPS)等技术,探讨焙烧温度对催化剂性能的影响机制,同时对样品的失活原因进行了分析.结果表明,催化剂性能与焙烧温度引起的金和载体氧化铁的相互作用以及载体还原性质的变化密切相关.XPS 表征结果说明,尽管反应后在催化剂表面有碳酸盐或类碳酸盐物种生成,但半定量分析表明这些物种的形成不是催化剂失活的主要原因;根据在低温水煤气变换反应过程中Au/Fe 2O 3催化剂的比表面积明显下降,载体的结晶度也明显提高,推断Au/Fe 2O 3催化剂载体的结构性质的变化才是其失活的主要原因.关键词:水煤气变换;焙烧温度;失活;Au/Fe 2O 3催化剂中图分类号:O643Influence of Calcination Temperature on Properties of Au/Fe 2O 3Catalysts for Low Temperature Water Gas Shift ReactionLI Jin ⁃Wei ZHAN Ying ⁃Ying LIN Xing ⁃Yi ZHENG Qi ∗(National Engineering Research Center of Chemical Fertilizer Catalysts,Fuzhou University,Fuzhou350002,P.R.China )Abstract :A series of Au/Fe 2O 3catalysts for the water gas shift (WGS)reaction were prepared by modified deposition ⁃precipitation method.The sample calcined at 300℃showed higher catalytic activity and better stability than other ing N 2physisorption,in situ XRD,H 2⁃TPR,and XPS techniques,the influence of calcination temperature on properties of Au/Fe 2O 3catalyst was explored,and the cause of deactivation was analyzed as well.The results showed that the catalytic behaviors were related to the interaction between Au and Fe 2O 3,and the reductive property of support,both of which were significantly affected by calcination temperature.Furthermore,according to the results of XPS,although stable carbonate and carbonyl surface species were found on the spent catalysts,the semiquantitative analysis of these species indicated that they were not the main cause of the deactivation.In fact,the deactivation of Au/Fe 2O 3was sensitive to the structure change of support.During the water gas shift reaction,Fe 3O 4particle would aggregate and crystallize leading to increase in the crystallinity of support and a significant reduction in the surface area of the catalysts,which resulted in the deactivation of Au/Fe 2O 3.Key Words :Water gas shift;Calcination temperature;Deactivation;Au/Fe 2O 3catalystThe water gas shift (WGS)reaction is a key reaction in the pro duction of hydrogen for a number of process,including petroleum refining and chemical synthesis.An emerging application for the WGS is in the production of hydrogen for proton exchange membrane (PEM)fuel cells.This reaction is important becauseit removes CO,a poison to the fuel cell electrocatalysts,which is produced during the steam reforming and/or partial oxidation re-actions.Cu ⁃based and Fe ⁃Cr ⁃based WGS catalysts are commer-cially used in current chemical plants.However,they are unsuit-able for PEM system because they are pyrophoric and they do932No.6LI Jin⁃Wei et al.:Influence of Calcination Temperature on Properties of Au/Fe2O3Catalysts for Low Temperaturenot have sufficient activity at low temperature.So,there is sub-stantial interest in development of better performance and moredurable WGS catalysts[1-5].Recently,it has been reported that Au supported catalysts areinteresting candidates for novel WGS reaction[6-11].High activitiesof Au/Fe2O3and Au/CeO2for WGS reaction have been observedby Andreeva[6]and Fu[7]et al.It is generally known that high catalytic activity of the gold/metal oxide catalysts dependsstrongly on the dispersion of gold particles and the interactionbetween gold and support.Therefore,most of the interest in goldcatalysis has geared to the study of preparation method[6,12-14],thesynthesis parameters[15,16],pretreatment conditions[17,18],and thechoice of supports[19,20],all affecting the dispersion of the goldparticles.However,there is relatively little work devoted to theeffect of the state and structure of support in the WGS reaction.Zhang et al.[21]reported the remarkable nanosize effect of zirco-nia in Au/ZrO2catalyst for CO oxidation.In addition,supportedgold catalysts have been reported to be susceptible to deactiva-tion.There are several reports describing deactivation mechanisms for gold⁃based CO oxidation catalysts[22-26].Some of thestudies have considered sintering of Au particles as a reason forthe deactivation[24-26].Change of Au particle size from4to5.5nmhas been taken as a significant change influencing the catalyticperformance[26].For WGS reaction,catalysis process of gold⁃containing systems generally involves the formation of carbonylor carbonate-like species on ultrafine gold particles.Kim et al.[27]reported that it is these species blocking the active surface sitesthat contribute to the deactivity of Au/CeO2catalyst.There isonly one another work[28],which is devoted to the study of deactivation mechanisms of the gold⁃based WGS catalyst.With thehelp of DRIFTS,MS,TGA,TEM,N2physisorption,ICP,andXRD,Silberova et al.[28]put forward that the decrease of the sur-face area can almost solely explain the decrease on the activitywhen Au/Fe2O3catalyst was exposed to a steam with0.5%CO,1.5%H2O,and98%He.Because WGS gas composition in theproduction of hydrogen for proton exchange membrane(PEM)fuel cells is typically with10%CO,furthermore work is neededto clarify whether the decrease of the surface area is the essentialreason for the deactivation of Au/Fe2O3catalysts in higher COconcentration.In this article,temperature⁃programmed and long⁃term stabili-ty tests of Au/Fe2O3catalysts calcined at different temperaturesfor the WGS reactions were studied.The influence of calcina-tion temperature on the structure and catalytic performance ofAu/Fe2O3catalysts for WGS reaction were investigated by applying different characterization techniques(e.g.in situ XRD,N2physi-cal adsorption,TPR,and XPS).Finally,all of above characteri-zations of the physical and chemical properties of the fresh andused catalysts helped to define the deactivation mechanism.1Experimental1.1Catalyst preparationSupported gold catalysts used in this article were designed with mass fraction of4.0%Au and prepared by the following general route.The aqueous solutions of1.0mol·L-1Fe(NO3)3 and1.0mol·L-1K2CO3were simultaneously added dropwise to 20mL deionized water at60℃and at a constant pH value of 8.0under vigorous stirring.After being centrifuged and washed with deionized water several times,the obtained precipitate was redispersed into30mL deionized water at60℃.Then the0.2 mol·L-1HAuCl4was pumped into the support slurry under vig-orous stirring at ca8.0cm·min-1.And the base(0.5mol·L-1 K2CO3)was pumped in at a variable rate to maintain pH as close as possible to8.0throughout the addition of gold chloric acid. After the aqueous solution addition was complete,stirring was continued for a further1h at60℃.The acquired samples were alternatively centrifuged and washed with deionized water until no Cl-ion was detected by AgNO3solution.Following that,the samples were dried at110℃for8h,then heated to desired tem-perature(200,300,400or500℃)in air at a rate of5℃·min-1and held at concerned temperature for2h.The as-prepared samples were labeled as Au/Fe⁃200,300,400,or500,respectively.For comparison,Fe2O3was prepared in a similar way.1.2Catalyst characterizationThe textures of the samples were obtained from nitrogen ab-sorption⁃desorption isotherms which were measured at liquid ni-trogen temperature,using‘OMINSORP100CX’instrument.Be-fore analysis,the samples were degassed at150℃to final pres-sure of1×10-3Pa.Powder X⁃ray diffraction(XRD)data of all samples were col-lected via a Panalytical X′Pert Pro diffractometer with X′Celera-tor Detector,using the Co Kαradiation(0.1790nm)at a voltage and current of40kV and40mA,respectively.Diffraction patterns were recorded at room temperature(25℃)in the step scanning mode,with a2θstep of0.0333°and every step standing for10s in the range of20°≤2θ≤80°.Temperature⁃programmed reduction(TPR)of the catalysts in fine powder form was carried out in a‘Micromeritics Autochem 2910’instrument equipped with a thermal conductivity detector (TCD).About100mg of the fresh sample was packed into a re-actor with quartz tubing of6mm i.d.(inner diameter),and pretreat-ed with high purity helium gas at120℃for1h.Then TPR traces of samples were pursued in a reductive flow of30mL·min-110%(φ)H2in helium,on raising the system temperature linearly from room temperature to700℃at a ramp rate of5℃·min-1.In addition,the chemical transformation of uncalcined Au/Fe2O3catalyst was studied with in situ XRD by heating the samples in a gas mixture of H2/N2(φ(H2)=10%)at a rate of2℃·min-1.Diffraction patterns were recorded within2θ=30°-50°during the reduction process since most intense diffraction peaks of Fe2O3phases are located in this2θrange.The X⁃ray photoelectron spectroscopy(XPS)measurements were performed with a Phi Quantum2000spectrophotometer with Al Kαradiation(1486.6eV).The samples were preliminari-ly pressed into pellets and reduced at150℃for9h in H2/N2933Acta Phys.鄄Chim.Sin.,2008Vol.24mixture(φ(H2)=10%),then transferred to a test chamber.Anelectron takeoff angle of45°was used.The vacuum in the testchamber was maintained below1.33×10-7Pa during the collec-tion.Binding energies were corrected for surface charging byreferencing them to the energy of C1s peak of contaminant car-bon at284.8eV.1.3Activity and stability measurementsThe catalytic activity of the samples in the WGS reaction wasmeasured using‘CO⁃CMAT9001apparatus(Beijing Hangdun,China)’at atmospheric pressure.A stainless steel tube with aninner diameter of9mm was used as the reactor tube.The sam-ples were all0.5cm3(20-40mesh size)in volume and prelimi-narily reduced at150℃for9h in H2/N2mixture(φ(H2)=10%).The mixture reactant gas,containing10%(φ)CO diluted by ni-trogen,passed through a vaporizer(82℃)before being fed into the reactor.Catalysts were tested in the range of150-300℃with a step size of50℃.At each test point the reaction temperature re-mained unchanged for5h.The flow rate was91mL·min-1 (space velocity:11000h-1).The tail gas was directed through a condenser and then sent to an online gas chromatograph(Shi-madzu GC⁃8A),where the CO content was analyzed.The catalytic activity was expressed by the degree of conversion of CO,which was defined as X(CO)=((1-V′C O/V CO)/(1+V′C O))×100%,where V CO and V′C O were the inlet and outlet contents of CO,respectively.2Results and discussion2.1Influence of calcination temperatureThe conversion of CO shift to CO2obtained via the water gas shift reaction over the Au/Fe2O3catalysts uncalcined(only dried at120℃)and calcined at different temperatures is presented as a function of temperature in Fig.1.The uncalcined sample dis-plays considerable activity at150℃,reaches a maximum at200℃,but declines to a lower value with further increasing test tem-perature.The catalysts calcined at200and300℃also show high activity and the similar tendency.However,upon further in-creasing the calcination temperature(400and500℃),we find that the catalytic activity decreases distinctly.Especially for the sample calcined at500℃,the catalytic activity decreases most observably and almost loses the activity at150℃.Structural characteristics of the samples under study have been investigated by the nitrogen absorption⁃desorption isotherms and X⁃ray diffraction(XRD).The pore size distributions of the fresh catalysts are presented in Fig.2.And the detailed data for all samples are given in Table1.Comparing with the uncalcined samples,Au/Fe⁃200series samples show higher surface area and lower pore diameter except the reduced sample.On further increasing the calcination temper-ature,the surface area decreased remarkably,whereas the pore di-ameter increased on the contrary.To our interest,as we can see in the last column of Table1,the particle size of supports shows the regular change,i.e.,it increases with the increase in calcination temperature and the further reduction and use.XRD patterns of all fresh Au/Fe2O3catalysts are reported in Fig.3.According to Au Mössbauer spectra for the uncalcined material studied by Hodge et al.[29],a considerable portion of AuOOH·x H2O may also be contained.However,in our case,as can be seen in Fig.3,the uncalcined sample only presents several weak peaks related to hematite(JCPDS03⁃0800)andmetallic Fig.1CO conversion obtained during the temperature鄄programmed test of WGS reaction over Au/Fe2O3catalystscalcined at different temperatures(a)uncalcined,(b)Au/Fe⁃200,(c)Au/Fe⁃300,(d)Au/Fe⁃400,(e)Au/Fe⁃500Fig.2Pore size distribution of Au/Fe2O3catalysts calcinedat different temperatures(a)uncalcined,(b)Au/Fe⁃200,(c)Au/Fe⁃300,(d)Au/Fe⁃400,(e)Au/Fe⁃500BET2·g-1pore-1pore d Fe2O3/nm790.236 4.5not detectedreduced750.2067.410.9spent280.18126.019.6Au/Fe⁃200fresh1780.257 2.28.3reduced940.24815.514.8spent330.18122.021.2Au/Fe⁃300fresh1320.223 3.013.1reduced700.2178.212.5spent330.19023.021.9Au/Fe⁃400fresh470.220 6.515.8reduced360.18013.018.7spent12.70.0329.937.3Au/Fe⁃500fresh250.16210.518.6reduced180.14216.326.7spent13.50.03410.034.6uncalcined freshTable1Physicochemical properties of Au/Fe2O3catalyststreated under different conditions934No.6LI Jin ⁃Wei et al .:Influence of Calcination Temperature on Properties of Au/Fe 2O 3Catalysts for Low Temperature gold (JCPDS 01⁃1172).The characteristic peak of gold (111)over-laps with the diffraction peak of hematite,which indicates that Au(OH)3of precipitate gold species is thermally unstable at 120℃and tends to decompose to metallic gold during the drying pretreatment:2Au(OH)3➝2Au+3H 2O+3/2O 2[30].With the increase in calcination temperature,the characterization peaks diffracted from both hematite and gold become more distinct,indicating that the gold particle size and the degree of crystallinity of the support increased.Fig.4gives the H 2⁃TPR profiles of the investigated catalysts.For comparison,the profile of Fe 2O 3prepared by the same method (calcined at 300℃)is also showed in Fig.4.The TPR spectra of Au/Fe 2O 3catalysts calcined at lower temperature (below 300℃)are composed of three main peaks:one located in the lower tem-perature region is related to partial reduction of amorphous Fe 2O 3➝Fe 3O 4and/or hydroxy groups.Ilieva et al .[31]reported that the hydroxyl coverage on Au/Fe 2O 3was about two times higher than that on pure Fe 2O 3.The second peak at about 180℃is at-tributed to the reduction of crystalline Fe 2O 3➝Fe 3O paring with that of the same transition in the absence of gold,it de-creased by ca 200℃,indicating that the metal ⁃support interac-tion between the gold crystallites and the hematite particle is very strong.This interaction has also been reported by Andreeva et al.[6].The last wide peak at about 600℃is attributed to the re-duction of Fe 3O 4➝FeO ➝Fe [32,33].Their intensity and position are independent to the calcination temperatures and doping of gold.For the sample calcined at 400and 500℃,the first reduction peak disappears because of dehydroxylation by calcination and furthermore crystallization of support at high temperature,and the second peak being attributed to the reduction of crystalline Fe 2O 3➝Fe 3O 4shifts to higher temperature zone (200-350℃).Based on the results of XRD,we find that the position of the second peak shifts to high temperature region with the increase in crystallization extent of the supports,indicating the reducibili-ty of Au/Fe 2O 3influenced by the crystallinity of support.We think that the amorphous iron oxide material contained much more surface defect that would strengthen Au ⁃support interac-tions,and a higher calcination temperature would lead to a well crystallized iron oxide and a weaker interaction between gold and iron oxide.It is likely that the intimate interaction between gold and the support is crucial for water gas shift activity.In order to further confirm the attribution of the TPR peaks,the in situ XRD experiments were carried out.The in situ XRD patterns in Fig.5show the transformation of uncalcined Au/Fe 2O 3during the heating in a gas mixture of H 2/N 2(φ(H 2)=10%).The three peaks at 38.5°,41.4°,and 47.7°are the characteristic (104),(110),and (113)diffraction peaks of Fe 2O 3(JCPDS 03⁃0800),and the peak of Fe 2O 3at 44.7°overlaps with the (111)diffraction peak of gold (JCPDS 01⁃1172).All peaks of the sam-ple do not change significantly between room temperature and 160℃,but in the TPR profiles (Fig.4),during this temperature zone,there is a strong reduction peak (near 100℃)for samples calcined under low temperature.This confirms the analysis of TPR that the low temperature reduction peak (near 100℃)is the reduction of surface hydroxyl groups and/or reduction of amor-phous Fe 2O 3➝Fe 3O 4.When the detected temperature is increased to 170℃,the relative intensities of Fe 2O 3diffraction peaks de-crease,and a new diffraction peak rises at 35.1°corresponding to the (220)reflection of FeFe 2O 4phase (JCPDS 19⁃06292).Fur-ther increasing the detected temperature,the phase of Fe 2O 3van-ishes at 200℃and the 41.4°peak corresponding to the (311)re-flection of FeFe 2O 4phase (JCPDS 19⁃06292)becomes more in-tense with the increase in temperature.All results acquired byinFig.3XRD patterns of Au/Fe 2O 3catalysts calcined atdifferent temperatures(a)uncalcined,(b)Au/Fe ⁃200,(c)Au/Fe ⁃300,(d)Au/Fe ⁃400,(e)Au/Fe ⁃500Fig.4H 2⁃TPR profiles of Fe 2O 3calcined at 300℃and Au/Fe 2O 3catalysts calcined at different temperatures(a)uncalcined,(b)Au/Fe ⁃200,(c)Au/Fe ⁃300,(d)Au/Fe ⁃400,(e)Au/Fe ⁃500Fig.5In situ XRD patterns of uncalcined Au/Fe 2O 3catalystsduring temperature ⁃programmed reduction935Acta Phys.鄄Chim.Sin.,2008Vol.24situ XRD support the attribution for the TPR peaks and hint that the Fe3O4phase is likely to be further crystallized at redox atmo-sphere.On the basis of the results discussed above,it can be conclud-ed that the presence of gold in Au/Fe2O3sample,giving rise tointeraction between gold and iron oxide,leads to a considerablelowering of the temperature of the reduction step Fe2O3➝Fe3O4. However,the increase in calcination temperature causes thegradual increase in the crystallinity of Au and support,leading tothe weakening of their interaction,and resulting in the seriousdecreasing of the catalytic activity.2.2Deactivation properties2.2.1Isothermal test at200℃Fig.1shows that Au/Fe2O3catalysts exhibit high activity forwater gas shift reaction,but the stability of catalysts under oper-ating conditions is important for commercial applications,too.In fact,the difficulty of preparing highly active gold catalysts ismirrored in the problem of maintaining this activity.However,this aspect was rarely examined,and it is not clear whether sup-ported gold catalysts do have sufficient stability for practical ap-plication.So,the long⁃term experiments were performed at200℃and the results are presented in Fig.6.The results show that fast deactivation phenomenon occurs in the first5h for all cata-lysts,independent of the calcination temperature.The deactiva-tion degree of low⁃temperature treatment(uncalcined and cal-cined at200℃)catalysts is higher than that of samples calcined at300,400or500℃.The lowest activity but the best stability is obtained with the catalyst calcined at500℃.The highest activi-ty with an excellent stability for water gas shift reaction is achieved with the catalyst calcined at300℃.2.2.2Microstructural propertiesTable1lists the measured values of the specific surfaces andpore diameters of the fresh samples and after various treatments,i.e.,reduction by H2/N2(φ(H2)=10%)at150℃for9h and aftercatalytic operation.From Table1,it can be seen that the BETsurface area and pore volume of every sample decrease remark-ably when Fe2O3is reduced to magnetite(Fe3O4)by H2/N2(φ(H2)=10%).This phenomenon accompanied by the enlargement of pore diameter is more distinct for the sample suffering the catalytic operation.All used samples show a surface area less than20m2·g-1,indicating that distinct restructure of the supports occurred during the catalytic operation.This inference is consis-tent with the evolvement of the sample′s crystalline structure as revealed by XRD.When the fresh and used samples were com-pared(Fig.7and Fig.3),we had not observed obvious changes of intensities of characteristic(111)and(200)diffraction peaks of gold.This indicated that the gold particles had not changed dur-ing the catalytic process.So in our case,the deactivation of cata-lyst do not essentially relate to the gold particle size.This phe-nomenon was consistent with the results reported by Silberova etal.[28].On the contrary,the supports of all investigated catalysts have been changed after reduction and WGS reaction,the hematite structure in fresh catalysts was transformed into the magnetite structure,and the particle size of the support was in-creased remarkably(Table1).The above discussion suggests that the deactivation is accompanied by a change in texture proper-ties.The support of used Au/Fe2O3catalyst for water gas shift re-action was severely transformed.Although the support was pre-treatment by H2/N2(φ(H2)=10%)at150℃for9h,the reduction of support and the growth of magnetite crystals did not stop dur-ing the catalytic process.A significant reduction in the surface area of the catalysts and increase in the crystallinity of support took place during the water gas shift reaction.This change is likely to be the main cause for the deactivation of Au/Fe2O3cata-lysts.2.2.3Surface characterization of the deactivated catalystTo better understand the mechanism of deactivation,the sur-face properties of Au/Fe2O3catalysts calcined at300℃was characterized.X⁃ray photoelectron spectroscopy(XPS)was used to characterize chemical species on the reduced and deactivated catalysts.XPS spectra for C1s and Au4f regions are shown in Fig.8.Features in the Au4f regions were nearly identical for the reduced and deactivated catalysts and indicated the presence of gold in the metallic state.Deconvolution of the C1s spectra in-dicated that there were four different carbon species on the cata-lyst surface:adventitious carbon(284.7eV),carbon associatedwith Fig.6CO conversion obtained during the isothermalstability test of WGS reaction over Au/Fe2O3catalystscalcined at different temperatures(a)uncalcined,(b)Au/Fe⁃200,(c)Au/Fe⁃300,(d)Au/Fe⁃400,(e)Au/Fe⁃500Fig.7XRD patterns of Au/Fe2O3catalysts calcined atdifferent temperatures after WGS reaction(a)uncalcined,(b)Au/Fe⁃200,(c)Au/Fe⁃300,(d)Au/Fe⁃400,(e)Au/Fe⁃500 936No.6LI Jin⁃Wei et al.:Influence of Calcination Temperature on Properties of Au/Fe2O3Catalysts for Low TemperatureR—OH(286.1eV),adsorbed CO2(292.6eV),and—COOR/CO2-3 (288.3eV,its existence was ever interpreted for the deactivation of Au/CeO x water gas shift reaction catalysts)[27,34].Comparing the peaks of the reduced and spent catalysts,we found that the peak of R—OH(286.1eV)was observed on both samples,and the peak area increased obviously in the spent catalyst.The out-let gas under the WGS condition was detected by IR instrument. However,methanol or other byproduct produced was not detect-ed for the investigated catalysts[4].So,the reason for the peak of R—OH(286.1eV)increase is not explained in this study.At the same time,we found that the peak of—COOR/CO2-3(288.3eV) also increased to some extent but not as obviously as described in the published work[27].Moreover,the gold⁃base catalysts supported on carbonate also show high activity for low⁃tempera-ture CO oxidation in the presence of water in the feed steam[35]. Therefore,the formation of carbonate and carbonyl species during the water gas shift reaction could not be taken as the main cause of the Au/Fe2O3deactivation.3SummaryThe catalytic activity and stability of Au/Fe2O3catalysts de-pend strongly on the calcination temperatures and crystallinity of the support.Increasing calcination temperature causes the gradu-al increase of the crystallinity of gold and the support,leading to the serious weakening of the interaction between gold and sup-port,and the decrease of the catalytic activity.The fast deactivation phenomenon was observed in the first5 h for all Au/Fe2O3catalysts,independent of the calcination tem-perature and crystalline structure of the support.By XRD and XPS analyses,we exclude the possibility of the increase in Au particles and the formation of carbonate and carbonyl species during the water gas shift reaction as the main cause of the Au/Fe2O3deactivation.Whereas,the in situ and/or normal XRD, and N2physisorption characterization disclose that the support suffers severe changes during the water gas shift reaction,i.e., Fe3O4particle would aggregate and crystallize leading to the in-crease in the crystallinity of Fe3O4and the decrease in the sur-face area of the catalysts,and ultimately,this change causes the deactivation of Au/Fe2O3catalyst.References1Andreeva,D.;Idakiev,V.;Tabakova,T.;Andreevk,A.;Giovanoli,R.Appl.Catal.A:Gen.,1996,134:2752Bond,G.C.;Thompson,D.T.Catal.Rev.鄄Sci.Eng.,1999,41:3193Venugopal,A.;Scurrell,M.S.Appl.Catal.A:Gen.,2004,258:2414Zhang,F.;Zheng,Q.;Wei,K.;Lin,X.;Zhang,H.;Li,J.;Cao,Y.Catal.Lett.,2006,108:1315Zhang,Q.;Zhan,Y.;Lin,X.;Zheng,Q.Catal.Lett.,2007,115:1436Andreeva,D.;Tabakova,T.;Idakiev,V.;Chrestov,P.;Giovanoli, R.Appl.Catal.A:Gen.,1998,169:97Fu,Q.;Kudriavtseva,S.;Saltsburg,H.;Stephanopoulous,M.F.Chem.Eng.J.,2003,93:418Hua,J.;Wei,K.;Zheng,Q.;Lin,X.Appl.Catal.A:Gen.,2004,259:1219Jacobs,G.;Williams,L.;Graham,U.;Thomas,G.A.;Spark,D.E.;Davis,B.H.Appl.Catal.A:Gen.,2003,252:10710Li,J.;Chen,C.;Lin,X.;Zheng,Q.J.Fuel Chem.Technol.,2006, 34(6):712[李锦卫,陈崇启,林性贻,郑起.燃料化学学报,2006,34(6):712]11Hua,J.M.;Zheng,Q.;Lin X.Y.;Wei,K.M.Chin.J.Catal.,2003, 24(12):957[华金铭,郑起,林性贻,魏可镁.催化学报,2003, 24(12):957]12Bamwenda,G.R.;Tsubota,S.;Nakamura,T.;Haruta,M.Catal.Lett.,1997,44:8313Grisel,R.J.H.;Kooyman,P.J.;Nieuwenhyus,B.E.J.Catal., 2000,191:43014Fu,Q.;Weber,A.;Flytzani⁃Stephanopoulos,M.Catal.Lett.,2001, 77:8715Wolf,A.;Schuth,F.Appl.Catal.A:Gen.,2002,226:116Jain,A.;Zhao,X.;Kjergaard,S.;Stagg⁃Williams,S.M.Catal.Lett.,2005,104:19117Su,Y.S.;Lee,M.Y.;Lin,S.D.Catal.Lett.,1999,57:4918Kang,Y.M.;Wan,B.Z.Catal.Today,1995,26:5919Haruta,M.Catal.Surv.Jpn.,1997,1:6120Schubert,M.M.;Hackenberg,S.;Veen,A.C.;Muhler,M.;Plzak, V.;Behm,R.J.J.Catal.,2001,197:11321Zhang,X.;Wang,H.;Xu,B.Q.J.Phys.Chem.B,2005,109: 967822Costello,C.K.;Kung,M.C.;Oh,H.S.;Wang,Y.;Kung,H.H.Appl.Catal.A:Gen.,2002,232:159Fig.8X鄄ray photoelectron spectra in the Au4f region for the(a)reduced and(b)spent Au/Fe2O3catalysts and in the C1sregion for the(c)reduced and(d)spent catalysts937Acta Phys.鄄Chim.Sin.,2008Vol.2423Valden,M.;Pak,S.;Lai,X.;Goodman,D.W.Catal.Lett.,1998, 56:724Konova,P.;Naydenov,A.;Venkov,C.;Mehandjiev,D.;Andreeva,D.;Tabakova,T.J.Mol.Catal.A:Chem.,2004,213:23525Haruta,M.Catal.Today,1997,36:15326Luengnaruemitchai,L.;Osuwan,S.;Gulari,mun., 2003,4:21527Kim,C.H.;Thompson,L.T.J.Catal.,2005,230:6628Silberova,B.A.A.;Makkee,M.;Moulijin,J.A.Top Catal.,2007, 44:20929Hodge,N.A.;Kiely,C.J.;Whyman,R.;Siddigui,M.R.H.;Hutchings,G.J.;Pankhurst,Q.A.;Wagner,F.E.;Rejaram,R.R.;Golunshki,S.E.Catal.Today,2002,72:13330Chen,Y.J.;Yeh,C.T.J.Catal.,2001,200:5931Ilieva,L.I.;Andreeva,D.H.;Andreev,A.A.Thermochim.Acta, 1997,292:16932Neri,G.;Visco,A.M.;Galvagno,S.;Donato,A.;Panzalorto,M.Thermochim.Acta,1999,329:3933Minico,S.;Scire,S.;Crisafulli,C.;Maggiore,R.;Galvagno,S.Appl.Catal.B,2000,28:24534Moulder,J.F.;Sticke,W.F.;Sobol,P.E.;Bomben,K.D.Handbook of X⁃ray photoelectron spectroscopy.Eden Prairie:Pariss Perkin⁃Elmer,199235Lian,H.;Jia,M.;Pan,W.;Li,Y.;Zhang,W.;Jiang,D.Catal.Commun.,2005,6:47938。
钴钼催化剂在水煤气变换中的应用
钴钼催化剂在水煤气变换中的应用发布时间:2021-10-11T03:30:35.390Z 来源:《福光技术》2021年15期作者:刘绪元[导读] 在选择该催化剂时,应确保其粒度较小,这对于改善催化剂活性具有重要作用。
盛虹炼化(连云港)有限公司江苏省连云港市 222000摘要:水煤气具有良好的燃烧特性,同时也有一定的毒性,在化工业生产中发挥了重要的作用,既可以作为原料生产其他产品,也可以用作燃料提供能源。
而常用的水煤气生产变换中使用的催化剂为钴钼催化剂,该催化剂的重要特点之一为抗毒性能优越。
常用于水煤气合成中。
但是该催化剂对于环境的要求较高,若条件不适合则会对其活性产生不利影响。
因此,本文介绍了钴钼催化剂的特性,并展开研究,从而为其实际应用提供借鉴。
关键词:钴钼催化剂;水煤气变换;应用1钴钼催化剂的选用在选择钴钼催化剂的过程中,考虑到其耐硫性较强且活性较差的特点,因此主要应用于以煤、重油为原料的合成气厂。
另外,应就其强度展开分析,但是活性和强度不成正比,一个越强则另一个越弱,所以要寻求其中的最优平衡。
现如今,多数钴钼催化剂生产企业已经充分了解其中的关系,并就此展开了生产活动,但是该最优平衡受多方面影响,需要根据生产工艺等多方面展开分析,从而获得最优生产方法。
除此之外,在选择该催化剂时,应确保其粒度较小,这对于改善催化剂活性具有重要作用。
2钴钼系催化剂的装填根据钴钼催化剂的性能,在其装填时要求如下:(1)空速是分析其装填的重要依据。
当水气比、操作压力、CO变换负荷选定后,可简单地由操作压力确定空速。
空速以半水煤气(干基,CO~30%)为准,如果原料气中CO含量为45%则选定的空速适当降低。
具体可参照表1。
表1 压力(绝压)与空速关系表(2)将所有床层的高度设置均为超过1m,同时确保床层高径比为0.75左右,上下不得超过0.25.从而避免发生气体偏流情况。
(3)进行装填过程中,为了减少催化剂泄露的情况发生,需要加设多层铁丝网。
煤制天然气工艺技术和催化剂影响因素的分析探讨
煤制天然气工艺技术和催化剂影响因素的分析探讨
煤制天然气是通过煤炭气化工艺,将固态煤转化为可燃气体的过程。
在煤制天然气工艺中,催化剂的选择和使用对工艺的影响非常大。
首先,催化剂的选择应考虑到煤气中特定成分的存在。
例如,在含硫量较高的煤气制备中,选择具有磷酸和钒酸的催化剂能够很好地降低硫化物的含量。
此外,具有强氧化能力的贵金属催化剂,如铂、铑、钯等,可促进反应的进行,提高产气效率。
其次,催化剂的物理和表面化学性质也会影响煤制天然气的产量和质量。
通常,选择具有抗烧结和抗中毒能力的支撑剂作为载体,以提高催化剂的稳定性。
此外,催化剂的表面化学性质,如分散度、孔径大小、活性位点密度等,也会影响反应的速率和能量消耗。
另外,反应条件以及煤料的配比和品质也是影响煤制天然气工艺的重要因素。
例如,在气化过程中,高温和高压条件下可提高气化效率;而适当降低温度和压力,则可减少能量和资源的消耗。
此外,煤料的灰分含量、挥发分含量、红外吸收性等特征也会对工艺的稳定性和气体产量造成影响。
综上所述,煤制天然气的工艺技术和催化剂选择是相互作用的,需要综合考虑煤气特性、反应条件和催化剂物理化学性质等多方面因素。
在未来的工艺研究中,应进一步优化催化剂配方和加工技术,以提高煤气气质和降低工艺成本。
氧化铈对水煤气变换反应催化剂的影响研究
太
原
理
工
大ห้องสมุดไป่ตู้
学
学
报
Vo. No 1 43 .1
j oURNAI OF TAI YUAN UNI RS TY VE I 0F TECH N0I ) GY (
J n 2 l a. O2
文 章 编 号 : 0 7 9 2( 01 0 - 86 0 1 0 — 43 2 2) 1 00 — 5
过 还 原 。 将 样 品 装 入 反 应 管 中 , 温 至 3 OC并 用 升 1^ 氩 气 吹 扫 1 5h 之 后 切 换 进 入 H . , 还 原 2h 将 催 化 ,
以 提 高 活 性 及 耐 热 性 _ ] 然 而 , 化 铬 不 仅 价 格 昂 4 。 氧 贵 , 对 环 境 会 造 成 严 重 污 染 。 因 此 , 发 研 制 具 有 且 开 良好 活 性 又 环 境 友 好 的 无 毒 价 廉 的铁 系 低 铬 或 无 铬 变 换催 化 剂势 在必 行 。
3 3 3 3 3 3
F 2 a Mg eO + O+C ( a)
9 7 9 5 9 4 93 9l 89
剂, 其在 合成 氨工 业 上应 用 已有多 年历 史 , 至今 在 国 内市场 仍 占有较 高份 额 。在 变换 催 化 剂 中 , 氧化 铬 的质量 分数 一般 约 在 8 左 右 , 为 结构 助 剂 , ]作 用
氧 化铈对 水煤 气变换反应催化剂 的影 响研 究
樊 惠玲 , 晓东 , 官炬 , 建 英 , 汉 贤 李 上 林 郭
( 太原 理 工 大 学 煤 科 学 与 技 术 省 部 共 建 国家 重 点 实验 室 培 育 基 地 , 太原 0 0 2 ) 3 0 4
三种Au(111)催化水煤气变换反应机理的比较
可 以单 独作 为催 化剂 也可 以负 载不 同载体 成为 负载 型金 催 化 剂 ,并 且 都 具 有 良好 的催 化 效果 .1989年 Haruta等 【 】对 金纳 米 颗 粒 在低 温 下 对 CO 的催 化 反 应 进行 了研 究 ,发 现 当 尺寸 小 于 10 nm 的金 颗粒 分 散到氧化 物载体上 时,对 CO氧化表现 出很 高的催化 活性.Andreeva等圆比较了 Au/Fe2O3和纯Fe203催化 剂 在水 煤 气 变 换 反 应 中 的活 性 ,结 果 表 明 在 240一
Received:January 15,2010;Revised:M arch 8,2010;Published o W eb:April 30,2010.
Corresponding author.Email:jchx@zjut.edu.cn;Tel:+86—571—88320373. The project was suppoaed by the Natural Science Foundation of Zhejiang Province,China(Y406069) 浙江省 自然科学基 金(Y406069)资助项 目
Zh ̄iang University ofTechnology,Hangzhou 310032,P.R.China)
Abstract: A detailed density funcfional theory (DFT)investigation revealed three possible mechanisms(redox mechanism,carboxyl mechanism 。an d formate intermediate mechanism)for the water-gas shift reaction on Au(1 1 1) surface.All the pertinent species(H20,CO,OH,O,H,CO2,COOH,HCO0)were calculated.We obmined their preferred adsorption sites.W e characterized the react ion pat hway containing 14 elementary steps and ca lculated t he reaction potential energy surfaces.The cal culation results show t h at t h e carboxyl m echanism and t h e redox m echanism are feasible while the form ate intermediate mechan ism is unlikely because of its high for m at ion barrier.Our
对制氢转化催化剂的影响因素分析及对策
对制氢转化催化剂的影响因素分析及对策田喜磊中国石油化工股份有限公司河南油田分公司石蜡精细化工厂河南南阳473132摘要:随着加氢工艺的发展,各种制氢装置开工数量也逐年增加,轻烃水蒸气制氢装置就是其中运用较多的1 种。
转化催化剂是轻烃水蒸气制氢装置的核心,造成其中毒或减少其使用寿命的因素也较多,通过对各种会对轻烃水蒸气转化催化剂造成影响的因素进行了深入的分析和探讨,为如何解决和减少此类因素对转化催化剂的损害,提供一定的技术思路。
关键词:轻烃水蒸气制氢转化催化剂影响对策前言近年来各种制氢装置开工运行数量不断增加,尤其是轻烃水蒸气制氢装置在已开工的各种制氢装置中占得比例较高。
在日常生产中,影响轻烃水蒸气制氢装置正常运行的因素很多,破坏性也很大。
转化单元作为轻烃水蒸气制氢装置的核心,各种条件的变化最直接的影响对象就是转化催化剂。
本文对能够影响轻烃水蒸气制氢转化催化剂的使用效果和寿命的因素进行分析并提出相应对策(下面以洛阳石化轻烃水蒸气制氢装置为例)。
1 装置简介制氢装置主要有原料的预加氢、原料脱毒、轻烃水蒸汽转化、中温变换、余热回收以及中变气的PSA氢气提纯、产品氢升压等部分组成。
主要工艺流程见图1。
图1 制氢装置流程轻烃水蒸气制氢原料经预加氢、脱毒净化后,烯烃<1(v)%,无机硫、氯离子含量均≤0.5μg/g,防止后序转化剂的积炭,硫、氯中毒。
脱硫后原料进入转化炉,经过装有转化催化剂的176 根炉管,在反应温度450~900 ℃,反应压力为1.5~3.0 MPa,水蒸气与原料的H2O/C摩尔比为2.5~6的条件下,进行转化反应,得到含氢气体70(v)%~80(v)%,甲烷3(v)%~6(v)%、CO 3(v)%~8(v)%、CO2 10(v)%~15( v)%左右的转化气,转化气再经中温变换反应将CO进一步转化为CO2 与H2,使中变气中CO<3(v)%。
中变气在温度≤45 ℃,压力2.0~2.5 MPa,进入PSA变压吸附单元,经提纯后能得到纯度≥99.9%、CO+ CO2≤20 μg/g的工业氢,PSA解析气作为燃料送至转化炉燃烧。
水煤气变换反应平衡常数
水煤气变换反应平衡常数1.引言1.1 概述水煤气变换反应平衡常数是指在反应达到平衡状态时,反应物和生成物的浓度之比的稳定值。
水煤气变换是一种重要的工业反应,其主要产物为一氧化碳和氢气。
水煤气作为一种重要的能源来源,对于了解和掌握水煤气变换反应平衡常数具有重要的理论和实际意义。
本文将对水煤气变换反应平衡常数的定义、影响因素进行详细分析和探讨。
首先,我们将介绍反应平衡常数的定义,即通过平衡常数可以描述反应的平衡状态。
其次,我们将探讨影响水煤气变换反应平衡常数的因素,包括温度、压力、反应物浓度和催化剂等。
通过对这些影响因素的研究和分析,可以为工业生产中的水煤气变换反应的优化和控制提供理论依据和实践指导。
本文的目的在于全面了解和掌握水煤气变换反应平衡常数的相关知识,为深入研究水煤气变换反应的机理和控制提供基础。
同时,通过对未来研究方向的展望,可以为相关学者和工程师提供一定的参考和指导,推动水煤气变换反应领域的发展和进步。
在接下来的正文部分,我们将详细介绍和讨论反应平衡常数的定义以及不同因素对水煤气变换反应平衡常数的影响。
最后,我们将总结反应平衡常数的重要性,并展望未来研究的方向。
通过本文的阐述,相信读者能够全面了解水煤气变换反应平衡常数的重要性和研究的价值,为相关领域的研究和应用提供一定的参考和指导。
文章结构部分主要描述了本文的组织结构和各个章节的内容概述。
通过这样的介绍,读者可以对整篇文章有一个整体的了解,同时也方便读者快速找到所感兴趣的内容。
本文的结构如下:1. 引言1.1 概述在这一部分,我们将介绍水煤气变换反应平衡常数的背景和意义,引出本文要讨论的主题。
1.2 文章结构在这一部分,我们将简要介绍本文的组织结构。
接下来的章节将分别讨论反应平衡常数的定义和影响因素,并在结论部分总结并展望未来的研究方向。
1.3 目的在这一部分,我们将明确本文的目的,即通过对水煤气变换反应平衡常数的讨论,加深我们对这一概念的理解,并为未来的研究提供一定的参考。
负载纳米金对氧化铁载体结构和水煤气变换催化性能的影响
负载纳米金对氧化铁载体结构和水煤气变换催化性能的影响摘要:具有高催化活性和选择性的纳米金催化剂作为新型材料引起关注。
本文对近几年科学界对纳米金催化剂的研究进行了总结。
展望了金催化剂的应用前景,以及纳米金催化剂对氧化铁载体结构和水煤气变换催化性能的影响进行了总结。
关键词:纳米金催化剂;水煤气变换;氧化铁载体1.引言由于金的电负性( 2.28 ) 比其他所有的金属都要大,第一电离能也很大( 9.2 2ev )很难失去电子,Au+/AuO的标准电极电势为+1.691V,而它对电子的亲和能力( 2.3lev ) 比氧元素( 1.46ev) 还要大,因此它很难发生氧化反应。
同时金的氧化物Au 2 O 3也不稳定(△H f =+l 9.3k J/mo1 ) ,并且位于周期表第1B族的金的原子半径小于同族的银原子,其熔点和升华焓都比银高,也就是说本身原子之间的相互作用力较强,金的单晶表面与其他分子之间的相互作用力很弱,它对氧或者其他气体的化学吸附能力也很弱。
所以金一直被认为是化学惰性最高的金属,且远不及铂族金属活泼,一般不被用来做催化剂。
然而,随着科技的发展,科学研究的进步,近几年来新的催化剂制备技术层出不穷,各种新的纳米催化剂其中也包括纳米金属负载催化剂应运而生,纳米技术的诞生就彻底改变了人们对金催化作用的认识。
当把它高度分散在过渡金属氧化物载体上而形成超微粒子时,化学惰性的金就变成了高活性的催化剂。
随着Haruta发现担载在过渡金属氧化物上的金催化剂[1],不仅对CO低温氧化具有很高的催化活性,而且还具有其他贵金属催化剂所不具有的很好的抗水性、稳定性和湿度增强效应,打破了认为金没有催化活性的传统观念,致使人们对其催化特性产生了极大的兴趣和关注。
此后,有关金催化剂的研究和开发日益活跃,随后的研究发现,负载型金催化剂在NOx的催化消除、水一汽迁移、CO2加氢制甲醇、烃类的催化燃烧、氯氟烃的催化分解及不饱和烃的选择加氢等许多反应中也显示出非常优异的催化活性[2-4].另外,从经济角度上来看,金的价钱要远远低于铂和钯的价钱,正是由于这些原因使得金催化剂的研究已经成为催化领域中的一个新的热点,预示着金催化剂有更加广泛的应用前景。
水煤气反应温度
水煤气反应温度一、介绍水煤气反应水煤气反应是一种将固体煤转化为气体燃料的化学反应。
该反应使用水蒸气和空气或氧化剂作为反应剂,通过高温和高压条件下的催化作用将煤转化为可用于能源生产的合成气。
二、温度对水煤气反应的影响1. 反应速率温度是影响水煤气反应速率的重要因素之一。
在一定范围内,随着温度的升高,反应速率也会随之增加。
这是因为在高温条件下,分子运动更加剧烈,分子间碰撞的能量也更大,使得反应物分子更容易发生碰撞和相互作用,从而促进了反应进程。
2. 反应产物组成除了影响反应速率外,温度还会影响水煤气反应产物组成。
在较低温度下进行水煤气反应会得到较多的甲烷和乙烯等饱和化合物;而在较高温度下进行,则会得到较多的一氧化碳和二氧化碳等不饱和化合物。
3. 催化剂活性温度还会影响催化剂的活性。
在水煤气反应中,催化剂起着至关重要的作用,可以显著提高反应速率和选择性。
但是,催化剂的活性也受到温度的影响。
一般来说,在适宜的温度范围内,催化剂的活性随着温度升高而增加;但是当温度过高时,催化剂可能会失去活性或发生热失活等现象。
三、最适温度在实际应用中,需要确定适宜的反应温度以获得最佳的反应效果。
一般来说,水煤气反应最适宜的温度范围为350℃~450℃左右。
在这个温度范围内进行反应可以获得较高的产物选择性和较快的反应速率。
四、结论综上所述,水煤气反应是一种将固体煤转化为气体燃料的重要技术。
在进行水煤气反应时,需要考虑到多种因素对反应速率、产物组成和催化剂活性等方面的影响,其中温度是最为重要的因素之一。
在实际应用中,需要确定适宜的反应温度以获得最佳的反应效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水煤气变换反应(WGSR)Au/Fe 2O 3催化剂的相关影响因素薛学良(郑州大学化工与能源学院,河南郑州450001)摘要:通过H2-TPR、CO-TPD-MS、BET、XRD、UV-VIS、XRF等表征手段,初步考察Au/Fe 2O 3催化剂具有高催化活性的原因,并分析讨论催化剂的制备方法、助剂、金载荷量、、沉淀剂种类、烘焙温度、沉淀PH值、氢气氛处理等对Au/Fe 2O 3催化性能的影响,关键词:水煤气变换反应,Au/Fe 2O 3催化剂,助剂,金载荷量,沉淀剂种类,烘焙温度,沉淀PH值,氢气氛处理引言水煤气变换反应(WGSR)是三效催化剂用于汽车尾气净化处理时发生的一个重要反应。
不仅能有效促进CO的消除,而且生成的H 2也有利于去除NO X 。
甲醇燃料电池汽车的研制正在兴起,但制氢过程产生的CO会对铂电极造成严重的毒害作用。
可利用水蒸气将C0变换成H 2和CO 2,或再引入氧气选择性氧化CO。
鉴于WGSR在尾气治理过程中的重要性以及在甲醇燃料电池汽车上原料气(H 2)净化的应用前景,近年来该反应再次引起国内外研究者的极大兴趣。
目前,负载型金催化剂正受到人们的极大关注。
它对许多反应显示出优异的催化性能,如CO,H 2氧化、烃类催化燃烧、NOX直接分解或用CO还原、CO 2加氢反应、氯氟烃的催化分解以及不饱和烃的选择加成等。
国外对低温水煤气变换反应金催化剂作了较多研究。
自从Andreeva 等首次报道了Au/Fe 2O 3具有较高的低温水煤气变换反应催化活性后,人们对金催化剂的制备和微观结构进行了大量的研究,发现金催化剂的活性受制备方法的影响较大。
国内迄今未见负载型金催化剂用于该反应的研究报道。
由于金为贵金属,其价格相对较昂贵。
文献[]系统地考察了制备参数、预处理条件以及金负载量对Au/Fe 2O 3催化剂的低温水煤气变换活性影响。
但金催化剂在催化过程中易失活,稳定性差,制约了其在化工领域中的应用。
Kim等对金催化剂的失活机理进行了探讨,认为催化过程中CO 2在催化剂表面形成碳酸盐是导致催化剂失活的原因之一。
1.1催化剂的制备1. 1.1共沉淀法(CP)按一定比例将0.2mol/L HAuCl 4溶液和110mol/L Fe(NO 3)3溶液混合,获得的混合溶液(Au与Fe的原子为1∶60)和沉淀剂K 2CO 3溶液(1.0mol/L)并流加入到强烈搅拌下的底液(pH 值为8.0的K 2CO 3溶液)中进行共沉淀.反应参数如下:反应温度60℃,pH 值8.0,搅拌速率250r/min ,陈化时间1h.将所得沉淀物洗涤至检测不到氯离子为止,再经120℃干燥,最后在300℃下焙烧2h (升温速率为5℃/min),自然冷却即制得所需催化剂,记为Au/Fe 2O 3-CP.1. 1.2沉积-沉淀法(DP)以Fe (NO 3)3·9H 2O 和沉淀剂K 2CO 3为原料采用共沉淀法先制得载体Fe 2O 3,将载体破碎后超声分散到50ml 去离子水中,并用K 2CO 3溶液调节pH值为8.0,最后在强烈搅拌下逐滴加入HAuCl 4溶液,并用K 2CO 3溶液维持体系pH 值不变,所得沉淀物经过滤、洗涤、干燥和焙烧即制得所需催化剂,记为Au/Fe 2O 3-DP.反应参数及焙烧条件同上.1. 1.3改性沉积-沉淀法(MDP)将Fe(NO 3)3和沉淀剂K 2CO 3溶液并流加入到搅拌中的底液(pH 值为810的K 2CO 3溶液)中,将所得沉淀物洗涤数次后分散到50ml 去离子水中,其余操作同沉积2沉淀法(即将Au 改性沉积至Fe 2O 3载体的前驱物上),制得的催化剂记为Au/Fe 2O 3-MDP。
运用N 2吸附、X 射线衍射、X 射线光电子能谱和透射电镜等技术对其进行了表征,考察了制备方法对Au/Fe 2O 3催化剂水煤气变换反应催化活性的影响.结果表明,改性沉积-沉淀法制备的催化剂具有最好的催化活性,150℃时CO 转化率达82.3%.该催化剂比表面积较大,金粒子尺寸(3~5nm)较小且分布均匀.载体氧化铁以无定形态和结晶态共存,金与载体间存在较强的相互作用,这对催化剂活性的提高起着重要作用.制备方法不同导致Au/Fe 2O 3催化剂的微观结构和性质不同,进而表现为各催化剂的活性有较大差异.三种不同制备方法获得的催化剂的活性随载体铁氧化物粒子的增大而降低.共沉淀法制备的样品载体主要为无定形态,金粒子大小不一,有部分金簇形成;沉积-沉淀法制备的样品载体结晶程度较高,金粒子较大;而改性沉积-沉淀法制备的样品载体以无定形态和结晶态共存,金粒子较小,分布最均匀.经过焙烧后金物种以单质金的形式存在,不同样品中活性组分金与载体间的相互作用不同,使得各样品表面Fe 2+/Fe 3+的比值不同.载体的结晶度在一定程度上影响金与载体间相互作用的强弱,进而对催化剂的性能有重要影响.改性沉积-沉淀法制备的催化剂中金与载体间的相互作用较强,因而具有良好的WGS 催化活性.2助剂影响因素采用并流共沉淀法制备的Au/α-Fe 2O 3催化剂,由于添加的助剂性质不同,不同程度地改变了催化剂的比表面积、载体的晶粒度、催化剂的还原性能和表面的酸碱性,从而影响负载型金催化剂对富氢条件下低温水煤气变换反应的催化活性和稳定性;,添加ZrO 2助剂能抑制载体晶粒的生长,降低载体晶粒度,提高催化剂的比表面积,改善催化剂的还原性能和表面酸碱度,从而提高催化剂的催化活性和稳定性。
2.1H2-TPR图1为不同助剂改性的Au/α-Fe 2O 3催化剂的H2-TPR谱图。
Figure 1H2-TPR profiles of Au-Fe 2O 3-MO x catalysts with various promoters从图1可知,所有样品在80℃附近有一较强的还原峰,在100℃-150℃有一肩峰。
Fe 2O 3的还原过程被认为是3Fe 2O 3→2Fe 3O 4→6FeO→6Fe。
前期研究工作表明,新制的负载型金铁催化剂组成主要为α-Fe 2O 3和金的物种,因而图5中的还原峰应为Fe 2O 3还原为Fe 3O 4的特征峰与金氧化物的还原峰的叠加,而肩峰应该归属于粒子较大的体相Fe 2O 3还原为Fe 3O 4的拖尾峰。
根据负载型金催化剂的WGS反应机理Au-Fe 2O 3催化WGS反应过程中伴随着载体氧化物中铁离子的价态调变(Fe 3+←→Fe 2+),载体氧化还原性能可能影响催化剂的活性。
从图1可看出,各负载型金催化剂中Fe 2O 3的还原峰比纯Fe 2O 3的还原峰温(427℃)降低了约140℃,这可能与金和载体间的协同作用有关。
添加助剂MgO、ZrO 2、Al 2O 3有利于降低α-Fe 2O 3还原温度,提高催化剂的活性。
还原温度的高低顺序为:TR Au/F 2O 3-MgO(77.6℃)<Au/F 2O 3-ZrO 2(78.1℃)<Au/Fe 2O 3-Al 2O 3(80.1℃)<Au/Fe 2O 3(82.9℃),相反,助剂BaO、ZnO、CaO的添加使得催化剂还原温度均高于Au/Fe 2O 3的还原温度,催化剂的活性较Au/Fe 2O 3低。
因此,添加不同助剂使催化剂中α-Fe 2O 3还原温度发生不同的变化,是造成不同催化性能的原因之一。
2.2CO-TPD-MSAndreeva等认为负载型金催化剂Au/Fe 2O 3催化低温水煤气变换反应的机理为:CO在催化剂表面与解离吸附的H以及催化剂中的O形成COOH.的中间产物,并最终以CO 2的形式脱离催化剂。
Kim等则认为,滞留在催化剂表面的CO 2形成的碳酸盐是使催化剂失活的主要原因。
为此,研究考察了CO 2在不同助剂改性的氧化铁负载型金催化剂表面的脱附行为,结果见图2。
Figure 2CO-TPD-MS profiles of Au-Fe 2O 3-MO x catalysts with various promoters 1:Au/Fe 2O 3-Al 2O 3;2:Au/F 2O 3-ZrO 23:Au/F 2O 3-CaO 4:Au/F 2O 3-MgO 5:Au/F 2O 3-BaO 6:Au/F 2O 3由图2可看出,Au/F 2O 3催化剂的CO 2脱附温度为150℃-450℃左右,峰温为300℃左右,峰面积较小。
添加CaO和BaO助剂的催化剂,CO 2的脱附温度向高温方向移动,峰面积增大;而添加ZrO 2、Al 2O 3和MgO的催化剂,峰面积虽然同样增大,但CO 2脱附温度则向低温方向移动。
比较各样品的CO 2脱附曲线特征和样品的比表面积,可以认为,除了助剂的添加增大了催化剂的比表面积,使CO 2的吸附量增大外,催化剂表面的酸碱性质不同,使得CO 2与催化剂的结合强度不同,是影响催化剂表面CO 2脱附行为的主要原因。
如CaO和BaO等碱性氧化物的添加增强了催化剂对CO 2的吸附能力,使得CO 2脱附温度向高温方向移动;而酸性和两性氧化物的添加使得CO 2脱附温度降低。
3金载荷量影响采用BET、XRD、UV-VIS、XRF、H 2-TPR和O 2-TPR、等表征手段对催化剂的结构进行分析,并与其催化性能进行关联。
结果表明,(1)采用10%-H 2/N 2还原气将催化剂在150℃原位还原9h,其催化活性最高;(2)金的最佳负载量为8.00%,此时在催化剂制备过程中金的流失量较少,金粒子较小,也有利于抑制催化剂在反应过程中烧结;(3)TPR-TPO结果表明,金的负载量为8.00%时,Au/α-Fe 2O 3催化剂具有较易被还原、不易被氧化的性质,从而显示出最高催化活性。
(4)Au/α-Fe 2O 3催化剂中的金以单质金(Au ..)形式存在;其高活性与Au 。
-Fe 3O4间的协同作用有关。
4沉淀剂种类影响因素图3为采用不同沉淀剂制备的Au/Fe 2O 3催化剂上的WGS反应活性,可以看出,以K 2CO 3作为沉淀剂时催化剂活性最高,其余依次为Na 2CO 3、NH 4OH、(NH 4)CO 3、NaOH、KOH和CO(NH 2)2对于前4种沉淀剂,在150℃时采用NH 4OH沉淀剂制备的样品具有较高活性,其余的活性相近。
随着反应温度升高,催化活性差别明显增大,以K 2CO 3和Na 2CO 3为沉淀剂制备的样品在200℃时就达到较高的活性,进一步提高反应温度,活性提高不明显,而由NH 4OH和(NH 4)CO 3沉淀制备的样品在200℃时活性达到峰值,进一步提高反应温度,活性反而明显降低。
对于后3种沉淀剂,相应的催化剂样品活性总体较低5随着反应温度升高,活性升高不明显,因此,K 2CO 3和Na 2CO 3较适宜用作沉淀剂,而K 2CO 3为最佳沉淀剂。