高中数学-二次函数的性质与图象练习

合集下载

高一数学二次函数与图像题

高一数学二次函数与图像题

高一数学二次函数与图像题二次函数是高中数学中的重要内容之一,它在数学模型、图像绘制等方面具有广泛的应用。

本文将通过几个具体的题目,来讨论二次函数的性质、图像特点以及解题技巧。

1. 求解二次函数的顶点坐标题目:已知二次函数 $y = ax^2 + bx + c$ 的顶点坐标为 $(-1, 2)$,且过点 $(2, 5)$。

求 $a$、$b$、$c$ 的值。

解析:由于已知顶点坐标为 $(-1, 2)$,可得到一个方程:\[a(-1)^2 + b(-1) + c = 2\]即:\[a - b + c = 2\]又因为过点 $(2, 5)$,可得到另一个方程:\[a(2)^2 + b(2) + c = 5\]即:\[4a + 2b + c = 5\]解方程组\[\begin{cases} a - b + c = 2 \\ 4a + 2b + c = 5 \end{cases}\]经过计算,得到 $a = 2$,$b = -1$,$c = 1$。

因此,该二次函数的表达式为 $y = 2x^2 -x +1$。

2. 求二次函数的图像与相关性质题目:已知函数 $y = x^2 + bx + c$ 的图像与 $x$ 轴相切于点 $(1,0)$,且该函数的极值为 $-4$,求 $b$、$c$ 的值。

解析:已知函数与 $x$ 轴相切于点 $(1, 0)$,说明该点为函数的顶点。

即顶点坐标为 $(1, -4)$。

因此,我们得到方程:\[1 + b + c = -4\]同时,根据极值的性质,可以知道顶点的纵坐标即是该函数的极值。

所以该函数极值为 $-4$。

解方程\[1 + b + c = -4\]经过计算,得到 $b = -6$,$c = -1$。

因此,该二次函数的表达式为 $y = x^2 - 6x - 1$。

此外,该函数的图像开口向上,顶点为 $(1, -4)$,且与 $x$ 轴相切于点 $(1, 0)$。

3. 解二次函数不等式题目:求解二次函数 $y = 2x^2 + 3x - 2$ 的不等式 $y \geq 0$ 的解集。

二次函数图像与性质练习题

二次函数图像与性质练习题

二次函数图像与性质练习题二次函数是高中数学中的一个重要内容,它在数学中有着广泛的应用。

而对于学生来说,了解二次函数的图像和性质是非常重要的。

本文将通过一些练习题来帮助学生深入理解二次函数的图像和性质。

练习题一:给定函数 f(x) = 2x^2 + 3x - 2,求解以下问题:1. 求函数 f(x) 的顶点坐标和对称轴方程;2. 求函数 f(x) 的零点;3. 判断函数 f(x) 的开口方向和最值。

解答:1. 首先,我们知道二次函数的顶点坐标可以通过公式 x = -b/2a 和 y = f(-b/2a) 来求解。

将函数 f(x) 的系数代入公式中,可以得出顶点坐标为 (-3/4, -23/8)。

对称轴方程为 x = -3/4。

2. 函数 f(x) 的零点即为方程 2x^2 + 3x - 2 = 0 的解。

通过因式分解或者使用求根公式,可以得到零点为 x = 1/2 和 x = -2。

3. 由于二次函数的系数 a 大于 0,所以函数的开口方向是向上的。

同时,由于顶点坐标的 y 值为 -23/8,所以函数的最值为最小值。

练习题二:给定函数 g(x) = -x^2 + 4x + 5,求解以下问题:1. 求函数 g(x) 的顶点坐标和对称轴方程;2. 求函数 g(x) 的零点;3. 判断函数 g(x) 的开口方向和最值。

解答:1. 同样地,我们可以通过公式 x = -b/2a 和 y = g(-b/2a) 来求解顶点坐标。

将函数 g(x) 的系数代入公式中,可以得出顶点坐标为 (2, 9)。

对称轴方程为 x = 2。

2. 函数 g(x) 的零点即为方程 -x^2 + 4x + 5 = 0 的解。

通过因式分解或者使用求根公式,可以得到零点为 x = -1 和 x = 5。

3. 由于二次函数的系数 a 小于 0,所以函数的开口方向是向下的。

同时,由于顶点坐标的 y 值为 9,所以函数的最值为最大值。

通过以上练习题,我们可以看到二次函数的图像和性质是与函数的系数相关的。

二次函数练习题及答案

二次函数练习题及答案

二次函数练习题及答案二次函数是高中数学中的一个重要知识点,也是数学建模和应用题中常见的内容。

在学习二次函数的过程中,练习题是必不可少的。

通过大量的练习,可以加深对二次函数的理解,提高解题能力。

本文将给出一些常见的二次函数练习题及答案,希望对读者的学习有所帮助。

题目一:已知二次函数y=ax^2+bx+c的图象过点(1,3),且在x轴上的截距为4,求a,b,c的值。

解答:由已知条件可得方程组:3=a+b+c0=a+4b+16c解方程组得:a=2,b=-6,c=7题目二:已知二次函数y=ax^2+bx+c的图象过点(-2,5),且在x轴上的截距为6,求a,b,c的值。

解答:由已知条件可得方程组:5=4a-2b+c0=36a+6b+c解方程组得:a=-1/6,b=1/3,c=1/2题目三:已知二次函数y=ax^2+bx+c的图象过点(3,2),且在x轴上的截距为5,求a,b,c的值。

解答:由已知条件可得方程组:2=9a+3b+c0=25a+5b+c解方程组得:a=-1/5,b=2/5,c=0题目四:已知二次函数y=ax^2+bx+c的图象过点(-3,4),且在x轴上的截距为7,求a,b,c的值。

解答:由已知条件可得方程组:4=9a-3b+c0=49a+7b+c解方程组得:a=-1/7,b=2/7,c=4/7通过以上四道题目的练习,我们可以发现,已知二次函数的图象经过一个点和在x轴上的截距,可以得到一个含有三个未知数的方程组,通过解方程组可以求解出a,b,c的值。

这是二次函数的基本应用之一。

除了已知图象经过一个点和在x轴上的截距,还有其他常见的二次函数练习题类型,如已知顶点坐标、已知对称轴、已知与其他函数的关系等。

通过大量的练习,可以熟练掌握这些题型,并且在实际应用中能够灵活运用。

二次函数练习题的答案不仅仅是求出a,b,c的值,更重要的是理解解题过程。

在解题过程中,我们需要灵活运用二次函数的性质,如顶点坐标公式、对称性、判别式等。

高中数学第二章函数2.2一次函数和二次函数2.2.2二次函数的性质与图象自我小测新人教B版必修1

高中数学第二章函数2.2一次函数和二次函数2.2.2二次函数的性质与图象自我小测新人教B版必修1

2.2.2 二次函数的性质与图象自我小测1.函数y=x2-2x+m的单调增区间为( )A.(-∞,+∞) B.[1,+∞) C.(-∞,1] D.[-2,+∞)2.函数f(x)=x2-mx+4(m>0)在(-∞,0]上的最小值是( )A.4 B.-4 C.与m的取值有关 D.不存在3.已知二次函数y=6x-2x2-m的值恒小于零,那么实数m的取值范围为( )A.92⎧⎫⎨⎬⎩⎭B.9,2⎛⎫+∞⎪⎝⎭C.{9} D.(-∞,9)4.已知一次函数y=ax+c(a≠0)与二次函数y=ax2+bx+c(a≠0),它们在同一平面直角坐标系中的大致图象是( )5.已知定义在R上的二次函数f(x),对任意x∈R,有f(4-x)=f(x),且函数在区间(2,+∞)上是增函数,则( )A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25)C.f(11)<f(-25)<f(80) D.f(-25)<f(80)<f(11)6.若函数y=x2-3x-4的定义域为[0,m],值域为25,44⎡⎤--⎢⎥⎣⎦,则m的取值范围是( )A.(0,4]B.3,42⎡⎤⎢⎥⎣⎦C.3,32⎡⎤⎢⎥⎣⎦D.3,2⎡⎫+∞⎪⎢⎣⎭7.抛物线y=-x2-2x+3与x轴的两个交点为A,B,顶点为C,则△ABC的面积为__________.8.设二次函数f(x)=ax2-2ax+c在区间[0,1]上是减函数,且f(m)≤f(0),则实数m 的取值范围是__________.9.若二次函数f(x)满足下列性质:(1)定义域为R,值域为[1,+∞);(2)图象关于x=2对称;(3)对任意x1,x2∈(-∞,0),若x1<x2,都有f(x1)>f(x2).请写出函数f(x)的一个解析式__________(只要写出一个即可).10.已知二次函数y=x2-2kx+k2+k-2.(1)当k=1时,写出函数图象的对称轴方程、单调区间;(2)当实数k为何值时,图象经过原点?(3)当实数k在什么范围取值时,函数图象的顶点在第四象限内?11.定义在R上的函数y=f(x)是偶函数,当x≥0时,f(x)=-4x2+8x-3.(1)当x<0时,求f(x)的解析式.(2)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).参考答案1. 解析:此二次函数的图象开口向上,且对称轴为x =1,所以其单调增区间为[1,+∞).答案:B2. 解析:∵函数f (x )的图象开口向上,且对称轴x =2m>0, ∴f (x )在(-∞,0]上为减函数, ∴f (x )min =f (0)=4. 答案:A3. 解析:由题意,得Δ=36-4×2m <0,则m >92. 答案:B 4. 答案:D5. 解析:因为对任意x ∈R ,有f (4-x )=f (x ),所以二次函数f (x )图象的对称轴为直线x =2.因为函数在(2,+∞)上是增函数,所以抛物线开口向上.又因为11离2最近,80离2最远,所以f (11)最小,f (80)最大. 所以f (11)<f (-25)<f (80). 答案:C6. 解析:函数y =x 2-3x -4=32x ⎛⎫-⎪⎝⎭2-254,作出图象如图所示:由图象知对称轴为x =32,f (0)=-4,f 32⎛⎫⎪⎝⎭=-254,f (3)=-4, 若函数在[0,m ]上有最小值-254, 所以m ≥32. 若函数在[0,m ]上有最大值-4, 因为f (0)=f (3)=-4,所以m≤3.综上可知,32≤m≤3.答案:C7.解析:由y=-x2-2x+3=-(x+1)2+4,得点A(-3,0),B(1,0),C(-1,4),所以|AB|=|1-(-3)|=4,点C到边AB的距离为4,所以S△ABC=12×4×4=8.答案:88.解析:二次函数f(x)=ax2-2ax+c图象的对称轴为x=1.由f(x)在[0,1]上是减函数,可知a>0,所以f(m)≤f(0)可化为am2-2am+c≤c,即m2-2m≤0,得0≤m≤2.答案:[0,2]9.解析:二次函数的最小值为1,图象关于x=2对称,在(-∞,0)上为减函数,所以f(x)=(x-2)2+1(f(x)=a(x-2)2+1(a>0)均可).答案:f(x)=(x-2)2+1(f(x)=a(x-2)2+1(a>0)均可)10. 解:(1)当k=1时,函数y=x2-2x,函数图象的对称轴方程为x=1,函数的单调减区间为(-∞,1],单调增区间为[1,+∞).(2)当k2+k-2=0,即k=-2或k=1时,函数y=x2-2kx+k2+k-2的图象经过原点.(3)因为函数y=x2-2kx+k2+k-2图象的顶点坐标为(k,k-2),若函数图象的顶点在第四象限内,则20kk>⎧⎨<⎩,-,解得0<k<2.11. 解:(1)设x<0,则-x>0,f(-x)=-4(-x)2+8(-x)-3=-4x2-8x-3,∵f(x)是偶函数,∴f(-x)=f(x),∴x<0时,f(x)=-4x2-8x-3.(2)由(1)知f(x)=224(1)104(1)10x xx x⎧≥⎪⎨<⎪⎩--+,,-++,,∴y=f(x)有最大值f(1)=f(-1)=1.函数y=f(x)的单调增区间是(-∞,-1]和[0,1];单调减区间是[-1,0)和[1,+∞).。

高中数学同步学案 二次函数的图象和性质——增减性和最值

高中数学同步学案 二次函数的图象和性质——增减性和最值

1.2.7 二次函数的图象和性质——增减性和最值二次函数的增减性与最值定理定理 二次函数f(x)=ax 2+bx +c(a≠0,x ∈R),当a>0(a<0)时,在区间⎝⎛⎦⎥⎤-∞,-b 2a 上递减(递增),在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上递增(递减),图象曲线开口向上(下),在x =-b 2a 处取到最小(大)值f ⎝ ⎛⎭⎪⎫-b 2a =-Δ4a ,这里Δ=b 2-4ac.试求二次函数y =x 2+2x -3的单调区间和最值.[提示] 在区间(-∞,-1]上是减函数,在[-1,+∞)上为增函数,当x =-1时,y 有最小值,y min =-4.二次函数的单调性及应用[例1] 已知函数(1)求这个函数图象的顶点坐标和对称轴; (2)求这个函数的最小值;(3)不直接计算函数值,试比较f(-1)和f(1)的大小. [思路点拨] 配方后确定单调区间,利用单调性求解.[解] 配方,得y =2⎝ ⎛⎭⎪⎫x -342-18.(1)顶点坐标为⎝ ⎛⎭⎪⎫34,-18,对称轴为x =34.(2)因为2>0,所以抛物线开口向上, 所以当x =34时,y min =-18.(3)∵函数y =2x 2-3x +1的对称轴为x =34,∴f ⎝ ⎛⎭⎪⎫34-x =f ⎝ ⎛⎭⎪⎫34+x . ∴f(-1)=f ⎝ ⎛⎭⎪⎫34-74=f ⎝ ⎛⎭⎪⎫34+74=f ⎝ ⎛⎭⎪⎫52.又∵函数f(x)在⎣⎢⎡⎭⎪⎫34,+∞上是增函数,52>1>34,∴f ⎝ ⎛⎭⎪⎫52>f(1),即f(-1)>f(1).借题发挥 配方法是解决二次函数单调性和最值的较好方法,在求函数的最值前往往需要确定函数的单调性.1.函数f(x)=x 2-2ax -3在区间[1,2]上是单调函数的条件是( ) A .a ∈(-∞,1] B .a ∈[2,+∞)C .a ∈[1,2]D .a ∈(-∞,1]∪[2,+∞)解析:选D f(x)=x 2-2ax -3=(x -a)2-a 2-3, 若f(x)=x 2-2ax -3在区间[1,2]上是单调函数, ∴a≤1或a≥2.2.已知函数y =(m 2-3m)xm 2-2m +2是二次函数,则m =________,该函数的值域为________.解析:由题意,得⎩⎪⎨⎪⎧m 2-3m≠0,m 2-2m +2=2,解得⎩⎪⎨⎪⎧m≠0且m≠3,m =0或m =2,所以m =2,所以y =-2x 2.故值域为{y|y≤0}. 答案:2 {y|y≤0}二次函数的最值及应用[例2] 金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大收益是多少元? [思路点拨] 建立二次函数模型求解.[解] (1)当每辆的月租金为3 600元时,未租出的车辆数为3 600-3 00050=12,所以这时租出了100-12=88(辆). (2)设每辆车的月租金定为x 元,则月收益f(x)=⎝ ⎛⎭⎪⎫100-x -3 00050(x -150)-x -3 00050×50 =-150x 2+162x -21 000=-150(x -4 050)2+307 050.∴当x =4 050时,f(x)最大,最大值为307 050.即当每辆车的月租金定为4 050元时,租赁公司收益最大,最大收益为307 050元. 借题发挥 二次函数是我们接触最早的基本初等函数,建立二次函数模型可以解决生活中的最值优化问题,值得注意的是在求二次函数最值时,切记要注意自变量的取值范围.3.某商店已按每件80元成本购进某种上装1000件,根据市场预测,当每件售价100元时,可全部售完,若定价每提高1元时,销售量就减少5件,若要获得最大利润,则销售价应定为( )A .110元B .130元C .150元D .190元解析:选D 设每件涨价x 元,利润函数为: y =(100+x -80)(1000-5x) =(20+x)(1000-5x) =-5x 2+900x +20000.当x =90时,y 取最大值,故销售价定为190元.1.函数y =-x 2+1的单调增区间是( ) A .[0,+∞) B .(-∞,0] C .(0,+∞)D .(-∞,+∞)解析:选B ∵y =-x 2+1为开口向下,对称轴为x =0的抛物线, ∴该函数y =-x 2+1在(-∞,0]上递增.2.函数f(x)=x 2+4ax +2在(-∞,6)内递减,则a 的取值范围是( ) A .[3,+∞) B .(-∞,3] C .[-3,+∞)D .(-∞,-3]解析:选D ∵f(x)=x 2+4ax +2在(-∞,6)内递减, ∴-4a2≥6,即a≤-3.3.若y =-x 2+4x +k 的最大值为2,则k =________. 解析:∵y =-x 2+4x +k=-(x 2-4x +4)+4+k =-(x -2)2+4+k, ∴其最大值为4+k =2,∴k =-2. 答案:-24.已知一次函数y =ax +b 的图象不经过第一象限,且在区间[-2,1]上的最大值和最小值分别为1和-2,求函数f(x)=x 2-ax +b 在[-2,1]上的最大、最小值.解:∵y =ax +b 不经过第一象限,且最大、最小值不等,∴a<0, 从而有y max =-2a +b =1,y min =a +b =-2,∴a =-1,b =-1,即f(x)=x 2+x -1=⎝ ⎛⎭⎪⎫x +122-54.∵x≤-12时,f(x)单调递减,而x≥-12时,f(x)单调递增.∴在[-2,1]上,f(x)max =f(-2)=f(1)=1,f(x)min =f ⎝ ⎛⎭⎪⎫-12=-54.简述二次函数y =ax 2+bx +c(a≠0)的性质函数的图象是一条抛物线,抛物线顶点的坐标是(h,k),抛物线的对称轴是直线x =h,h =-b2a,k =4ac -b24a;当a>0时,抛物线开口向上,函数在x =h 处取最小值k =f(h);在区间(-∞,h]上是减函数,在区间[h,+∞)上是增函数;当a<0时,抛物线开口向下,函数在x =h 处取最大值k =f(h);在区间(-∞,h]上是增函数,在区间[h,+∞)上是减函数.一、选择题1.函数y =x 2-3x +2的单调递减区间为( ) A .[0,+∞) B .[1,+∞) C .[1,2] D .(-∞,32]答案:D2.若f(x)=(m -1)x 2+2mx +3的图象关于y 轴对称,则f(x)在(-3,1)上( ) A .单调递增 B .单调递减 C .先增后减D .先减后增解析:选C ∵f(x)=(m -1)x 2+2mx +3的图象关于y 轴对称 ∴m =0,∴f(x)=-x 2+3, ∴f(x)在(-3,1)上先增后减.3.某商品进货价为每件40元,当售价为50元时,一个月能卖出500件.通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件,商店为使销售该商品的月利润最高,应将每件商品定价为( )A .45元B .55元C .65元D .70元解析:选D 设当商品定价为x 元时,商店的销售利润为y 元,则有 y =(x -40)[500-10(x -50)](x≥50) =(x -40)(1000-10x)=-10x 2+1 400x -40 000(x≥50), ∴当x =70时,y 有最大值.4.函数f(x)=9-ax 2(a>0)在[0,3]上的最大值为( ) A .9 B .9(1-a) C .9-aD .9-a 2解析:选A f(x)=-ax 2+9开口向下,在[0,3]上单调递减,所以在[0,3]上最大值为9. 二、填空题5.用一根长为12 m 的铁丝折成一个矩形的铁框架,则能弯成的框架的最大面积是________. 解析:设矩形一边长为x m, 则另一边长为12-2x2=(6-x) m,∴面积S =x(6-x)=-x 2+6x(0<x<6), ∴当x =3时,S max =-32+18=9. 答案:9 m 26.函数f(x)=x 2+2(a -1)x +2的单调减区间是(-∞,4],则a 的值为________.解析:f(x)=x 2+2(a -1)x +2 =[x +(a -1)]2-(a -1)2+2.∴f(x)的单调递减区间是(-∞,1-a]. 又∵f(x)的单调递减区间是(-∞,4], ∴1-a =4,即a =-3. 答案:-3 三、解答题7.求下列函数的值域: (1)y =x 2-4x +6,x ∈[1,5); (2)y =2x -x -1.解:(1)配方:y =x 2-4x +6=(x -2)2+2. ∵x ∈[1,5),∴如图所示:函数的值域为[2,11). (2)函数的定义域是{x|x≥1}. 令x -1=t,则t≥0,x =t 2+1, ∴y =2(t 2+1)-t =2t 2-t +2,问题转化为y(t)=2t 2-t +2在t ∈[0,+∞)值域的问题.用配方法解决, ∴y =2(t -14)2+158,∵t≥0,如图,则y min =158,∴所求函数的值域为[158,+∞).8.已知f(x)=x 2+ax +3在[-1,1]上的最小值为-3,求a 的值. 解:当-a2>1,即a<-2,y min =f(1)=4+a =-3,∴a =-7. 当-1≤-a2≤1,即-2≤a≤2,y min =f ⎝ ⎛⎭⎪⎫-a 2=12-a 24=-3,∴a =±26(舍去). 当-a2<-1,即a>2时,y min =f(-1)=4-a =-3, ∴a =7.综上可知,a =±7.。

第12节 二次函数的图象和性质

第12节  二次函数的图象和性质
27-10a a≥5, 综上可得,f(x)min=2-a2 -5≤a<5,
27+10a a<-5.
练习:若函数 f(x)解:=x函2+数afx(+xb)在=x2区+ax间+b[的0图,象1是]上开的口朝最上大且值以直是线Mx=,﹣最为小对值称是轴的m抛,物则线,
解:函数 y=x2+(1﹣a)x+2 的对称轴 x= 又函数在区间(﹣∞,4]上是减函 数,可得 ≥4,,得 a≥9. 故选 A.
典例分析:
(3)如果函数 f(x)=ax2+2x﹣3 在区间(﹣∞,4)上是单调递增的,则实数 a
的取值范围是( )
A.(- 1,+) 4
B.[- 1 ,+) 4
C.[- 1 ,0) 4
典例分析:
例 4:(1)已知函数 f(x)=mx2﹣mx﹣1,对一切实数 x,f(x)<0 恒成立,则
m 的范围为( )
A.(﹣4,0)
解:当 m=0 时,代B.入(得﹣f(4x),=0﹣]1<0 恒成立;
当 m≠0 时,由 f(x)<0 恒成立,
C.(﹣∞,﹣4)∪得(到0m,<+0,∞且)△=D(.﹣(m﹣)2∞﹣4,×m﹣(4﹣)1)∪=[m02+,4m+<∞0,)
∴(x﹣a)(1﹣x﹣a)<1,
D.﹣
即 a2﹣a﹣1<x2﹣x.
令 t=x2﹣x,只要 a2﹣a﹣1<tmin.
t=x2﹣x=
,当 x∈R,t≥﹣ .
∴a2﹣a﹣1<﹣ ,即 4a2﹣4a﹣3<0,
解得:﹣

故选:C.
练习:若函数 f(x)=x2﹣4x+a 对于一切 x∈[0,1]时,恒有 f(x)≥0 成立, 则实数 a 的取值范围是( ) A.[3,+∞) B.(3,+∞) C.(﹣∞,3] D.(﹣∞,3)

高中数学练习题附带解析二次函数的性质与变形

高中数学练习题附带解析二次函数的性质与变形

高中数学练习题附带解析二次函数的性质与变形【高中数学练习题附带解析:二次函数的性质与变形】一、基础知识梳理1. 二次函数的定义:在笛卡尔坐标系中,自变量 x 的平方可写成形如 y=ax²+bx+c 的函数称为二次函数,其中 a、b、c 是常数且a≠0。

2. 二次函数的图像特征:- 当 a>0 时,二次函数的图像开口向上,顶点为最小值点;- 当 a<0 时,二次函数的图像开口向下,顶点为最大值点。

二、基本习题1. 已知二次函数 y=ax²+2x+3,求该函数的顶点坐标以及开口方向。

解析:根据题目已知条件可知 a=1,b=2,c=3。

通过求顶点坐标和判断 a 的正负来确定开口方向。

- 顶点坐标:x=-b/2a=-2/(2×1)=-1,代入函数得到 y=(1)(-1)²+2(-1)+3=4,故顶点坐标为 (-1,4)。

- 开口方向:a=1>0,因此二次函数的图像开口向上。

2. 已知二次函数的函数图像如下图所示,求该函数的解析式。

解析:根据题目给出的函数图像可知,图像开口向上,且图像经过点(-1,0)、(1,0),因此该函数的解析式为 y=a(x+1)(x-1)。

接下来我们需要求解 a 的值,可通过给定的点(3,8)求得。

将 x=3,y=8 代入函数得到 8=a(3+1)(3-1)→8=8a,解得 a=1。

所以该函数的解析式为 y=(x+1)(x-1)。

三、进阶习题1. 已知二次函数的函数图像经过点(1,3),且在 x 轴上有两个不等的实根,求该函数的解析式。

解析:已知图像经过点(1,3),代入函数得到3=a(1)²+b(1)+c→3=a+b+c。

又已知该函数有两个不等的实根,即判别式Δ=b²-4ac>0。

将 x=0 代入函数可得到 c=3-a-b。

将Δ>0 代入Δ=b²-4ac>0 可得到 b²-4a(3-a-b)>0,化简后得到 b²+(4a-12)a+4a-9>0。

二次函数图像与性质练习题及参考答案

二次函数图像与性质练习题及参考答案

二次函数图像与性质练习题及参考答案二次函数是高中数学中一个重要的概念,在学习这一部分知识的过程中掌握二次函数的图像和性质是非常关键的。

本文将提供二次函数图像与性质的练习题及参考答案,帮助学生加深对这方面知识的理解和掌握。

第一题:给定函数 $f(x)=x^2+2x-3$,试回答下列问题:1. $f(x)$ 的自变量定义域是什么?2. $f(x)$ 的值域是什么?3. $f(x)$ 的对称轴方程是什么?4. $f(x)$ 的顶点坐标是什么?5. $f(x)$ 的图像是否有对称性?参考答案:1. 自变量定义域为实数。

2. 值域为 $y\ge -4$。

3. 对称轴方程为 $x=-1$。

4. 顶点坐标为 $(-1,-4)$。

5. 图像有对称轴对称性。

第二题:给定函数 $f(x)=-\frac{1}{2}x^2+4$,试回答下列问题:1. $f(x)$ 的自变量定义域是什么?2. $f(x)$ 的值域是什么?3. $f(x)$ 的对称轴方程是什么?4. $f(x)$ 的顶点坐标是什么?5. $f(x)$ 的图像是否有对称性?参考答案:1. 自变量定义域为实数。

2. 值域为 $y\le 4$。

3. 对称轴方程为 $x=0$。

4. 顶点坐标为 $(0,4)$。

5. 图像有对称轴对称性。

第三题:给定函数 $f(x)=3x^2-12x+7$,试回答下列问题:1. $f(x)$ 的自变量定义域是什么?2. $f(x)$ 的值域是什么?3. $f(x)$ 的对称轴方程是什么?4. $f(x)$ 的顶点坐标是什么?5. $f(x)$ 的图像是否有对称性?参考答案:1. 自变量定义域为实数。

2. 值域为 $y\ge -2$。

3. 对称轴方程为 $x=2$。

4. 顶点坐标为 $(2,-5)$。

5. 图像有对称轴对称性。

第四题:给定函数 $f(x)=-2x^2+8x+3$,试回答下列问题:1. $f(x)$ 的自变量定义域是什么?2. $f(x)$ 的值域是什么?3. $f(x)$ 的对称轴方程是什么?4. $f(x)$ 的顶点坐标是什么?5. $f(x)$ 的图像是否有对称性?参考答案:1. 自变量定义域为实数。

二次函数图像与性质练习题

二次函数图像与性质练习题

二次函数图像与性质练习题二次函数是数学中的一种重要函数形式,也是高中数学中的重点知识之一。

通过对二次函数的图像与性质的学习与练习,我们可以更好地理解和掌握二次函数的变化规律与特性。

本篇文章将以练习题的形式,帮助读者巩固对二次函数图像与性质的理解。

练习题一:给出二次函数f(x)=ax^2+bx+c,已知该函数的图像经过点P(1, 2),并且在点Q(-1, -4)处取得最小值。

请回答以下问题:1. 假设a>0,求出该二次函数的解析式。

2. 在坐标系上画出该二次函数的图像并标出点P、Q。

解答:1. 由题意可知,点P(1, 2)在该二次函数的图像上,代入x=1和y=2,得到方程:2=a(1)^2+b(1)+c,即2=a+b+c。

同理,点Q(-1, -4)在该二次函数的图像上,代入x=-1和y=-4,得到方程:-4=a(-1)^2+b(-1)+c,即-4=a-b+c。

将这两个方程联立,得到:a=3,b=-4,c=3。

故该二次函数的解析式为f(x)=3x^2-4x+3。

2. 根据题意,点P(1, 2)在该二次函数的图像上,点Q(-1, -4)是该二次函数的最小值点,因此该二次函数的图像是一个开口向上的抛物线。

绘制坐标系后,根据已知的a、b、c的值,我们可以得到该二次函数的图像如下图所示:(插入图像)练习题二:设函数f(x)=2x^2-3x+1。

1. 求函数f(x)的对称轴和顶点坐标。

2. 求函数f(x)的零点,并判断函数f(x)的根的情况。

3. 讨论函数f(x)的增减性和极值情况。

4. 描绘函数f(x)在坐标系中的图像,并标出对称轴和顶点。

解答:1. 二次函数的对称轴的公式为x=-b/2a,代入a=2,b=-3,可以求得对称轴的方程为x=3/4。

接下来,我们求顶点坐标。

顶点坐标的y值就是函数f(x)的最小值。

由于a>0,所以该二次函数的图像开口朝上,而顶点则位于对称轴上方。

代入x=3/4,我们可以求出y的值为3/8。

二次函数的练习题及答案

二次函数的练习题及答案

二次函数的练习题及答案二次函数是高中数学中的重要内容,也是考试中常考的知识点之一。

掌握好二次函数的相关概念和解题方法,对于提高数学成绩和解决实际问题都有很大的帮助。

本文将通过一些练习题和答案的形式,帮助读者巩固和加深对二次函数的理解。

1. 练习题一:已知二次函数y = ax^2 + bx + c的图像经过点(1,4)和(2,1),求a、b、c的值。

解法:根据已知条件,将点(1,4)和(2,1)带入二次函数的方程,得到两个方程:a +b +c = 44a + 2b + c = 1解这个方程组,可以得到a、b、c的值。

2. 练习题二:已知二次函数y = ax^2 + bx + c的图像与x轴有两个交点,且交点的横坐标分别为2和5,求a、b、c的值。

解法:根据已知条件,可以得到两个方程:4a + 2b + c = 025a + 5b + c = 0同样地,解这个方程组,可以得到a、b、c的值。

3. 练习题三:已知二次函数y = ax^2 + bx + c的图像经过点(-1,0),且在点(2,3)处的切线斜率为4,求a、b、c的值。

解法:根据已知条件,可以得到两个方程:a -b +c = 04a + 2b + c = 3同样地,解这个方程组,可以得到a、b、c的值。

通过以上几个练习题,我们可以看到,解二次函数的题目,关键在于将已知条件转化为方程,然后通过解方程组得到未知数的值。

这是一个基本的解题思路,需要我们熟练掌握。

除了解题方法,我们还可以通过一些图像来加深对二次函数的理解。

例如,我们可以画出二次函数y = x^2 + x - 2的图像,观察图像的开口方向、顶点位置以及与x轴的交点等特征。

这样可以帮助我们更好地理解二次函数的性质和特点。

此外,二次函数还有一些重要的应用,例如在物理学中,二次函数可以用来描述自由落体运动的轨迹;在经济学中,二次函数可以用来描述成本、收益等与产量之间的关系。

通过了解这些应用,我们可以将抽象的数学知识与实际问题联系起来,提高数学的应用能力。

二次函数的练习题及答案

二次函数的练习题及答案

二次函数的练习题及答案二次函数是高中数学中比较重要的一章内容,它是一种常见的二次方程的图像表示形式。

在学习二次函数的过程中,练习题是不可或缺的一部分。

通过练习题的完成,可以帮助学生巩固对二次函数的理解,并提高解题的能力。

下面,我们将介绍几道常见的二次函数练习题及其答案。

1. 已知二次函数y = ax^2 + bx + c的图像经过点(1,4),(2,1),(3,4),求函数的解析式。

解析:由已知条件可得:a +b +c = 4 --(1)4a + 2b + c = 1 --(2)9a + 3b + c = 4 --(3)将(1)式乘以2,得2a + 2b + 2c = 8 --(4)将(2)式减去(4)式,得2a - b - c = -7 --(5)将(3)式减去(4)式,得7a + b + c = -4 --(6)将(5)式乘以7,得14a - 7b - 7c = -49 --(7)将(6)式减去(7)式,得-7a + 8b + 8c = 45 --(8)将(5)式乘以8,得16a - 8b - 8c = -56 --(9)将(6)式加上(9)式,得a = -11 --(10)将(10)式代入(5)式,得b + c = -4 --(11)将(10)式代入(1)式,得c = 26 --(12)将(11)式代入(12)式,得b = -30 --(13)综上所述,所求二次函数的解析式为y = -11x^2 - 30x + 26。

2. 求二次函数y = ax^2 + bx + c的顶点坐标。

解析:二次函数的顶点坐标可以通过公式x = -b/2a和y = f(x)求得。

其中,x = -b/2a表示顶点的横坐标,y = f(x)表示顶点的纵坐标。

对于给定的二次函数y = ax^2 + bx + c,可以根据函数的解析式,将a、b、c 的值代入公式,计算得出顶点的坐标。

3. 已知二次函数y = ax^2 + bx + c的图像与x轴交于点(1,0)和(3,0),且经过点(2,4),求函数的解析式。

高中函数图像练习题

高中函数图像练习题

高中函数图像练习题高中函数图像练习题在高中数学中,函数图像是一个重要的概念。

通过练习函数图像,学生可以更好地理解函数的性质和变化规律。

在这篇文章中,我们将通过一些练习题来深入探讨高中函数图像的相关知识。

1. 练习题一:给定函数y = x^2,画出它的图像。

这是一个简单的二次函数,我们可以通过绘制函数图像来观察它的性质。

首先,我们可以列出一些特殊点,如原点(0, 0)、顶点(0, 0)和对称轴x = 0。

然后,我们可以选择一些其他点,如x = -1、x = 1和x = 2,并计算相应的y值。

最后,我们将这些点连接起来,得到函数图像。

通过观察图像,我们可以发现它是一个开口向上的抛物线。

2. 练习题二:给定函数y = sin(x),画出它的图像。

这是一个正弦函数,它的图像是一个周期性的波形。

我们可以通过观察函数的性质来绘制图像。

首先,我们可以找到一些特殊点,如原点(0, 0)和最大值点(π/2, 1)、最小值点(3π/2, -1)。

然后,我们可以选择一些其他点,如x = π/4、x= π/2和x = 3π/4,并计算相应的y值。

最后,我们将这些点连接起来,得到函数图像。

通过观察图像,我们可以发现它是一个周期为2π的波形,振幅为1。

3. 练习题三:给定函数y = 1/x,画出它的图像。

这是一个反比例函数,它的图像是一个双曲线。

我们可以通过观察函数的性质来绘制图像。

首先,我们可以找到一些特殊点,如原点(0, 0)、x轴上的点(1, 1)和(-1, -1)。

然后,我们可以选择一些其他点,如x = 2、x = 3和x = 4,并计算相应的y值。

最后,我们将这些点连接起来,得到函数图像。

通过观察图像,我们可以发现它是一个关于y轴和x轴的对称双曲线。

4. 练习题四:给定函数y = e^x,画出它的图像。

这是一个指数函数,它的图像是一个逐渐增长的曲线。

我们可以通过观察函数的性质来绘制图像。

首先,我们可以找到一些特殊点,如原点(0, 1)和x轴上的点(1, e)。

二次函数图像和性质练习题

二次函数图像和性质练习题

二次函数图像和性质练习题二次函数是高中数学中的重要内容,它在解决实际问题中具有广泛的应用。

本文将通过一些练习题,来深入探讨二次函数的图像和性质。

练习题一:已知二次函数y=ax^2+bx+c的图像经过点(1, 4),并且在x轴上的截距为2,求函数的解析式。

解析:根据已知条件,可以得到两个方程:(1)4=a+b+c;(2)c=2a;将第二个方程代入第一个方程中,得到4=a+b+2a,化简得到3a+b=4。

由于这是一个一元一次方程,可以解得a=1,b=1。

代入c=2a,得到c=2。

所以,函数的解析式为y=x^2+x+2。

练习题二:已知二次函数y=ax^2+bx+c的图像经过点(2, 3),并且在x轴上的截距为4,求函数的解析式。

解析:同样地,根据已知条件可以得到两个方程:(1)3=4a+2b+c;(2)c=4a;将第二个方程代入第一个方程中,得到3=4a+2b+4a,化简得到8a+2b=3。

由于这是一个一元一次方程,可以解得a=1/4,b=-5/2。

代入c=4a,得到c=1。

所以,函数的解析式为y=1/4x^2-5/2x+1。

练习题三:已知二次函数y=ax^2+bx+c的图像经过点(1, 2),并且在x轴上的截距为3,求函数的解析式。

解析:同样地,根据已知条件可以得到两个方程:(1)2=a+b+c;(2)c=3a;将第二个方程代入第一个方程中,得到2=a+b+3a,化简得到4a+b=2。

由于这是一个一元一次方程,可以解得a=1/2,b=-5/2。

代入c=3a,得到c=3/2。

所以,函数的解析式为y=1/2x^2-5/2x+3/2。

通过以上三道练习题,我们可以看到二次函数图像和性质的一些规律。

首先,二次函数的图像是一个开口向上或向下的抛物线。

其次,二次函数的图像经过的点和截距可以用来确定函数的解析式。

最后,通过解方程可以得到函数的系数。

除了以上的练习题,我们还可以通过其他方式来深入理解二次函数的图像和性质。

2019年初升高数学衔接辅导之二次函数y=ax2+bx+c的图像和性质(含答案)

2019年初升高数学衔接辅导之二次函数y=ax2+bx+c的图像和性质(含答案)

04二次函数y =ax 2+bx +c 的图像和性质高中必备知识点1:二次函数图像的伸缩变换问题 函数y =ax 2与y =x 2的图象之间存在怎样的关系? 为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系. 先画出函数y =x 2,y =2x 2的图象. 先列表:再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系. 通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.典型考题【典型例题】二次函数的图象如图所示,有下列结论:①;②;③;④,其中正确的结论个数是A.1个B.2 个C.3 个D.4 个【变式训练】下列说法错误的是( )A.二次函数y=-2x2中,当x=0时,y有最大值是0B.二次函数y=4x2中,当x>0时,y随x的增大而增大C.在三条抛物线y=2x2,y=-0.5x2,y=-x2中,y=2x2的图象开口最大,y=-x2的图象开口最小D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点【能力提升】抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2高中必备知识点2:二次函数图像的平移变换函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a -.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a -.典型考题【典型例题】如图,已知抛物线C 1:y =﹣x 2+4,将抛物线C 1沿x 轴翻折,得到抛物线C 2(1)求出抛物线C 2的函数表达式;(2)现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【变式训练】如图,抛物线轴的负半轴相交于点,将抛物线平移得到抛物线相交于点,直线于点,且.(1)求点的坐标;(2)写出一种将抛物线平移到抛物线的方法;(3)在轴上找点,使得的值最小,求点的坐标.【能力提升】已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的函数表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.专题验收测试题1.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法正确的有多少个①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=;④抛物线与x轴的另一个交点为(3,0);⑤在对称轴左侧,y随x增大而减少.A.2 B.3 C.4 D.52.如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6 B.4 C.2 D.﹣23.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>2x时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④4.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣4.则函数y=2※x 的图象大致是()A.B.C.D.5.若抛物线y=ax2+2ax+4a(a>0)上有A(32,y1)、B(2,y2)、C(32,y3)三点,则y1、y2、y 3的大小关系为( ). A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 2<y 3<y 16.下列函数是二次函数的是( ). A .y =2x B .y =1x+x C .y =x +5D .y =(x +1)(x ﹣3)7.下列对二次函数2y x x =-的图象的描述,正确的是( ) A .经过原点 B .对称轴是y 轴 C .开口向下D .在对称右侧部分是向下的8.已知函数y =(x ﹣a )(x ﹣b )(其中a >b )的图象如图所示,则函数y =ax +b 的图象大致是( )A .B .C .D .9.如图,已知抛物线y =ax 2+bx +c 经过点(﹣1,0),以下结论:①2a +b >0;②a +c <0;③4a +2b +c >0;④b 2﹣5a 2>2a c .其中正确的是( )A .①②B .③④C .②③④D .①②③④10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;②4a +2b +c >0;③5a ﹣b +c =0;④若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;⑤若方程|ax 2+bx +c |=2有四个根,则这四个根的和为﹣4.其中正确的结论有( )A .2个B .3个C .4个D .5个11.如图,与抛物线y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为______.12.已知关于x 的一元二次方程ax 2+bx +c =5的一个根是2,且二次函数y =ax 2+bx +c 的对称轴是直线x =2,则抛物线y =ax 2+bx +c 的顶点坐标为_____.13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 14.如图,二次函数y =ax 2+bx +c (a ≠0).图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1、3,与y 轴负半轴交于点C .下面三个结论:①2a +b =0;②a +b +c >0;③只有当12a =时,△ABD 是等腰直角三角形;那么,其中正确的结论是_____.(只填你认为正确结论的序号)15.把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数____的图象.16.已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为___.17.已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.18.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接B D.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0),B(4,0),与直线y=32x﹣3交于点C(0,﹣3),直线y=32x﹣3与x轴交于点D.(1)求该抛物线的解析式(2)点P是抛物线上第四象限上的一个动点连接PC,PD,当△PCD的面积最大时,求点P的坐标;(3)将抛物线的对称轴向左平移3个长度单位得到直线l,点E是直线l上一点,连接OE,BE,若直线l上存在使sin∠BEO最大的点E,请直接写出满足条件的点E的坐标;若不存在,请说明理由.20.已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+12交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.21.现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.22.如图,在直角坐标系中,直线y=13x+1与x轴、y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=﹣x2+bx+c与x轴分别交于点A、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;(3)若点Q在第二象限内,且tan∠AQD=2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.专题04二次函数y=ax2+bx+c的图像和性质高中必备知识点1:二次函数图像的伸缩变换问题函数y=ax2与y=x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系. 先画出函数y =x 2,y =2x 2的图象. 先列表:再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系. 通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.典型考题【典型例题】二次函数的图象如图所示,有下列结论:①;②;③;④,其中正确的结论个数是A.1个B.2 个C.3 个D.4 个【答案】C【解析】由图象可得,,,故错误,当时,,故正确,当时,,由得,,则,得,故正确,,得,故正确,故选:C.【变式训练】下列说法错误的是( )A.二次函数y=-2x2中,当x=0时,y有最大值是0B.二次函数y=4x2中,当x>0时,y随x的增大而增大C.在三条抛物线y=2x2,y=-0.5x2,y=-x2中,y=2x2的图象开口最大,y=-x2的图象开口最小D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点【答案】C【解析】A、a=-2<0,抛物线开口向下,当x=0时,y有最大值是0,故该选项正确;B、二次函数y=4x2中,当x>0时,y随x的增大而增大,故该选正确;C、因为|2|>|-1|>|-0.5|,所以,y=2x2的图象开口最小,y=-0.5x2的图象开口最大,故该选错误;D、不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点,故该选正确.故选C.【能力提升】抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2【答案】A【解析】∵二次函数中|a|的值越小,则函数图象的开口也越大,又∵,∴抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是y=x2,故选A.高中必备知识点2:二次函数图像的平移变换函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y=2(x+1)2+1与y=2x2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y=2x2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y=2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a -.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a -.典型考题【典型例题】如图,已知抛物线C 1:y =﹣x 2+4,将抛物线C 1沿x 轴翻折,得到抛物线C 2(1)求出抛物线C 2的函数表达式;(2)现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【答案】(1)y =x 2﹣4(2)当m =3时,以点A ,N ,E ,M 为顶点的四边形是矩形 【解析】(1)∵抛物线C 1的顶点为(0,4), ∴沿x 轴翻折后顶点的坐标为(0.﹣4),∴抛物线C 2的函数表达式为y =x 2﹣4;(2)存在连接AN ,NE ,EM ,MA ,依题意可得:M (﹣m ,4),N (m ,﹣4),∴M,N关于原点O对称OM=ON,原C1、C2抛物线与x轴的两个交点分别(﹣2,0),(2,0),∴A(﹣2﹣m,0),E(2+m,0),∴A,E关于原点O对称,∴OA=OE∴四边形ANEM为平行四边形,∴AM2=22+42=20,ME2=(2+m+m)2+42=4m2+8m+20,AE2=(2+m+2+m)2=4m2+16m+16,若AM2+ME2=AE2,∴20+4m2+8m+20=4m2+16m+16,解得m=3,此时△AME是直角三角形,且∠AME=90,∴当m=3时,以点A,N,E,M为顶点的四边形是矩形.【变式训练】如图,抛物线轴的负半轴相交于点,将抛物线平移得到抛物线相交于点,直线于点,且.(1)求点的坐标;(2)写出一种将抛物线平移到抛物线的方法;(3)在轴上找点,使得的值最小,求点的坐标.【答案】(1)A(-2,0),B(3,5),C(8,10);(2)先将向右平移5个单位,再向上平移5个单位得到;(3)P(0,).【解析】(1)M1:y=x2-4与x轴的负半轴相交于点A,∴A(-2,0),∵AB=BC,C(8,m),∴,设AB直线解析式为y=kx+b,∵y=x2-4与相交于点A和B,∴m=10,∴B(3,5),C(8,10);(2)∵抛物线M1平移得到抛物线M2,∴a=1,∵B(3,5),C(8,10)在抛物线y=x2+bx+c上,∴y=x2-10+26=(x-5)2+1,由M1平移得到抛物线M2先向右平移5个单位长度,再向上平移5个单位长度;(3)作点B关于y轴的对称点B',连接CB'与y轴的交点即为P,∴B'(-3,5),设直线B'C的直线解析式为y=mx+n,.【能力提升】已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的函数表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.【答案】(1)y=﹣x2+2x+3;(2)将抛物线向上平移4个单位.【解析】(1)把B(﹣1,0)和点C(2,3)代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y=﹣x2+2x+3;(2)把x=﹣2代入y=﹣x2+2x+3得y=﹣4﹣4+3=﹣5,点(﹣2,﹣5)向上平移4个单位得到点(﹣2,﹣1),所以需将抛物线向上平移4个单位.专题验收测试题1.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法正确的有多少个①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=;④抛物线与x轴的另一个交点为(3,0);⑤在对称轴左侧,y随x增大而减少.A.2 B.3 C.4 D.5【答案】C【解析】的对称性,逐一判断.【详解】根据图表,抛物线与x轴的一个交点为(﹣2,0),∴①正确;根据图表,抛物线与y轴交与(0,6),②正确;∵抛物线经过点(0,6)和(1,6),∴对称轴为x=,∴③正确;设抛物线经过点(x,0),∴x=解得:x=3∴抛物线一定经过(3,0),④正确;在对称轴左侧,y随x增大而增大,∴⑤错误,故选C.2.如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6 B.4 C.2 D.﹣2【答案】B【解析】由题意可知,当P在M点时,x1有最小值﹣4,∵M的坐标分别为(﹣1,2),∴x2=2;∴x2与对称轴的距离是3;当P在N点时,x2有最大值,∵N的坐标分别为(1,2),∴x2的最大值为4.故选B.3.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>2x时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④【答案】C【解析】∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;∴b2﹣4c<0故①不正确;当x=3时,y=9+3b+c=3,即3b+c+6=0;故②正确;把(1,1)(3,3)代入y=x2+bx+c,得抛物线的解析式为y=x2﹣3x+3,当x=2时,y=x2﹣3x+3=1,y=2x=1,抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>2x;或第三象限内,当x<0时,x2+bx+c>2x;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.4.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣4.则函数y=2※x 的图象大致是()A.B.C.D.【答案】C【解析】解:y=2※x=,当x>0时,图象是y=对称轴右侧的部分;当x<0时,图象是y=对称轴左侧的部分,所以C选项是正确的.5.若抛物线y=ax2+2ax+4a(a>0)上有A(32,y1)、B(2,y2)、C(32,y3)三点,则y1、y2、y3的大小关系为( ).A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y1【答案】B【解析】解:抛物线的对称轴是x=﹣1,开口向上,且与x轴无交点,∴与对称轴距离越近的点对应的纵坐标越小.A、B、C三点与对称轴距离按从小到大顺序是A、C、B,∴y1<y3<y2,故选:B.6.下列函数是二次函数的是( ).A .y =2xB .y =1x +xC .y =x +5D .y =(x +1)(x ﹣3)【答案】D【解析】解:A 、y =2x ,是一次函数,故此选项错误;B 、y =1x +x ,不是整式,故此选项错误;C 、y =x +5,是一次函数,故此选项错误;D 、y =(x +1)(x ﹣3),是二次函数,故此选项正确.故选:D .7.下列对二次函数2y x x =-的图象的描述,正确的是()A .经过原点B .对称轴是y 轴C .开口向下D .在对称右侧部分是向下的【答案】A【解析】解:A 、当x =0时,y =x 2﹣x =0,∴抛物线经过原点,选项A 正确;B 、∵122ba -=, ∴抛物线的对称轴为直线12x =,选项B 不正确;C 、∵a =1>0,∴抛物线开口向上,选项C 不正确;D 、∵a >0,抛物线的对称轴为直线12x =, ∴当12x >时,y 随x 值的增大而增大,选项D 不正确.故选:A .8.已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数y=ax+b的图象大致是()A.B.C.D.【答案】C【解析】解:∵y=(x﹣a)(x﹣b)=x2﹣(a+b)x+ab,∵抛物线的开口向上知二次项系数>0,与y轴的交点为在y轴负半轴上,∴ab<0,∵对称轴在y轴的右侧,二次项系数大于0,∴﹣(a+b)>0.∴a+b<0,∵a>b,∴a>0,b<0,∴y=ax+b的图象是C选项,故选:C.9.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①2a+b>0;②a+c<0;③4a+2b+c >0;④b2﹣5a2>2a c.其中正确的是( )A .①②B .③④C .②③④D .①②③④【答案】B【解析】 解:由图象可知a <0,0<﹣2b a <1, ∴b <﹣2a ,∴2a +b <0,所以①错误; ∵﹣2b a>0,a <0, ∴b >0,当x =﹣1时,y 1=a ﹣b +c =0,∴a +c =b >0,所以②错误;∵当x =2时,y >0,∴4a +2b +c >0﹣﹣﹣﹣②,所以③正确;∵过(﹣1,0),代入得a ﹣b +c =0,∴b 2﹣2ac ﹣5a 2=(a +c )2﹣2ac ﹣5a 2=c 2﹣4a 2=(c +2a )(c ﹣2a )又∵4a +2b +c >04a +2(a +c )+c >0即2a +c >0①∵a <0,∴c >0则c ﹣2a >0②由①②知(c +2a )(c ﹣2a )>0,所以b 2﹣2ac ﹣5a 2>0,即b 2﹣5a 2>2ac ,所以④正确. 故选:B .10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;②4a +2b +c >0;③5a ﹣b +c =0;④若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;⑤若方程|ax 2+bx +c |=2有四个根,则这四个根的和为﹣4.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】A【解析】 解:∵抛物线的开口向上,则a >0,对称轴在y 轴的左侧,则b >0,交y 轴的负半轴,则c <0,∴abc <0,所以①结论错误;∵抛物线的顶点坐标(﹣2,﹣9a ), ∴﹣b 2a -=﹣2,244ac b a-=﹣9a , ∴b =4a ,c =﹣5a ,∴抛物线的解析式为y =ax 2+4ax ﹣5a ,∴4a +2b +c =4a +8a ﹣5a =7a >0,所以②结论正确,5a ﹣b +c =5a ﹣4a ﹣5a =﹣4a <0,故③结论错误,∵抛物线y =ax 2+4ax ﹣5a 交x 轴于(﹣5,0),(1,0),∴若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1,正确,故结论④正确,若方程|ax 2+bx +c |=1有四个根,设方程ax 2+bx +c =1的两根分别为x 1,x 2,则122x x +=﹣2,可得x 1+x 2=﹣4,设方程ax 2+bx +c =1的两根分别为x 3,x 4,则342x x +=﹣2,可得x 3+x 4=﹣4,所以这四个根的和为﹣8,故结论⑤错误,故选:A .11.如图,与抛物线y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为______.【答案】y =(x ﹣3)2﹣4【解析】解:y =x 2﹣2x ﹣3的顶点是(1,﹣4),(1,﹣4)关于x =2的对称点是(3,﹣4),y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为y =(x ﹣3)2﹣4,故答案为:y =(x ﹣3)2﹣4.12.已知关于x 的一元二次方程ax 2+bx +c =5的一个根是2,且二次函数y =ax 2+bx +c 的对称轴是直线x =2,则抛物线y =ax 2+bx +c 的顶点坐标为_____.【答案】(2,5)【解析】解:∵二次函数y =ax 2+bx +c 的对称轴是直线x =2,方程ax 2+bx +c =5的一个根是2,∴当x =2时,y =ax 2+bx +c =5,∴抛物线的顶点坐标是(2,5).故答案为:(2,5).13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 【答案】12 -2x , 1 【解析】∵y =ax 2+bx +c (a ,b ,c 是常数且a ≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项∴21212y x x =-+ 中,二次项系数为12,一次项是-2x ,常数项是1. 故答案是:12; -2x;1. 14.如图,二次函数y =ax 2+bx +c (a ≠0).图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1、3,与y 轴负半轴交于点C .下面三个结论:①2a +b =0;②a +b +c >0;③只有当12a =时,△ABD 是等腰直角三角形;那么,其中正确的结论是_____.(只填你认为正确结论的序号)【答案】①③【解析】解:①∵图象与x 轴的交点A ,B 的横坐标分别为﹣1,3,∴AB =4,∴对称轴x =﹣b 2a =1, 即2a +b =0.故选项正确;②由抛物线的开口方向向上可推出a >0,而﹣b 2a=1, ∴b <0,∵对称轴x =1,∴当x =1时,y <0,∴a +b +c <0.故选项错误;③要使△ABD 为等腰直角三角形,必须保证D 到x 轴的距离等于AB 长的一半; D 到x 轴的距离就是当x =1时y 的值的绝对值.当x =1时,y =a +b +c ,即|a +b +c |=2,∵当x=1时y<0,∴a+b+c=﹣2,又∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴当x=﹣1时y=0,即a﹣b+c=0,x=3时y=0,即9a+3b+c=0,解这三个方程可得:b=﹣1,a=12,c=﹣32,故选项正确.故答案为:①③.15.把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数____的图象.【答案】y=(x+2)2+1或y=x2+2x+5.【解析】∵y=x2+2x+3=(x+1)2+2,∴抛物线y=x2+2x+3先向左平移1个单位,再向下平移1个单位,平移后的函数关系式是:y=(x+2)2+1或y=x2+2x+5.故答案为:y=(x+2)2+1或y=x2+2x+5.16.已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为___.【答案】4.【解析】解:x2﹣2kx+k2﹣k﹣1=(x﹣k)2﹣k﹣1(k>2),①当2<k≤3时,当x=k时取最小值,∴﹣k﹣1=﹣2,∴k=2,不合题意;②当k>3时,当x=3时取最小值,∴9﹣6k+k2﹣k﹣1=﹣2,∴k=4或2.5,∵k>3,∴k=4;综上,k=4;故答案为:4.17.已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.【答案】(1)证明见解析;(2)m的值为-4或3;(3)a的值是±8.【解析】(1)证明:令y=0,a(x-m)2-a(x-m)=0,△=(-a)2-4a×0=a2,∵a≠0,∴a2>0,∴不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)解:y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0,解得x1=m,x2=m+1,∵x12+x22=25,∴m2+(m+1)2=25,解得m1=-4,m2=3.故m的值为-4或3;(3)解:∵x1=m,x2=m+1,∴AB=(m+1)-m=1,y=a(x-m)2-a(x-m)=a(x-m-12)2-4a,△ABC的面积=12×1×|-4a|=1,解得a=±8.故a的值是±8.18.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接B D.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(2,2).【解析】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴10930b cb c--+=⎧⎨-++=⎩,解得23bc=⎧⎨=⎩,∴所求的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图,连接PC,PE.抛物线的对称轴为x=222(1)ba-=-⨯-=1.当x=1时,y=4,∴点D的坐标为(1,4).设直线BD的解析式为y=kx+b,则4 30 k bk b+=⎧⎨+=⎩,解得26kb=-⎧⎨=⎩.∴直线BD的解析式为:y=2x+6,设点P的坐标为(x,﹣2x+6),又C(0,3),E(1,0),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y =﹣2×2+6=2, ∴点P 的坐标为(2,2).19.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (﹣2,0),B (4,0),与直线y =32x ﹣3交于点C (0,﹣3),直线y =32x ﹣3与x 轴交于点D . (1)求该抛物线的解析式(2)点P 是抛物线上第四象限上的一个动点连接PC ,PD ,当△PCD 的面积最大时,求点P 的坐标;(3)将抛物线的对称轴向左平移3个长度单位得到直线l ,点E 是直线l 上一点,连接OE ,BE ,若直线l 上存在使sin ∠BEO 最大的点E ,请直接写出满足条件的点E 的坐标;若不存在,请说明理由.【答案】(1)233384y x x =--;(2)P (3,﹣815);(3)点E 的坐标为(﹣2,)或(﹣2,﹣. 【解析】解:(1)用交点式函数表达式得:y =a (x +2)(x ﹣4)=a (x 2﹣2x ﹣8),即﹣8a =﹣3,解得:a =38, 则函数的表达式为:233384y x x =--;(2)y =32x ﹣3,令y =0,则x =2,即点D (2,0),连接OP ,设点P (x ,233384x x --), S △PCD =S △PDO +S △PCO ﹣S △OCD =22133113272(3)323(3)2842288x x x x ⨯-+++⨯⨯-⨯⨯=--+, ∵﹣38<0,∴S △PCD 有最大值, 此时点P (3,﹣815); (3)如图,经过点O 、B 的圆F 与直线l 相切于点E ,此时,sin ∠BEO 最大,过圆心F 作HF ⊥x 轴于点H ,则OH =12OB =2=OA ,OF =EF =4,∴HF =,过点E 的坐标为(﹣2,﹣;同样当点E 在x 轴的上方时,其坐标为(﹣2,;故点E 的坐标为(﹣2,2,﹣).20.已知抛物线y =ax 2+bx +2经过A (﹣1,0),B (2,0),C 三点.直线y =mx +12交抛物线于A ,Q 两点,点P 是抛物线上直线AQ 上方的一个动点,作PF ⊥x 轴,垂足为F ,交AQ 于点N .(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+x+2;(2)点P的坐标为(12,94);(3)在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).【解析】(1)∵抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),∴将点A和点B的坐标代入得:204220a ba b-+=⎧⎨++=⎩,解得a=﹣1,b=1,∴抛物线的解析式为y=﹣x2+x+2.(2)直线y=mx+12交抛物线与A、Q两点,把A(﹣1,0)代入解析式得:m=12,∴直线AQ的解析式为y=12x+12.设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),∴PN=﹣n2+n+2﹣(12n+12)=﹣n2+12n+32,NF=12n+12.∵PN=2NF,即﹣n2+12n+32=2×(12n+12),解得:n=﹣1或12.当n=﹣1时,点P与点A重合,不符合题意舍去.∴点P的坐标为(12,94).(3)∵y=﹣x2+x+2,=﹣(x﹣12)2+94,∴M(12,94).如图所示,连结AM交直线DE与点G,连结CG、CM此时,△CMG的周长最小.设直线AM的函数解析式为y=kx+b,且过A(﹣1,0),M(12,94).根据题意得:1924k bk b-+=⎧⎪⎨+=⎪⎩,解得3232kb⎧=⎪⎪⎨⎪=⎪⎩.∴直线AM的函数解析式为y=32x+32.∵D为AC的中点,∴D(﹣12,1).设直线AC的解析式为y=kx+2,将点A的坐标代入得:﹣k+2=0,解得k=2,∴AC的解析式为y=2x+2.设直线DE的解析式为y=﹣12x+c,将点D的坐标代入得:14+c=1,解得c=34,∴直线DE的解析式为y=﹣12x+34.将y=﹣12x+34与y=32x+32联立,解得:x=﹣38,y=1516.∴在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).21.现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A 点,已知﹣1<h <1,请求出m 的取值范围. 【答案】(1)y =x ﹣2,y =12-x 2+32+1;(2)a <12;(3)m <﹣2或m >0. 【解析】(1)将点(2,0),(3,1),代入一次函数y =mx +n 中,0213m nm n =+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩,∴一次函数的解析式是y =x ﹣2,再将点(2,0),(3,1),代入二次函数y =mx 2+nx +1,04211931m n m n =++⎧⎨=++⎩, 解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴二次函数的解析式是213122y x =-++. (2)∵一次函数y =mx +n 经过点(2,0), ∴n =﹣2m ,∵二次函数y =mx 2+nx +1的对称轴是x =n 2m-, ∴对称轴为x =1,又∵一次函数y =mx +n 图象经过第一、三象限, ∴m >0, ∵y 1>y 2, ∴1﹣a >1+a ﹣1, ∴a <12. (3)∵y =mx 2+nx +1的顶点坐标为A (h ,k ), ∴k =mh 2+nh +1,且h =n 2m-,又∵二次函数y=x2+x+1也经过A点,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴11 hm=-+,又∵﹣1<h<1,∴m<﹣2或m>0.22.如图,在直角坐标系中,直线y=13x+1与x轴、y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=﹣x2+bx+c与x轴分别交于点A、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;(3)若点Q在第二象限内,且tan∠AQD=2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)点P的坐标是(﹣1,4)或(﹣2,3);(3)存在,CQ【解析】解:(1)∵直线y=13x+1与x轴交点为A,∴点A的坐标为(﹣3,0),∵抛物线的对称轴为x=﹣1,∴点C的坐标为(1,0),∵抛物线y=﹣x2+bx+c与x轴分别交于点A、C,。

高中数学 第二章 函数 2.2 一次函数和二次函数 2.2.2 二次函数的性质与图象课堂导学案 新人

高中数学 第二章 函数 2.2 一次函数和二次函数 2.2.2 二次函数的性质与图象课堂导学案 新人

2.2.2 二次函数的性质与图象课堂导学三点剖析一、二次函数的图象及性质【例1】二次函数f(x)与g(x)的图象开口大小相同,开口方向也相同.已知函数g(x)的解析式和f(x)图象的顶点,写出函数f(x)的解析式,函数g(x)=-2(x+1)2,f(x)图象的顶点是(-3,2).思路分析:本题给出了图象的顶点坐标,可以用顶点式设出二次函数,然后求解.解:设f(x)的解析式为y=a(x+h)2+k.因为f(x)与g(x)=-2(x+1)2的图象开口大小相同,开口方向也相同,且g(x)=-2(x+1)2与y=-2x2的图象开口大小相同,开口方向也相同.又因为f(x)图象的顶点是(-3,2),所以f(x)=-2(x+3)2+2=-2x2-12x-16.温馨提示(1)若二次函数f(x)与g(x)的开口大小一致且开口方向相同,则二次项系数相等;若f(x)与g(x)的开口大小一致且开口方向相反,则二次项系数绝对值相等,符号相反.(2)若二次函数的二次项系数为a,顶点坐标为(h,k),则此二次函数可设为y=a(x-h)2+k.二、二次函数在特定区间上的最值问题【例2】设函数f(x)=x2-2x+2,x∈[t,t+1]的最小值为g(t),求g(t)的表达式.思路分析:解决此类问题的关键是数形结合.解:f(x)=x2-2x+2=(x-1)2+1,①当t+1≤1,即t≤0时,由图(1)知截取减区间上的一段,g(t)=f(t+1)=t 2+1; ②当1<t+1≤2,即0<t≤1时,由图(2)知正巧将顶点截取在内,g(t)=f(1)=1; ③当t+1>2,即t>1时,由图(3)可知截取增区间上的一段,g(t)=f(t)=t 2-2t+2.综上,可知g(t)=⎪⎩⎪⎨⎧>+-≤<≤+.1,22.10,1,0,122t t t t t t 温馨提示(1)从运动的观点来看,令区间\[t,t+1\]从左向右沿x 轴正方向运动,截取抛物线上的相应部分.(2)共截取三种类型:减函数部分、包含顶点的部分、增函数部分.(3)初学这种类型的题目时,要对应三种情况画三个图象,使问题显得直观清晰,随着学习的深入,能力得到提高了,可以只画一个图形就行了. 三、二次函数恒成立问题 【例3】已知函数y=ax 2+(a-1)x+41a 的图象恒在x 轴上方,求实数a 的取值范围. 思路分析:要使二次函数图象恒在x 轴上方,只需开口向上且与x 轴无交点,即⎩⎨⎧<∆>.0,0a解:若a=0,则f(x)=-x 不符合题意. 若a≠0,则该函数为二次函数, ∴⎩⎨⎧<∆>.0,0a 解之,得a>21.综上,可知a>21. 温馨提示勿忘二次项系数等于0的情况. 各个击破 类题演练1已知f(x)=x 2+2(2-a)x+2在(-∞,2]上是减函数,求实数a 的取值范围. 解析:要使f(x)在(-∞,2]上是减函数,由二次函数图象可知只要对称轴x=2)2(2a --≥2即可,解得a≥4. 变式提升1已知函数f(x)=-x 2+ax+b+1(a 、b∈R)对任意实数x 都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b 的取值范围是( )A.-1<b<0B.b>2C.b<-1或b>2D.b<-1解析:由f(1-x)=f(1+x),得f(x)图象关于x=1对称,∴a=2且f(x)在[-1,1]上是增函数. ∴要使x∈[-1,1]时,f(x)>0恒成立,只需f(-1)>0,即b-2>0.∴b>2. 答案:B 类题演练2函数f(x)=-3x 2-3x+4b 2+49,b>0,x∈[-b,b ],f(x)的最大值为7,求b 的值. 解析:f(x)=-3(x+21)2+4b 2+3,当对称轴直线x=21-在区间[-b,b ]左侧,即21-<-b,b<21时,函数应在x=-b 时取得最大值,f(-b)=b 2+3b+49.由条件,得b 2+3b+49=7.因为b>0,由此求得b=723->21,与b<21矛盾.当对称轴直线x=21-在区间[-b,b ]内通过,即-b≤21-≤b,亦即b≥21时,函数f(x)最大值为4b 2+3.由4b 2+3=7,求得b=1,满足条件. 变式提升2求f(x)=x 2-2ax-1在区间\[0,2\]上的最大值和最小值. 解析:f(x)=(x-a)2-1-a 2,对称轴为x=a.①当a<0时,由图(1)可知f(x)min =f(0)=-1,f(x)max =f(2)=3-4a; ②当0≤a<1时,由图(2)可知f(x)min =f(a)=-1-a 2,f(x)max =f(2)=3-4a; ③当1<a≤2时,由图(3)可知f(x)min =f(a)=-1-a 2,f(x)max =f(0)=-1; ④当a>2时,由图(4)可知f(x)min =f(2)=3-4a,f(x)max =f(0)=-1. 类题演练3已知二次函数y 1=ax 2+bx+c(a≠0)与一次函数y 2=kx+m(k≠0)的图象相交于点A(-2,4)、B(8,2)(如图所示),则能使y 1>y 2成立的x 的取值范围是_______________.解析:由图象可知,当x<-2或x>8时,抛物线在直线的上方,有y 1>y 2. 答案:{x |x<-2或x>8} 变式提升3设函数f(x)=ax 2+bx+1(a 、b∈R ),若f(-1)=0,则对任意实数均有f(x)≥0成立,求f(x)的表达式.解析:由题意得ab2=-1且f(-1)=a-b+1=0. 解之,得a=1且b=2. ∴f(x)=x 2+2x+1.。

二次函数性质练习题

二次函数性质练习题

二次函数性质练习题二次函数是高中数学中的重要内容,它在数学建模、物理学、经济学等领域中都有着广泛的应用。

掌握二次函数的性质对于解题和分析问题都有着重要的意义。

下面,我将通过一些练习题来帮助大家巩固对二次函数性质的理解。

1. 设二次函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(1, 2),直线y= 3x + 1与该二次函数图像交于两点A、B。

求点A、B的坐标。

解析:由于二次函数图像开口向上,可知a > 0。

顶点坐标为(1, 2),代入二次函数方程可得a + b + c = 2。

直线y = 3x + 1与二次函数图像的交点坐标为(x,3x + 1),代入二次函数方程可得ax^2 + bx + c = 3x + 1。

联立这两个方程,解得x = -1和x = 2。

将x的值代入直线方程可得点A(-1, -2)和点B(2, 7)。

2. 设二次函数y = ax^2 + bx + c的图像开口向下,且与x轴相交于点(-1, 0)和(3, 0)。

求a、b、c的值。

解析:由于二次函数图像开口向下,可知a < 0。

与x轴相交的点坐标为(-1, 0)和(3, 0),代入二次函数方程可得a - b + c = 0和9a + 3b + c = 0。

联立这两个方程,解得a = 1,b = 2,c = -1。

3. 设二次函数y = ax^2 + bx + c的图像开口向上,且过点(1, 3)。

若该二次函数与直线y = 2x + 1相切,求a、b、c的值。

解析:由于二次函数图像开口向上,可知a > 0。

过点(1, 3)代入二次函数方程可得a + b + c = 3。

与直线y = 2x + 1相切,意味着判别式D = b^2 - 4ac = 0。

代入a + b + c = 3,可得b^2 - 4ac = 0。

联立这两个方程,解得a = 1,b = -4,c = 6。

通过以上练习题的解析,我们可以总结出一些二次函数的性质:1. 二次函数图像开口向上,当且仅当a > 0;开口向下,当且仅当a < 0。

二次函数与根的关系与像练习题

二次函数与根的关系与像练习题

二次函数与根的关系与像练习题二次函数是高中数学中的重要内容,它在解决实际问题、图像的绘制及根的求解等方面有着广泛的应用。

本文将重点探讨二次函数与根的关系,并提供一些相关的练习题。

一、二次函数与根的关系1. 二次函数的定义二次函数可用一般式表示为f(x) = ax^2 + bx + c,其中a、b、c为常数且a≠0。

它是一个关于x的二次多项式函数,其中x为自变量,f(x)为因变量。

2. 二次函数的根二次函数的根是使得f(x) = ax^2 + bx + c = 0的x值。

记作x1和x2,当Δ = b^2 - 4ac,即判别式大于0时,二次函数有两个不相等的实根;当Δ = 0时,二次函数有两个相等的实根;当Δ小于0时,二次函数没有实根。

3. 二次函数与根的关系根据二次函数的定义和根的定义,可以得到以下结论:- 当Δ > 0时,二次函数的图像与x轴有两个交点,即有两个不相等的实根;- 当Δ = 0时,二次函数的图像与x轴有一个交点,即有两个相等的实根;- 当Δ < 0时,二次函数的图像与x轴没有交点,即没有实根。

二、练习题下面将提供一些关于二次函数与根的练习题,供读者加深对于该知识点的理解。

1. 已知二次函数f(x) = x^2 + 2x + 1,求解f(x) = 0的根。

解:根据一般式,我们可以得到a = 1,b = 2,c = 1。

将这些值代入根的公式Δ = b^2 - 4ac中,得到Δ = 4 - 4 = 0。

因此,该二次函数有一个实根。

进一步求解根的公式x = (-b ± √Δ) / (2a),带入各个值后,得到x = -1。

因此,该二次函数的根为-1。

2. 某二次函数f(x)的图像与x轴相交于点A(-2, 0)和点B(3, 0),求解该二次函数的表达式和根。

解:由已知条件可知,f(-2) = 0和f(3) = 0。

带入二次函数的一般式,得到两个方程式:-4a + 2b + c = 0 (1)9a + 3b + c = 0 (2)解上述方程组,可得a = 1/5,b = 0,c = 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-二次函数的性质与图象练习课时过关·能力提升
1函数y=x2-2x+m的单调递增区间为()
A.(-∞,+∞)
B.[1,+∞)
C.(-∞,1]
D.[-2,+∞)
解析因为二次函数的图象开口向上,且对称轴为x=1,
所以单调递增区间为[1,+∞).
答案B
2函数f(x)=x2-mx+4(m>0)在(-∞,0]上的最小值是()
A.4
B.-4
C.与m的取值有关
D.不存在
解析因为函数f(x)的图象开口向上,且对称轴x=>0,
所以f(x)在(-∞,0]上为减函数,
所以f(x)min=f(0)=4.
答案A
3二次函数y=4x2-mx+5的对称轴为x=-2,则当x=1时,y的值为() A.-7 B.1
C.17
D.25
解析由已知得-=-2,解得m=-16,
故y=4x2+16x+5.当x=1时,y=4×12+16×1+5=25.
答案D
4已知二次函数f(x)=x2-ax+7,若f(x-2)是偶函数,则a的值为()
A.4
B.-4
C.2
D.-2
解析由已知得f(x-2)=(x-2)2-a(x-2)+7=x2-(a+4)x+2a+11.
因为f(x-2)是偶函数,
所以其图象关于y轴对称,
即=0,所以a=-4.
答案B
5已知一次函数y=ax+c与二次函数y=ax2+bx+c(a≠0),它们在同一坐标系中的大致图象是()
答案D
6已知函数y=x2-2x+3在区间[0,m]上有最大值3,最小值2,则实数m的取值范围是()
A.[1,+∞)
B.[1,2)
C.[1,2]
D.(-∞,2]
解析由于y=x2-2x+3=(x-1)2+2,其图象如图所示,且f(0)=3,f(1)=2,f(2)=3.结合图象可知m的取值
范围是[1,2].
答案C
7已知二次函数f(x)=ax2+bx-1(a≠0).若f(x1)=f(x2)(x1≠x2),则f(x1+x2)等于()
A.-
B.-
C.-1
D.0
解析由f(x1)=f(x2)可得f(x)图象的对称轴为x=,
故=-,即x1+x2=-,
所以f(x1+x2)=f=a·+b·-1=-1=-1.
答案C
8已知f(x)=ax2-2x-6,且f(-1)=-6,则f(x)的单调递减区间是.
解析由已知得a×(-1)2-2×(-1)-6=-6,
即a=-2,故f(x)=-2x2-2x-6,
其图象开口向下,对称轴为x=-,故单调递减区间是.
答案
9已知二次函数的图象开口向上,且满足f(2 017+x)=f(2 017-x),x∈R,则f(2 013)与f(2 018)的大小关系为.
解析由题意知,二次函数图象的对称轴为x=2 017.
∵|2 013-2 017|>|2 018-2 017|,
∴f(2 013)>f(2 018).
答案f(2 013)>f(2 018)
10若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=.
解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2是偶函数,则其图象关于y轴对称,
故2a+ab=0.又∵值域为(-∞,4],
∴b<0,2a2=4.
∴b=-2.∴f(x)=-2x2+4.
答案-2x2+4
11已知函数y=(m-2)+6x+2是一个二次函数,求m的值,并判断此抛物线的开口方向,写出它是由函数y=(m-2)通过怎样的平移得到的.
分析根据二次函数的定义确定二次函数的解析式,应注意二次函数的二次项系数不为零,且x的最高次数是2.
图象进行平移变换时,通常先将解析式配方为y=a(x-h)2+k(a≠0)的形式,再由y=ax2(a≠0)通过左右(或上下)平移得到.
解由解得m=-1.
于是y=-3x2+6x+2=-3(x-1)2+5,抛物线开口向下.
它可由函数y=-3x2向右平移1个单位长度,再向上平移5个单位长度得到.
★12已知a∈R,函数f(x)=x|x-a|.
(1)当a=2时,写出函数y=f(x)的单调递增区间;
(2)当a>2时,求函数y=f(x)在区间[1,2]上的最小值.
解(1)当a=2时,f(x)=x|x-2|=
当x≥2时,f(x)=x(x-2)=(x-1)2-1,单调递增区间是[2,+∞);
当x<2时,f(x)=x(2-x)=-(x-1)2+1,单调递增区间是(-∞,1].
(2)因为a>2,x∈[1,2],所以f(x)=x(a-x)=-x2+ax=-.
当1<,即2<a≤3时,f(x)min=f(2)=2a-4;
当≤2,即3<a≤4时,
f(x)min=f(1)=a-1.
当>2,即a>4时,f(x)min=f(1)=a-1.
故f(x)min=
★13若函数f(x)= x2-x+a的定义域和值域均为[1,m](m>1),求实数a,m的值.
解因为f (x)= x2-x+a= (x-1)2-+a,
所以f(x)图象的对称轴是x=1,
且f(x)在[1,m]上是单调递增的.
所以f(x)在[1,m]上的值域为[f(1),f(m)], 即
解得
故a=,m=3.。

相关文档
最新文档