数据挖掘考试题库(1)

合集下载

数据挖掘考试题及答案

数据挖掘考试题及答案

数据挖掘考试题及答案### 数据挖掘考试题及答案#### 一、选择题(每题2分,共20分)1. 数据挖掘的目的是发现数据中的:- A. 错误- B. 模式- C. 异常- D. 趋势答案:B2. 以下哪项不是数据挖掘的常用算法:- A. 决策树- B. 聚类分析- C. 线性回归- D. 神经网络答案:C3. 关联规则挖掘中,Apriori算法用于发现:- A. 频繁项集- B. 异常值- C. 趋势- D. 聚类答案:A4. K-means算法是一种:- A. 分类算法- B. 聚类算法- C. 预测算法- D. 关联规则挖掘算法答案:B5. 以下哪个指标用于评估分类模型的性能:- A. 准确率- B. 召回率- C. F1分数- D. 所有以上答案:D#### 二、简答题(每题10分,共30分)1. 描述数据挖掘中的“过拟合”现象,并给出避免过拟合的策略。

答案:过拟合是指模型对训练数据拟合得过于完美,以至于失去了泛化能力。

避免过拟合的策略包括:使用交叉验证、正则化技术、减少模型复杂度、获取更多的训练数据等。

2. 解释什么是“数据清洗”以及它在数据挖掘中的重要性。

答案:数据清洗是指从原始数据中识别并纠正(或删除)错误、重复或不完整的数据的过程。

它在数据挖掘中至关重要,因为脏数据会导致分析结果不准确,影响最终的决策。

3. 描述“特征选择”在数据挖掘中的作用。

答案:特征选择是数据挖掘中用来降低数据维度、提高模型性能和减少计算成本的过程。

通过选择最有信息量的特征,可以去除冗余或无关的特征,从而提高模型的准确性和效率。

#### 三、应用题(每题25分,共50分)1. 假设你正在分析一个电子商务网站的用户购买行为,描述你将如何使用数据挖掘技术来识别潜在的营销机会。

答案:首先,我会使用聚类分析来识别不同的用户群体。

然后,通过关联规则挖掘来发现不同用户群体的购买模式。

接着,利用分类算法来预测用户可能感兴趣的产品。

数据挖掘试题及答案

数据挖掘试题及答案

数据挖掘试题及答案数据挖掘是一门利用数据分析技术从大量的数据集中发现规律、模式和知识的过程。

它对我们理解和利用数据提供了有力的支持,被广泛应用于商业、科学研究等领域。

下面是一些常见的数据挖掘试题及其答案。

试题一:什么是数据挖掘?答案:数据挖掘是指利用计算机技术和统计学方法,从大规模数据集中发现隐藏在其中的有价值的信息和知识的过程。

它包括数据预处理、特征选择、模型构建以及模式识别和知识发现等步骤。

试题二:数据挖掘的主要任务有哪些?答案:数据挖掘的主要任务包括分类、聚类、关联规则挖掘和异常检测等。

分类是指将数据集中的样本划分到不同的类别中;聚类是将数据集划分为若干个相似的组;关联规则挖掘是找出数据中项之间的关联关系;异常检测是识别与正常模式不符的数据。

试题三:数据挖掘中常用的算法有哪些?答案:数据挖掘中常用的算法包括决策树、聚类算法、关联规则算法和神经网络等。

决策树算法通过对数据集进行划分,构建一棵树形结构用于分类;聚类算法根据相似度将数据集分为不同的簇;关联规则算法用于发现数据集中项之间的关联关系;神经网络模拟人脑的神经元网络结构,用于数据分类和预测。

试题四:数据挖掘的应用场景有哪些?答案:数据挖掘的应用场景非常广泛。

在商业领域,它可以帮助企业进行市场分析、客户关系管理和产品推荐等;在科学研究中,它能够帮助科学家从大量的实验数据中发现新的知识和规律;在医疗领域,它可以辅助医生进行疾病诊断和治疗方案选择等。

试题五:数据挖掘存在的挑战有哪些?答案:数据挖掘存在一些挑战,包括数据质量不高、维度灾难、算法性能和可解释性等方面。

数据质量不高可能导致挖掘结果不准确;维度灾难是指当数据特征数量很多时,算法的计算复杂度急剧增加;算法性能要求高,对大规模数据集的挖掘需要高效的算法;可解释性是指挖掘结果是否易于被理解和解释。

以上是一些常见的数据挖掘试题及其答案。

通过理解和掌握数据挖掘的基本概念、任务、算法和应用场景,可以帮助我们更好地运用数据挖掘技术,从海量数据中提取有价值的信息和知识,为决策和创新提供支持。

数据挖掘试题(单选)

数据挖掘试题(单选)

单项选择题1.某商场研究销售纪录数据后发现,买啤酒的人很大体率也会购置尿布,这类属于数据发掘的哪种问题 (A)A. 关系规则发现C. 分类B. 聚类D. 自然语言办理2. 以下两种描绘分别对应哪两种对分类算法的评论标准(A)(a)警察抓小偷,描绘警察抓的人中有多少个是小偷的标准。

(b)描绘有多少比率的小偷给警察抓了的标准。

A. Precision,RecallB. Recall,PrecisionA. Precision,ROC D. Recall,ROC3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务A. 屡次模式发掘B. 分类和展望C. 数据预办理D. 数据流发掘(C)4.当不知道数据所带标签时,能够使用哪一种技术促进带同类标签的数据与带其余标签的数据相分别 (B)A. 分类B. 聚类C. 关系剖析D. 隐马尔可夫链5.什么是 KDD (A)A. 数据发掘与知识发现B. 领域知识发现C. 文档知识发现D. 动向知识发现6.使用交互式的和可视化的技术,对数据进行探究属于数据发掘的哪一类任务(A)A. 探究性数据剖析B. 建模描绘C. 展望建模D. 找寻模式和规则7.为数据的整体散布建模;把多维空间区分红组等问题属于数据发掘的哪一类任务(B)A. 探究性数据剖析B. 建模描绘C. 展望建模D. 找寻模式和规则8.成立一个模型,经过这个模型依据已知的变量值来展望其余某个变量值属于数据发掘的哪一类任务 (C)A. 依据内容检索B. 建模描绘C. 展望建模D. 找寻模式和规则9.用户有一种感兴趣的模式而且希望在数据集中找到相像的模式,属于数据发掘哪一类任务(A)A. 依据内容检索B. 建模描绘C. 展望建模D. 找寻模式和规则11.下边哪一种不属于数据预办理的方法(D)A 变量代换B失散化 C齐集 D 预计遗漏值12. 假定 12 个销售价钱记录组已经排序以下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215使用以下每种方法将它们区分红四个箱。

数据挖掘试题(单选)

数据挖掘试题(单选)

单选题1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A. 关联规则发现B. 聚类C. 分类D. 自然语言处理2. 以下两种描述分别对应哪两种对分类算法的评价标准? (A)(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。

(b)描述有多少比例的小偷给警察抓了的标准。

A. Precision, RecallB. Recall, PrecisionA. Precision, ROC D. Recall, ROC3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A. 频繁模式挖掘B. 分类和预测C. 数据预处理D. 数据流挖掘4. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A. 分类B. 聚类C. 关联分析D. 隐马尔可夫链5. 什么是KDD? (A)A. 数据挖掘与知识发现B. 领域知识发现C. 文档知识发现D. 动态知识发现6. 使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则7. 为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则8. 建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则9. 用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则11.下面哪种不属于数据预处理的方法? (D)A变量代换 B离散化 C 聚集 D 估计遗漏值12. 假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。

(完整版)数据挖掘考试题库

(完整版)数据挖掘考试题库

1.何谓数据挖掘?它有哪些方面的功能?从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程称为数据挖掘。

相关的名称有知识发现、数据分析、数据融合、决策支持等。

数据挖掘的功能包括:概念描述、关联分析、分类与预测、聚类分析、趋势分析、孤立点分析以及偏差分析等。

2.何谓粒度?它对数据仓库有什么影响?按粒度组织数据的方式有哪些?粒度是指数据仓库的数据单位中保存数据细化或综合程度的级别。

粒度影响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。

按粒度组织数据的方式主要有:①简单堆积结构②轮转综合结构③简单直接结构④连续结构3.简述数据仓库设计的三级模型及其基本内容。

概念模型设计是在较高的抽象层次上的设计,其主要内容包括:界定系统边界和确定主要的主题域。

逻辑模型设计的主要内容包括:分析主题域、确定粒度层次划分、确定数据分割策略、定义关系模式、定义记录系统。

物理数据模型设计的主要内容包括:确定数据存储结构、确定数据存放位置、确定存储分配以及确定索引策略等。

在物理数据模型设计时主要考虑的因素有: I/O存取时间、空间利用率和维护代价等。

提高性能的主要措施有划分粒度、数据分割、合并表、建立数据序列、引入冗余、生成导出数据、建立广义索引等。

4.在数据挖掘之前为什么要对原始数据进行预处理?原始业务数据来自多个数据库或数据仓库,它们的结构和规则可能是不同的,这将导致原始数据非常的杂乱、不可用,即使在同一个数据库中,也可能存在重复的和不完整的数据信息,为了使这些数据能够符合数据挖掘的要求,提高效率和得到清晰的结果,必须进行数据的预处理。

为数据挖掘算法提供完整、干净、准确、有针对性的数据,减少算法的计算量,提高挖掘效率和准确程度。

5.简述数据预处理方法和内容。

①数据清洗:包括填充空缺值,识别孤立点,去掉噪声和无关数据。

②数据集成:将多个数据源中的数据结合起来存放在一个一致的数据存储中。

数据挖掘考试题库

数据挖掘考试题库

13. 预测型知识:是根据时间序列型数据,由历史的和当前的数据 去推测未来的数据,也可以认为是以时间为关键属性的关联知 识。
14. 偏差型知识:是对差异和极端特例的描述,用于揭示事物偏离 常规的异常现象,如标准类外的特例,数据聚类外的离群值 等。
15. 遗传算法:是一种优化搜索算法,它首先产生一个初始可行解 群体,然后对这个群体通过模拟生物进化的选择、交叉、变异 等遗传操作遗传到下一代群体,并最终达到全局最优。
作。 22. 传统的决策支持系统是以 和 驱动,而新决策支持系统
则是以 、建立在 和 技术之上。 23. OLAP的数据组织方式主要有 和 2种。 24. SQL Server2000的OLAP组件叫 ,OLAP操作窗口叫 。 25. BP神经网络由 、 以及一或多个 结点组成。 26. 遗传算法包括 、 、 3个基本算子。 27. 聚类分析的数据通常可分为区间标度变
等。 6. 评价关联规则的2个主要指标是 和 。 7. 多维数据集通常采用 或雪花型架构,以 表为中心,连
接多个 表 。 8. 决策树是用 作为结点,用 作为分支的树结构。 9. 关联可分为简单关联、 和 。 10. BP神经网络的作用函数通常为 区间的 。 11. 数据挖掘的过程主要包括确定业务对象、 、 、 及
和低层管理人员、对基本数据进行查询和增、删、改等的日常事务 处理。OLAP即联机分析处理,是在OLTP基础上发展起来的、以数据 仓库基础上的、面向高层管理人员和专业分析人员、为企业决策支 持服务。
OLTP和OLAP的主要区别如下表:
OLTP
OLAP
数据库数据
数据库或数据仓库数据
细节性数据
综合性数据
知识同化等几个步骤。 12. 数据挖掘技术主要涉及 、 和 3个技术领域。 13. 数据挖掘的主要功能包括 、 、 、 、趋势分

数据挖掘与分析考试试题

数据挖掘与分析考试试题

数据挖掘与分析考试试题一、选择题(每题 3 分,共 30 分)1、以下哪个不是数据挖掘的主要任务?()A 分类B 聚类C 数据清洗D 关联规则挖掘2、在数据挖掘中,以下哪种方法常用于处理缺失值?()A 直接删除包含缺失值的记录B 用平均值填充缺失值C 用中位数填充缺失值D 以上方法都可以3、决策树算法中,用于选择最佳分裂特征的指标通常是()A 信息增益B 基尼系数C 准确率D 召回率4、以下哪个不是聚类算法?()A KMeans 算法B 层次聚类算法C 朴素贝叶斯算法D DBSCAN 算法5、数据挖掘中的关联规则挖掘,常用的算法是()A Apriori 算法B C45 算法C KNN 算法D SVM 算法6、以下哪种数据预处理方法可以用于将连续型特征转换为离散型特征?()A 标准化B 归一化C 分箱D 主成分分析7、在构建分类模型时,如果数据集存在类别不平衡问题,以下哪种方法可以解决?()A 过采样B 欠采样C 调整分类阈值D 以上方法都可以8、以下哪个指标常用于评估分类模型的性能?()A ROC 曲线下面积B 均方误差C 平均绝对误差D 决定系数9、对于高维数据,以下哪种方法可以进行降维?()A 因子分析B 线性判别分析C 主成分分析D 以上方法都可以10、以下关于数据挖掘的描述,错误的是()A 数据挖掘可以发现隐藏在数据中的模式和关系B 数据挖掘需要大量的数据C 数据挖掘的结果一定是准确无误的D 数据挖掘是一个反复迭代的过程二、填空题(每题 3 分,共 30 分)1、数据挖掘的一般流程包括:________、________、________、________、________和________。

2、分类算法中,常见的有________、________、________等。

3、聚类算法中,KMeans 算法的基本思想是:________。

4、关联规则挖掘中,常用的度量指标有________、________等。

数据挖掘考试题库及答案

数据挖掘考试题库及答案

数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。

答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。

答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。

答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。

答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。

答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。

()答案:错误12. 数据挖掘是数据仓库的一部分。

()答案:正确13. 决策树算法适用于处理连续属性的分类问题。

()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。

()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。

()答案:错误四、简答题16. 简述数据挖掘的主要任务。

答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。

17. 简述决策树算法的基本原理。

答案:决策树算法是一种自顶向下的递归划分方法。

它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。

数据挖掘考试题库完整

数据挖掘考试题库完整

一、名词解释1. 数据仓库:是一种新的数据处理体系结构 .是面向主题的、集成的、不可更新的(稳定性)、随时间不断变化 (不同时间)的数据集合.为企业决策支持系统提供所需的集成信息。

2. 孤立点:指数据库中包含的一些与数据的一般行为或模型不一致的异常数据。

3. OLAP:OLAP 是在OLTP 的基础上发展起来的.以数据仓库为基础的数据分析处理 .是共享多维信息的快速分析.是被专门设计用于支持复杂的分析操作 .侧重对分析人员和高层管理人员的决策支持。

4. 粒度:指数据仓库的数据单位中保存数据细化或综合程度的级别。

粒度影响存放在数据仓库中的数据量的大小 .同时影响数据仓库所能回答查询问题的细节程度。

5. 数据规范化:指将数据按比例缩放(如更换大单位).使之落入一个特定的区域(如 0-1) 以提高数据挖掘效率的方法。

规范化的常用方法有:最大-最小规范化、零-均值规范化、小数定标规范化。

6. 关联知识:是反映一个事件和其他事件之间依赖或相互关联的知识。

如果两项或多项属性之间存在关联.那么其中一项的属性值就可以依据其他属性值进行预测。

7. 数据挖掘:从大量的、不完全的、有噪声的、模糊的、随机的数据中.提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

8. OLTP:OLTP 为联机事务处理的缩写.OLAP 是联机分析处理的缩写。

前者是以数据库为基础的.面对的是操作人员和低层管理人员 .对基本数据进行查询和增、删、改等处理。

9. ROLAP:是基于关系数据库存储方式的 .在这种结构中.多维数据被映像成二维关系表.通常采用星型或雪花型架构.由一个事实表和多个维度表构成。

10. MOLAP:是基于类似于“超立方”块的OLAP 存储结构.由许多经压缩的、类似于多维数组的对象构成.并带有高度压缩的索引及指针结构 .通过直接偏移计算进行存取。

11. 数据归约:缩小数据的取值范围.使其更适合于数据挖掘算法的需要 .并且能够得到和原始数据相同的分析结果。

数据挖掘课程模拟考试题库

数据挖掘课程模拟考试题库

数据挖掘课程模拟考试题库一、选择题(每题 5 分,共 30 分)1、以下哪项不是数据挖掘的主要任务?()A 数据清洗B 分类C 聚类D 关联规则挖掘2、数据挖掘中的分类算法不包括()A 决策树B 朴素贝叶斯C 支持向量机D 主成分分析3、在数据挖掘中,以下哪种方法常用于处理缺失值?()A 直接删除包含缺失值的记录B 用平均值填充缺失值C 用中位数填充缺失值D 以上方法都可以4、数据挖掘中的聚类算法中,KMeans 算法的基本思想是()A 基于密度的聚类B 基于层次的聚类C 基于划分的聚类D 基于模型的聚类5、以下哪项不是关联规则挖掘中的常用指标?()A 支持度B 置信度C 提升度D 准确率6、数据挖掘在以下哪个领域应用较少?()A 医疗保健B 市场营销C 天文学D 物理学二、填空题(每题 5 分,共 20 分)1、数据挖掘的流程通常包括、、、、和。

2、常见的数据预处理方法有、、、。

3、决策树算法在进行分裂时,通常依据来选择特征。

4、聚类分析中,评估聚类效果的指标通常有、。

三、简答题(每题 10 分,共 30 分)1、简述数据挖掘与数据分析的区别。

2、解释什么是过拟合,并说明如何避免过拟合。

3、请简要介绍 Apriori 算法的基本思想和步骤。

四、应用题(20 分)假设有一个电商网站的销售数据集,包含用户 ID、商品 ID、购买时间和购买金额等字段。

请使用关联规则挖掘算法,找出经常一起被购买的商品组合,并给出相应的支持度和置信度。

请详细描述你的分析过程和结果。

以下是对上述模拟考试题库的详细解析:选择题解析:1、数据清洗虽然是数据预处理的重要步骤,但不是数据挖掘的主要任务。

数据挖掘的主要任务包括分类、聚类、关联规则挖掘等。

所以选择 A 选项。

2、主成分分析主要用于数据降维,而不是分类算法。

决策树、朴素贝叶斯和支持向量机都是常见的分类算法。

所以选择 D 选项。

3、处理缺失值的方法有多种,直接删除包含缺失值的记录可能会导致数据量减少,影响分析结果;用平均值或中位数填充缺失值是常见的处理方式。

数据挖掘测试题及答案

数据挖掘测试题及答案

数据挖掘测试题及答案一、选择题1. 数据挖掘的目的是:A. 数据清洗B. 数据转换C. 模式发现D. 数据存储答案:C2. 以下哪项不是数据挖掘的常用算法?A. 决策树B. 聚类分析C. 线性回归D. 关联规则答案:C二、填空题1. 数据挖掘中的_________是指在大量数据中发现的有意义的模式。

答案:知识2. 一种常用的数据挖掘技术是_________,它用于发现数据中隐藏的分组。

答案:聚类三、简答题1. 简述数据挖掘与数据分析的区别。

答案:数据挖掘是一种自动或半自动的过程,旨在从大量数据中发现模式和知识。

数据分析通常涉及更具体的查询和问题,使用统计方法来理解数据。

2. 描述什么是关联规则挖掘,并给出一个例子。

答案:关联规则挖掘是一种用于发现变量之间有趣关系的技术,特别是变量之间的频繁模式、关联或相关性。

例如,在市场篮子分析中,关联规则挖掘可以用来发现顾客购买行为中的模式,如“购买面包的顾客中有80%也购买了牛奶”。

四、计算题1. 给定以下数据集,计算支持度和置信度:| 事务ID | 购买的商品 |||-|| 1 | A, B || 2 | A, C || 3 | B, C || 4 | A, B, C || 5 | B, D |(1) 计算项集{A}的支持度。

(2) 计算规则A => B的置信度。

答案:(1) 项集{A}的支持度为4/5,因为A出现在4个事务中。

(2) 规则A => B的置信度为3/4,因为A和B同时出现在3个事务中,而A出现在4个事务中。

五、论述题1. 论述数据挖掘在电子商务中的应用,并给出至少两个具体的例子。

答案:数据挖掘在电子商务中的应用非常广泛,包括:- 客户细分:通过数据挖掘技术,商家可以识别不同的客户群体,为每个群体提供定制化的服务或产品。

- 推荐系统:利用关联规则挖掘,电商平台可以推荐用户可能感兴趣的商品,提高用户满意度和购买率。

- 欺诈检测:通过分析交易模式,数据挖掘可以帮助识别异常行为,预防信用卡欺诈等风险。

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案第一部分:选择题(每题4分,共40分)1.数据挖掘的定义是以下哪一个选项?A)从大数据中提取有用的信息B)从数据库中提取有用的信息C)从互联网中提取有用的信息D)从文件中提取有用的信息2.以下哪个是数据挖掘的一个主要任务?A)数据的存储和管理B)数据的可视化展示C)模型的建立和评估D)数据的备份和恢复3.下列哪个不是数据挖掘的一个常用技术?A)关联规则挖掘B)分类算法C)聚类分析D)数据编码技术4.以下哪个不属于数据预处理的步骤?A)数据清洗B)数据集成C)数据转换D)模型评估5.以下哪个是数据挖掘任务中的分类问题?A)预测数值B)聚类分析C)异常检测D)关联规则挖掘6.以下哪个不属于数据可视化的一种方法?A)散点图B)柱状图C)热力图D)关联规则图7.在使用决策树算法进行分类任务时,常用的不纯度度量指标是:A)基尼指数B)信息增益C)平方误差D)均方根误差8.以下哪个算法常用于处理文本数据挖掘任务?A)K-means算法B)Apriori算法C)朴素贝叶斯算法D)决策树算法9.以下哪种模型适用于处理离散型目标变量?A)线性回归模型B)逻辑回归模型C)支持向量机模型D)贝叶斯网络模型10.数据挖掘的应用领域包括以下哪些?A)金融风控B)医疗诊断C)社交网络分析D)所有选项都正确第二部分:填空题(每题4分,共20分)1.数据挖掘的基础是______和______。

答案:统计学、机器学习2.数据挖掘的任务包括分类、聚类、预测和______。

答案:关联规则挖掘3.常用的数据预处理方法包括数据清洗、数据集成和______。

答案:数据转换4.决策树算法的基本思想是通过选择最佳的______进行分类。

答案:划分属性5.支持向量机(SVM)算法适用于______问题。

答案:二分类问题第三部分:简答题(每题10分,共40分)1.请简述数据挖掘的流程及各个阶段的主要任务。

答:数据挖掘的流程一般包括问题定义、数据收集、数据预处理、模型选择与建立、模型评估与选择、知识应用等阶段。

数据挖掘期末考试题库

数据挖掘期末考试题库

数据挖掘期末考试题库第一部分:单项选择题(每题2分,共20分)1. 数据挖掘的主要任务是:A. 数据清洗B. 数据可视化C. 数据预处理D. 信息提取2. 下列哪种算法不属于分类算法?A. 决策树B. K均值聚类C. 朴素贝叶斯D. 支持向量机3. 以下哪种评估指标适合用于回归模型的评价?A. 准确率B. 精确率C. 均方误差D. 召回率4. 什么是过拟合?A. 欠拟合B. 模型泛化能力差C. 训练数据效果好,测试数据效果差D. 模型对训练数据过于复杂5. 数据挖掘中最常用的算法之一是:A. 关联规则挖掘B. 地理聚类算法C. PCA主成分分析D. 神经网络6. 在K均值聚类算法中,K的取值是:A. 随机指定B. 需要提前确定C. 可以根据数据自动调整D. 由数据量来决定7. 数据不平衡问题常见的解决方法是:A. 降采样B. 升采样C. 阈值移动D. 过采样8. 常用的数据变换方法包括:A. 标准化B. 特征选择C. 特征抽取D. 以上都是9. 以下哪个不是决策树算法?A. CARTB. SVMC. ID3D. C4.510. 数据挖掘的任务包括:A. 分类B. 预测C. 聚类D. 以上都是第二部分:简答题(每题5分,共25分)1. 请简要介绍数据挖掘的相关概念及主要任务。

2. 什么是数据清洗?数据预处理的主要步骤有哪些?3. 请简要描述K均值聚类算法的原理及应用场景。

4. 什么是特征选择?为什么特征选择在数据挖掘中很重要?5. 请解释模型评估中的ROC曲线及AUC指标的含义。

第三部分:分析题(每题10分,共30分)1. 请根据提供的数据集,使用决策树算法进行分类预测,并对算法进行评估。

2. 请使用K均值聚类算法对特定数据进行聚类,并解释聚类结果的含义。

3. 请选择一个自己感兴趣的数据集,设计一个数据挖掘项目,并说明项目的背景、目的、方法及预期结果。

第四部分:应用题(每题15分,共30分)1. 请根据给定的销售数据,利用关联规则挖掘算法找出频繁项集和关联规则,并分析其规则含义及实际应用。

《数据挖掘方法》期末考试试卷附答案

《数据挖掘方法》期末考试试卷附答案

《数据挖掘方法》期末考试试卷附答案数据挖掘方法期末考试试卷一、选择题(每题5分,共25分)1. 数据挖掘的目的是从大量数据中发现有价值的模式和知识。

以下哪项不是数据挖掘的主要任务?A. 分类B. 聚类C. 预测D. 图像识别答案:D2. 决策树是一种常见的分类算法,它在哪个阶段进行剪枝?A. 生成阶段B. 修剪阶段C. 测试阶段D. 应用阶段答案:B3. K-近邻算法中,K值一般取多少比较合适?A. 1B. 3C. 5D. 10答案:B4. 在关联规则挖掘中,最小支持度是指?A. 一条规则必须满足的最小条件概率B. 一条规则必须满足的最小置信度C. 数据集中满足条件概率的最小值D. 数据集中满足条件的最小实例数答案:D5. 以下哪种技术不属于聚类分析?A. 层次聚类B. 基于密度的聚类C. 基于距离的聚类D. 基于规则的聚类答案:D二、填空题(每题5分,共25分)1. 在分类算法中,将数据集中的每个实例分配给一个类别的过程称为________。

答案:分类2. 决策树算法中,用于评估节点纯度的指标有________、________和________等。

答案:信息熵、增益、增益率3. K-均值聚类算法中,簇心的初始值通常通过________算法来确定。

答案:随机初始化4. 在关联规则挖掘中,________、________和________是三个基本的概念。

答案:项集、频繁项集、关联规则5. 在基于距离的聚类算法中,常用的距离度量有________、________和________等。

答案:欧氏距离、曼哈顿距离、余弦相似度三、简答题(每题10分,共30分)1. 请简要解释什么是决策树,以及它的工作原理。

答案:决策树是一种常见的分类和回归算法,它通过一系列的判断条件将数据集划分为不同的子集,最终达到分类或回归的目的。

它的工作原理是从根节点开始,根据特征值的不同,选择合适的分支,一直递归到叶节点,得到最终的预测结果。

数据挖掘期末考试试题及答案详解

数据挖掘期末考试试题及答案详解

数据挖掘期末考试试题及答案详解一、选择题(每题2分,共20分)1. 数据挖掘中,关联规则分析主要用于发现数据中的哪种关系?A. 因果关系B. 相关性C. 聚类关系D. 顺序关系答案:B2. 在决策树算法中,哪个指标用于评估特征的重要性?A. 信息增益B. 支持度C. 置信度D. 覆盖度答案:A3. 以下哪个是数据挖掘的常用方法?A. 线性回归B. 逻辑回归C. 神经网络D. 所有选项答案:D4. K-means聚类算法中,K值的选择是基于什么?A. 数据的维度B. 聚类中心的数量C. 数据的分布情况D. 数据的规模答案:B5. 以下哪个是数据挖掘中常用的数据预处理技术?A. 数据清洗B. 数据转换C. 数据归一化D. 所有选项答案:D...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 简述什么是数据挖掘,并列举其主要的应用领域。

答案:数据挖掘是从大量数据中自动或半自动地发现有趣模式的过程。

它主要应用于市场分析、风险管理、欺诈检测、客户关系管理等领域。

2. 解释什么是朴素贝叶斯分类器,并说明其在数据挖掘中的应用。

答案:朴素贝叶斯分类器是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立。

在数据挖掘中,朴素贝叶斯分类器常用于文本分类、垃圾邮件检测等任务。

3. 描述K-means聚类算法的基本原理,并举例说明其在实际问题中的应用。

答案:K-means聚类算法是一种基于距离的聚类方法,其目标是将数据点划分到K个簇中,使得每个数据点与其所属簇的中心点的距离之和最小。

例如,在市场细分中,K-means聚类可以用来将客户根据购买行为划分为不同的群体。

三、计算题(每题25分,共50分)1. 给定一组数据点:{(1,2), (2,3), (3,4), (4,5)},请使用K-means算法将这些点分为两个簇,并计算簇的中心点。

答案:首先随机选择两个点作为初始中心点,然后迭代地将每个点分配到最近的中心点,接着更新中心点。

数据挖掘与分析考试题库(含答案)

数据挖掘与分析考试题库(含答案)

数据挖掘与分析考试题库(含答案)选择题1. 数据挖掘的主要功能是什么?A. 挖掘数据潜在的信息B. 对数据进行记录和处理C. 提高数据存储的效率D. 对数据进行分类和排序Answer: A2. 下列哪种算法不属于聚类算法?A. K-MeansB. BP神经网络C. DBSCAND. 层次聚类Answer: B3. 数据挖掘中使用最多的算法是什么?A. 决策树B. 关联规则C. 神经网络D. 贝叶斯Answer: A4. 数据挖掘的预处理不包括下列哪项?A. 数据压缩B. 数据清洗C. 数据变换D. 数据标准化Answer: A5. 下列哪项不是数据挖掘的步骤?A. 数据预处理B. 特征选择C. 模型评价D. 问题求解Answer: D填空题1. 数据挖掘的类型有分类、聚类和__________。

(回归)2. 决策树分类的根节点对应的是__________。

(最优属性)3. 聚类算法的优化目标是__________。

(最小化)4. 在SPSS Modeler中可以通过“数据变换”节点进行数据__________。

(离散化)5. 数据挖掘可以发现数据中的__________规律。

(潜在)论述题1. 请简要介绍数据挖掘的主要任务及其流程。

答:数据挖掘的主要任务是挖掘数据中潜在的信息,包括分类、聚类、关联规则等。

其流程通常包括数据预处理、特征选择、模型构建和模型评价等步骤。

其中,数据预处理是数据挖掘的重要步骤,包括数据清洗、数据变换、数据标准化等,主要是为了提高数据的质量和可用性。

特征选择是指选择最具有代表性的特征,以便于数据的分析和建模,主要是为了降低模型的复杂度和提高模型的精度。

模型构建是依据所选的算法来构建数据模型,包括决策树、神经网络、关联规则等。

模型评价则是通过对构建的模型进行测试和评价,以便于知道模型的优劣和改进方向。

2. 请论述聚类分析的常用算法及其优缺点。

答:聚类分析的常用算法包括K-Means、层次聚类和DBSCAN等。

数据挖掘考试题目简答题

数据挖掘考试题目简答题

多练出技巧巧思出硕果数据挖掘考试题目——简答题(1)什么是数据挖掘?什么是知识发现?答:数据挖掘是在大型数据存储库中,自动地发现有用的信息的过程。

知识发现是将未加工的数据转换为有用信息的整个过程。

(2)数据挖掘要解决的问题包括哪五项?答:可伸缩、高维性、异种数据和复杂数据、数据的所有权与分布、非传统的分析。

(3)数据的属性分别包括哪几种类型?分别可执行什么操作?答:标称(nomial)相异性序数(ordinal)区间(interval)比率(ratio)=和≠序<、≤、>、≥加法+、-乘法×、÷(4)数据中遗漏值的处理策略包括哪几种?答:1、删除数据对象或属性,如遗漏数据对象很少2、估计遗漏值,如插值或最近邻法3、在分析时忽略遗漏值,如忽略属性计算相似度(5)数据预处理的工作可以包括哪两类?答:1、选择分析所需要的数据对象和属性2、创建或改变属性(6)聚集的目的是什么?答:1、数据约减2、改变尺度3、提高数据的稳定性(7)有效抽样的定义是什么?答:1、如果样本是有代表性的,则使用样本与使用整个数据集的效果几乎一样2、样本具有足够的代表性的前提是它近似地具有与原数据集相同的感兴趣的性质(8)维归约的目的是什么?答:1、避免维灾难2、减少数据挖掘算法的时间与空间开销3、便于模型的理解与数据的可视化4、删除无关特征并降低噪声(9)特征子集的选择方法中,除了基于领域知识和穷举法,还包括三种方法?请列举并简要说明答:1、嵌入法:特征子集选择算法作为数据挖掘算法的一部分自然存在2、过滤法:使用某种独立于数据挖掘任务的方法,在数据挖掘算法运行前进行特征选择3、包装法:将目标数据挖掘算法作为黑盒,使用类似理想算法的方法,但并不枚举所有可能(10)当满足什么性质时,距离可以称为度量?答:1、非负性,d(p, q) >=0 ,当且仅当p = q时d(p, q) = 02、对称性,d(p, q) = d(q, p)3、三角不等式:d(p, r) <=d(p, q) + d(q, r)同时满足以上三个性质的距离称为度量。

数据挖掘考试题及答案

数据挖掘考试题及答案

数据挖掘考试题及答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-meansD. 神经网络答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现以下哪种类型的模式?A. 序列模式B. 分类模式C. 频繁项集D. 聚类模式答案:C4. 以下哪个指标不是用于评估分类模型性能的?A. 准确率B. 召回率C. F1分数D. 马氏距离答案:D5. 在数据挖掘中,以下哪个算法是用于聚类的?A. K-meansB. 逻辑回归C. 随机森林D. 支持向量机答案:A6. 以下哪个选项不是数据挖掘过程中的步骤?A. 数据预处理B. 模式发现C. 结果评估D. 数据存储答案:D7. 在数据挖掘中,异常检测的主要目的是识别以下哪种类型的数据?A. 频繁出现的模式B. 罕见的模式C. 预测未来的数据D. 聚类的数据答案:B8. 以下哪个选项不是数据挖掘中常用的数据预处理技术?A. 数据清洗B. 数据集成C. 数据变换D. 数据压缩答案:D9. 在数据挖掘中,以下哪个算法是用于特征选择的?A. 主成分分析B. 线性判别分析C. 支持向量机D. 决策树答案:D10. 以下哪个选项不是数据挖掘中常用的数据表示方法?A. 决策树B. 向量空间模型C. 邻接矩阵D. 频率分布表答案:D二、多项选择题(每题3分,共15分)11. 数据挖掘中常用的聚类算法包括哪些?A. K-meansB. 层次聚类C. DBSCAND. 支持向量机答案:A、B、C12. 在数据挖掘中,以下哪些是关联规则挖掘的典型应用场景?A. 市场篮分析B. 异常检测C. 推荐系统D. 社交网络分析答案:A、C13. 数据挖掘中,以下哪些是分类模型评估的常用指标?A. 准确率B. 召回率C. ROC曲线D. 马氏距离答案:A、B、C14. 在数据挖掘中,以下哪些是特征工程的步骤?A. 特征选择B. 特征提取C. 特征变换D. 数据清洗答案:A、B、C15. 数据挖掘中,以下哪些是数据预处理的常见任务?A. 缺失值处理B. 异常值检测C. 数据规范化D. 数据压缩答案:A、B、C三、简答题(每题10分,共30分)16. 请简述数据挖掘中分类和聚类的主要区别。

数据挖掘期末考试题及答案

数据挖掘期末考试题及答案

数据挖掘期末考试题及答案一、选择题(每题2分,共20分)1. 数据挖掘中的关联规则挖掘主要用来发现数据项之间的什么关系?A. 因果关系B. 相关性C. 线性关系D. 依赖关系答案:B2. 决策树算法中,哪个指标用于选择分裂节点?A. 信息增益B. 支持度C. 置信度D. 精确度答案:A3. 聚类分析中,K-means算法的K值表示什么?A. 聚类中心的数量B. 聚类半径C. 聚类成员的最小数量D. 聚类成员的最大数量答案:A4. 在数据挖掘中,哪个算法常用于分类问题?A. Apriori算法B. K-means算法C. KNN算法D. ID3算法答案:C5. 数据挖掘中的异常检测通常用于哪些领域?A. 市场分析B. 客户细分C. 欺诈检测D. 趋势预测答案:C6. 朴素贝叶斯分类器属于哪种类型的学习算法?A. 监督学习B. 非监督学习C. 半监督学习D. 强化学习答案:A7. 在关联规则挖掘中,支持度是指什么?A. 规则出现的频率B. 规则的置信度C. 规则的覆盖度D. 规则的强度答案:A8. 神经网络在数据挖掘中通常用于解决什么问题?A. 聚类B. 分类C. 回归D. 所有上述问题答案:D9. 哪个算法是数据挖掘中用于特征选择的算法?A. 主成分分析(PCA)B. 线性判别分析(LDA)C. 独立成分分析(ICA)D. 随机森林答案:D10. 数据挖掘中的时间序列分析通常用于哪些领域?A. 股票市场预测B. 销售预测C. 天气预报D. 所有上述领域答案:D二、简答题(每题10分,共30分)1. 简述数据挖掘中的主要任务有哪些?答案:数据挖掘的主要任务包括分类、聚类、关联规则挖掘、异常检测、趋势预测等。

2. 描述决策树算法的基本原理。

答案:决策树算法是一种监督学习算法,它通过从数据特征中选择最优特征来构建决策树,从而实现对数据的分类或回归。

算法通过递归地选择最优分裂节点,构建树状结构,直到满足停止条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.何谓数据挖掘?它有哪些方面的功能?从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程称为数据挖掘。

相关的名称有知识发现、数据分析、数据融合、决策支持等。

数据挖掘的功能包括:概念描述、关联分析、分类与预测、聚类分析、趋势分析、孤立点分析以及偏差分析等。

2.何谓粒度?它对数据仓库有什么影响?按粒度组织数据的方式有哪些?粒度是指数据仓库的数据单位中保存数据细化或综合程度的级别。

粒度影响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。

按粒度组织数据的方式主要有:①简单堆积结构②轮转综合结构③简单直接结构④连续结构3.简述数据仓库设计的三级模型及其基本内容。

概念模型设计是在较高的抽象层次上的设计,其主要内容包括:界定系统边界和确定主要的主题域。

逻辑模型设计的主要内容包括:分析主题域、确定粒度层次划分、确定数据分割策略、定义关系模式、定义记录系统。

物理数据模型设计的主要内容包括:确定数据存储结构、确定数据存放位置、确定存储分配以及确定索引策略等。

在物理数据模型设计时主要考虑的因素有: 存取时间、空间利用率和维护代价等。

提高性能的主要措施有划分粒度、数据分割、合并表、建立数据序列、引入冗余、生成导出数据、建立广义索引等。

4.在数据挖掘之前为什么要对原始数据进行预处理?原始业务数据来自多个数据库或数据仓库,它们的结构和规则可能是不同的,这将导致原始数据非常的杂乱、不可用,即使在同一个数据库中,也可能存在重复的和不完整的数据信息,为了使这些数据能够符合数据挖掘的要求,提高效率和得到清晰的结果,必须进行数据的预处理。

为数据挖掘算法提供完整、干净、准确、有针对性的数据,减少算法的计算量,提高挖掘效率和准确程度。

5.简述数据预处理方法和内容。

①数据清洗:包括填充空缺值,识别孤立点,去掉噪声和无关数据。

②数据集成:将多个数据源中的数据结合起来存放在一个一致的数据存储中。

需要注意不同数据源的数据匹配问题、数值冲突问题和冗余问题等。

③数据变换:将原始数据转换成为适合数据挖掘的形式。

包括对数据的汇总、聚集、概化、规范化,还可能需要进行属性的重构。

④数据归约:缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到和原始数据相同的分析结果。

6.简述数据清理的基本内容。

①尽可能赋予属性名和属性值明确的含义;②统一多数据源的属性值编码;③去除无用的惟一属性或键值(如自动增长的);④去除重复属性(在某些分析中,年龄和出生日期可能就是重复的属性,但在某些时候它们可能又是同时需要的)⑤去除可忽略字段(大部分为空值的属性一般是没有什么价值的,如果不去除可能造成错误的数据挖掘结果)⑥合理选择关联字段(对于多个关联性较强的属性,重复无益,只需选择其中的部分用于数据挖掘即可,如价格、数据、金额)⑦去掉数据中的噪音、填充空值、丢失值和处理不一致数据。

7.简述处理空缺值的方法。

①忽略该记录;②去掉属性;③手工填写空缺值;④使用默认值;⑤使用属性平均值;⑥使用同类样本平均值;⑦预测最可能的值。

8.常见的分箱方法有哪些?数据平滑处理的方法有哪些?分箱的方法主要有:① 统一权重法(又称等深分箱法) ② 统一区间法(又称等宽分箱法) ③ 最小熵法 ④自定义区间法数据平滑的方法主要有:平均值法、边界值法和中值法。

9.何谓数据规范化?规范化的方法有哪些?写出对应的变换公式。

将数据按比例缩放(如更换大单位),使之落入一个特定的区域(如0.0~1.0),称为规范化。

规范化的常用方法有:(1) 最大-最小规范化:(2) 零-均值规范化:(3)小数定标规范化:x =x 0/10α10.数据归约的方法有哪些?为什么要进行维归约?① 数据立方体聚集 ② 维归约 ③ 数据压缩 ④ 数值压缩⑤离散化和概念分层维归约可以去掉不重要的属性,减少数据立方体的维数,从而减少数据挖掘处理的数据量,提高挖掘效率。

11.何谓聚类?它与分类有什么异同?聚类是将物理或抽象对象的集合分组成为多个类或簇()的过程,使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。

聚类与分类不同,聚类要划分的类是未知的,分类则可按已知规则进行;聚类是一种无指导学习,它不依赖预先定义的类和带类标号的训练实例,属于观察式学习,分类则属于有指导的学习,是示例式学习。

12.举例说明聚类分析的典型应用。

①商业:帮助市场分析人员从客户基本库中发现不同的客户群,并且用不同的购买模式描述不同客户群的特征。

②生物学:推导植物或动物的分类,对基于进行分类,获得对种群中固有结()()0000max min x x min minmax min -=-+-0XXx x σ-=构的认识。

③文档分类④其他:如地球观测数据库中相似地区的确定;各类保险投保人的分组;一个城市中不同类型、价值、地理位置房子的分组等。

⑤聚类分析还可作为其他数据挖掘算法的预处理:即先进行聚类,然后再进行分类等其他的数据挖掘。

聚类分析是一种数据简化技术,它把基于相似数据特征的变量或个案组合在一起。

13.聚类分析中常见的数据类型有哪些?何谓相异度矩阵?它有什么特点?常见数据类型有区间标度变量、比例标度型变量、二元变量、标称型、序数型以及混合类型等。

相异度矩阵是用于存储所有对象两两之间相异度的矩阵,为一个维的单模矩阵。

其特点是d()(),d()=0,d()=0。

如下所示:14.分类知识的发现方法主要有哪些?分类过程通常包括哪两个步骤?分类规则的挖掘方法通常有:决策树法、贝叶斯法、人工神经网络法、粗糙集法和遗传算法。

分类的过程包括2步:首先在已知训练数据集上,根据属性特征,为每一种类别找到一个合理的描述或模型,即分类规则;然后根据规则对新数据进行分类。

15.什么是决策树?如何用决策树进行分类?决策树是用样本的属性作为结点,用属性的取值作为分支的树结构。

它是利用信息论原理对大量样本的属性进行分析和归纳而产生的。

决策树的根结点是所有样本中信息量最大的属性。

树的中间结点是以该结点为根的子树所包含的样本子集中信息量最大的属性。

决策树的叶结点是样本的类别值。

决策树用于对新样本的分类,即通过决策树对新样本属性值的测试,从树的根结点开始,按照样本属性的取值,逐渐沿着决策树向下,直到树的叶结点,该叶结点表示的类别就是新样本的类别。

决策树方法是数据挖掘中非常有效的分类方法。

0d(2,1)0d(3,1)d(3,2)0d(n,1)d(n,2)......0⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦M M M O16.简述3算法的基本思想及其主算法的基本步骤。

首先找出最有判别力的因素,然后把数据分成多个子集,每个子集又选择最有判别力的因素进一步划分,一直进行到所有子集仅包含同一类型的数据为止。

最后得到一棵决策树,可以用它来对新的样例进行分类。

主算法包括如下几步:①从训练集中随机选择一个既含正例又含反例的子集(称为窗口);②用“建树算法”对当前窗口形成一棵决策树;③对训练集(窗口除外)中例子用所得决策树进行类别判定,找出错判的例子;④若存在错判的例子,把它们插入窗口,重复步骤②,否则结束。

17.简述3算法的基本思想及其建树算法的基本步骤。

首先找出最有判别力的因素,然后把数据分成多个子集,每个子集又选择最有判别力的因素进一步划分,一直进行到所有子集仅包含同一类型的数据为止。

最后得到一棵决策树,可以用它来对新的样例进行分类。

建树算法的具体步骤如下:①对当前例子集合,计算各特征的互信息;②选择互信息最大的特征;③把在处取值相同的例子归于同一子集,取几个值就得几个子集;④对既含正例又含反例的子集,递归调用建树算法;⑤若子集仅含正例或反例,对应分枝标上P或N,返回调用处。

18.设某事务项集构成如下表,填空完成其中支持度和置信度的计算。

19.并说明其含义。

基本特征:①多输入、单输出;②突触兼有兴奋和抑制两种性能;③可时间加权和空间加权;④可产生脉冲;⑤脉冲可进行传递;⑥非线性,有阈值。

方程:()i ij j j jS f W S θ=-∑,是神经元之间的连接强度,j θ是阈值,f (x )是阶梯函数。

20.遗传算法与传统寻优算法相比有什么特点?① 遗传算法为群体搜索,有利于寻找到全局最优解; ② 遗传算法采用高效有方向的随机搜索,搜索效率高;③ 遗传算法处理的对象是个体而不是参变量,具有广泛的应用领域; ④遗传算法使用适应值信息评估个体,不需要导数或其他辅助信息,运算速度快,适应性好;⑤遗传算法具有隐含并行性,具有更高的运行效率。

21.写出非对称二元变量相异度计算公式(即系数),并计算下表中各对象间的相异度。

22.简述平均算法的输入、输出及聚类过程(流程)。

输入:簇的数目k 和包含n 个对象的数据集。

输出:k 个簇,使平方误差准则最小。

步骤:① 任意选择k 个对象作为初始的簇中心;②计算其它对象与这k 个中心的距离,然后把每个对象归入离它“最近”的簇;③计算各簇中对象的平均值,然后重新选择簇中心(离平均值“最近”的对象值);④重复第2第3步直到簇中心不再变化为止。

23.简述中心点算法的输入、输出及聚类过程(流程)。

输入:结果簇的数目k,包含n个对象的数据集输出:k个簇,使得所有对象与其最近中心点的相异度总和最小。

流程:①随机选择k个对象作为初始中心点;②计算其它对象与这k个中心的距离,然后把每个对象归入离它“最近”的簇;③随机地选择一个非中心点对象,并计算用代替的总代价S;④如果S<0,则用代替,形成新的k个中心点集合;⑤重复迭代第3、4步,直到中心点不变为止。

24.何谓文本挖掘?它与信息检索有什么关系(异同)。

文本挖掘是从大量文本数据中提取以前未知的、有用的、可理解的、可操作的知识的过程。

它与信息检索之间有以下几方面的区别:①方法论不同:信息检索是目标驱动的,用户需要明确提出查询要求;而文本挖掘结果独立于用户的信息需求,是用户无法预知的。

②着眼点不同:信息检索着重于文档中字、词和链接;而文本挖掘在于理解文本的内容和结构。

③目的不同:信息检索的目的在于帮助用户发现资源,即从大量的文本中找到满足其查询请求的文本子集;而文本挖掘是为了揭示文本中隐含的知识。

④评价方法不同:信息检索用查准率和查全率来评价其性能。

而文本挖掘采用收益、置信度、简洁性等来衡量所发现知识的有效性、可用性和可理解性。

⑤使用场合不同:文本挖掘是比信息检索更高层次的技术,可用于信息检索技术不能解决的许多场合。

一方面,这两种技术各有所长,有各自适用的场合;另一方面,可以利用文本挖掘的研究成果来提高信息检索的精度和效率,改善检索结果的组织,使信息检索系统发展到一个新的水平。

相关文档
最新文档