六年级数学下册圆锥与圆柱知识点总结
苏教版六年级数学下册第二单元知识点归纳
第二单元(圆柱和圆锥)知识点归纳 第一课时:1. 圆柱的特点:上下两个面是相同的圆形,圆柱的侧面是曲面,上下一样粗。
2. 圆锥有一个顶点,一个底面和一个侧面,底面是一个圆,侧面是一个曲面。
3. 围成圆柱的面还有一个曲面,叫做圆柱的侧面,圆柱的两个底面之间的距离叫做圆柱的高,圆柱有无数条高。
4. 以圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有一条高。
第二课时:1. 圆柱的侧面积=底面周长(π×R )×高2. 圆柱的底面积(S )=π×r 23. 圆柱的表面积=侧面积+底面积×2第四课时1.圆柱的体积=底面积×高第五课时1. 体积是以外面量的,容积是以里面量的,容器的体积比它的容积大2. 圆柱的高不变,直径、半径扩大几倍,体积扩大原来体积的平方倍。
第六课时:1.圆锥的体积=底面积×高×13 ,不能忘记13。
第七课时:1.很多题目都会用等底等高的圆柱和圆锥的体积之间的关系去求圆柱和圆锥的体积。
(体积之和是几份?找准总份数、体积之差是几份,然后找到对应量,最后用总份数对应的量÷总份数=一份对应的量)2.圆锥的体积也是与它等底等高的长方体体积的1 33.已知圆锥的体积,要先求出和这个圆锥等底等高的圆柱的体积乘3,再除以底面积,最后求出高。
与求体积除以3相反。
培优:1.一个圆锥形容器里倒了一半高度的水,高是容器的一半,水面底面半径就是容器底面半径的一半,即12,则设容器的高度为h,水面高度为12h,所以得出结论:水面高是容器的一半,水面底面积是容器底面积的14;水的体积则是圆锥容器的18。
2.往圆柱形容器里加水,水的体积=底面积(水)×高(水),容器的容积=底面积(容)×高(容),因为底面积(水)和底面积(容)是一样的,则可以把底面积看成a,转化成:水的体积=a×高(水),容器的容积= a×高(容),所以,水的体积占容器容积水的体积容器的容积=a×高(水)a×高(容)=高(水)高(容),(根据分数的性质,分子和分母同时除以相同的数),所以水的体积占容器容积的比就是水面的高度占容器高度的比。
人教版六年级下册数学 圆柱与圆锥整理和复习
40
(单位:厘米)
增加两个长方形的面, 长等于圆柱的高,宽等 于底面直径。
滚、刷、切、削、熔……
切割前后的表面积 增加了,体积不变
。
滚、刷、切、削、熔……
把圆柱削成最大的圆锥,需要削去多少?
50
问题1:怎么削才算是最大的圆锥?
问题2:削成的圆锥与圆柱有什么关系?
2
3.14×(40÷2)2×50×
选择 一个有盖的圆柱形铁桶。 1、求这个铁桶的占地面积,是求( A. 容积 B. 底面积 C. 表面积
B) D. 体积
2、做这样一个铁桶用多少铁皮,是求( C ) A. 容积 B. 底面积 C. 表面积 D. 体积
3、这个铁桶能装多少水,是求( A ) A. 容积 B. 底面积 C. 表面积 D. 体积
0.5m 1m 4.5m ——
314dm3 2.198m3 6280cm3 10.048dm3 1.1775m3
3.妈妈给小雨的塑料壶做了一个布套(如图)小雨每天上学带一壶水。 (1)至少用了多少布料? (2)小雨在学校一天喝1.5L的水,这壶水够喝吗?(水壶的厚度忽略不 计。)
分析:求所用布料就是求水壶的表面积,求能装多少水 即求水壶的体积。
答:旋转一周后围成的立体图形的体积是301.44cm3。
3.一个圆柱形鱼缸,底面直径是40cm,高是25cm,里面盛了一 些水,把一个底面半径为10cm的圆锥放入鱼缸中(圆锥全部浸 入水中),鱼缸中的水面升高了2cm。这个圆锥的高是多少?
水面升高的那部分圆柱的体积就是
放入水中的圆锥的体积。
2cm
V 锥 = V 柱=3.14×(40÷2)2×2 =3.14×800 =2512(cm3)
3.一个圆柱形鱼缸,底面直径是40cm,高是25cm,里面盛了一 些水,把一个底面半径为10cm的圆锥放入鱼缸中(圆锥全部浸 入水中),鱼缸中的水面升高了2cm。这个圆锥的高是多少?
六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面
圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。
【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。
2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。
长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。
3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。
3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。
考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。
六年级数学下册圆柱与圆锥知识点总结(全面)
圆柱与圆锥一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。
3、圆柱的侧面展开图:A、沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
B、不沿着高展开,展开图形是平行四边形或不规则图形。
C、无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h=2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。
圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2×πr2(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。
圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。
长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
长方体的体积=底面积×高圆柱体积=底面积×高V柱=S h=πr2hh=V柱÷S=V柱÷(πr2)S=V柱÷h5、圆柱的切割:A.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2B.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:A.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长B.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积C.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积D.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积E.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
人教版小学六年级数学下册第三单元《圆柱与圆锥》知识点梳理
第三单元《圆柱与圆锥》知识点梳理一、圆柱的认识1.圆柱的初步认识:像茶叶筒、罐头盒、木墩等物体的形状都是圆柱形。
2.圆柱各部分的名称及特征圆柱是由两个底面和一个侧面三部分组成的。
底面:圆柱的两个圆面,是完全相同的两个圆。
侧面:圆柱周围的面,是一个曲面。
高:圆柱两个底面之间的距离,一个圆柱有无数条高。
3.圆柱的侧面展开图①沿着高展开,展开图图是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高;如果底面周长和高相等,展开图是一个正方形。
②不沿着高展开,展开图是一个平行四边形或不规则图形。
③无论怎么展开,都不可能得到梯形。
二、圆柱的表面积1.圆柱侧面积的计算方法圆柱的侧面积=底面周长×高。
S表示侧面积,C表示底面周长,h表示高,S=Ch2.圆柱侧面积计算公式的应用①已知圆柱的底面直径和高:S=πdh②已知圆柱的底面半径和高:S=2πrh3.圆柱表面积的意义和计算方法圆柱表面积=圆柱的侧面积+底面积×24.圆柱表面积计算公式的应用①已知圆柱的底面半径和高:S=2πrh+2πr2)2②已知圆柱的底面直径和高:S=πdh+2π(d2)2③已知圆柱的底面周长和高:S=Ch+2π(c2π5.进一法在取近似值时,根据实际情况把一个数某位后面的数字(不管这个数字比5大还是比5小)舍去并把保留部分最后一位数字加上1,这种取近似值的方法叫做“进一法”。
三、圆柱的体积1.圆柱体积的意义和计算公式①一个圆柱所占空间的大小,叫做这个圆柱的体积。
②圆柱的体积=底面积×高,用字母表示为:V =Sh 。
2.圆柱的体积计算公式的应用①已知圆柱的底面半径和高:V =πr 2h②已知圆柱的底面直径和高:V =π(d 2)2h③已知圆柱的底面周长和高:V =π(c 2π)2h四、圆锥的认识1.圆锥的初步认识:像沙堆、陀螺等物体的形状都是圆锥2.圆锥各部分的名称及特征圆锥是由一个底面和一个侧面两部分组成的。
(完整版)六年级数学下册圆柱与圆锥知识点
六年级数学下册《圆柱与圆锥》知识点六年级数学下册《圆柱与圆锥》知识点知识点1。
圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆.3。
(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5。
把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
6。
圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
7.在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个平行四边形.8。
温馨提示:圆柱的底面是圆形,面不是椭圆。
9.温馨提示:沿高剪开时,圆柱的侧面展开图是一个长方形。
10。
从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形).11。
如果圆柱的侧面展开图是个长方形,那么该圆柱的底面周长大约是其底面直径长度的3倍。
如果圆柱的侧面展开图是个正方形,那么该圆柱的高大约是其底面直径长度的3倍。
12。
圆柱的侧面积=底面周长×高.如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch13。
(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。
(2)已知圆柱的底面半径和高,可以根据公式:S=2πrh直接求出圆柱的侧面积。
14。
圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。
15.圆柱的表面积=圆柱的侧面积+底面积×2,用字母表示为S表=S侧+2S底。
16.(1)已知圆柱的底面半径和高,可以根据公式:S表=2πrh+2πr2直接求出圆柱的表面积。
六年级数学下册知识点 单元归纳总结-冀教版 第4单元 圆柱与圆锥 归纳总结
重要考点
考点解析
典型例题
圆柱的表
面积
1.圆柱的底面是两个完全相同的圆面。
2.圆柱的侧面是一个曲面,沿高展开后是一个长方形(或正方形),一边长等于圆柱底面周长,相邻的另一边长等于圆柱的高。
3.两个底面之间的距离是圆柱的高。圆柱有无数条高线。
4.圆柱的侧面积=底面周长×高,字母公式为S侧=Ch。
【解答】3.14×32×4=113.04(cm3)
圆柱的容积
1.容积和体积的计算方法一样。
2.容积计算时用物体内测量的数据,单位用升和毫升。
在一个底面直径为8厘米(从内量),高是15厘米的圆柱形保温杯内最多可以装多少毫升水?
【解答】3.14× ×15=753.6(立方厘米)=753.6(毫升)
答:这个保温杯内最多可以装753.6毫升水。
圆锥的体积
1.圆锥底面是一个圆面。
2.圆锥侧面是一个曲面,展开后是一个扇形。
3.从顶点到底面圆心的距离就是圆锥的高。圆锥只有一条高线。
4.圆锥的体积=底面积×高× ,字母公式为V= Sh= πr2h。
(易错题)一个圆锥的底面周长是25.12厘米,高是6厘米,求它的体积。
【解答】25.12÷3.14÷2=4(厘米)
3.14×42×6× =100.48(立方厘米)
答:这个圆锥的体积是100.48立方厘米。
体积的测量
1.运用“浸没法”测量物体的体积。
2.浸没在水中的物体的体积等于容器中升高的那部分水的体积。
将一个铁块浸没在底面直径是10厘米的圆柱形容器内,水面上升了2厘米,这个铁块的体积是多少?
【解答】3.14× ×2=157(立方厘米)
5.圆柱的表面积=底面积×πr2+2πrh。
【精品原创】人教版六年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)-3.圆柱和圆锥
人教版六年级下册数学期末复习专题讲义-3.圆柱和圆锥【知识点归纳】一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:(1)以长方形的长为底面周长,宽为高;(2)以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果2r,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=2πr 侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh 体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积4、圆柱与圆锥等底等高 ,体积相差32 四、温馨提示: (1)已知圆锥的底面半径和高,可以直接利用公式:πr 2h ÷3来求圆锥的体积;(2)已知圆锥的底面直径和高,可以直接利用公式:π(d ÷2)2h ÷3求圆锥的V;(3)已知圆锥的底面周长和高,可以直接利用公式:π(C ÷2÷π)2h ÷3求出圆锥的体积。
北师大版六年级数学下册知识点归纳总结
(北师大版)六年级数学下册知识点归纳总结第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh。
圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以:圆的面积=π×半径×半径=π×半径²。
小学数学六年级下册圆柱和圆锥锥(基础知识点提高)
小学数学六年级下册圆柱和圆锥锥(基础知识点提高)圆柱和圆锥第一部分基础部分一、圆柱和圆锥的认识1、图形的形成圆柱是以长方形的一边为轴旋转而得到的,也可以由长方形(或正方形)卷曲而得到;圆锥是以直角三角形的一直角边为轴旋转而得到的,圆锥也可以由扇形卷曲而得到。
2、高的条数:圆柱有无数条高;圆锥只有一条高3、侧面展开图圆柱:沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
圆锥:侧面展开得到一个扇形4、图形的形成:(1)圆柱:卷曲:也可以由长方形(或正方形)卷曲而得到;旋转:圆柱是以长方形的一边为轴旋转而得到的2)圆锥:卷曲:也可以由扇形卷曲而得到;旋转:以直角三角形的一条直角边为轴旋转得到【例1】:下面()图形是圆柱的展开图。
(单位:cm)易错题】一个圆柱的侧面沿高展开是一个长12.56CM,宽6.28CM的长方形,求这个圆柱的底面半径。
例2】在下图中,以直线为轴旋转,可以得出圆柱体的是()【易错题】1、把长为5cm.宽为3cm的长方形旋转成一个圆柱,则这个圆柱的表面积是多少平方厘米?2、把两条直角边分别是5cm和3cm的直角三角形旋转成一个圆锥,这个圆锥的体积是多少立方厘米?练:】一、选择1、圆柱侧面积的大小是由()决定的。
A圆柱的底面周长B底面直径和高C圆柱的高。
2、下面的材料中,()能做成圆柱。
12cm6.28cmA.1号、2号和3号B.1号、4号和5号C.1号、2号和4号2cm2cm4cm4cm1号2号3号4号5号2、解答题一个长为8m,宽为6m的长方形扭转成一个圆柱,它的侧面积是几何平方米?2、圆柱表面积的计较方法①公式:圆柱的表面积=+S表=S侧+S底×2=2πrh + 2πr2②圆柱表面积计较公式的应用应用1:圆柱的底面半径和高,求圆柱的表面积;应用2:圆柱的底面直径和高,求圆柱的表面积;运用3:已知圆柱的底面周长和高求圆柱的表面积。
人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)
人教版六年级数学下册第三单元《圆柱与圆锥上》知识点1圆柱的表面积猫小咪和猫小喵发现了一大瓶鱼罐头,他们在密谋着如何解决掉这瓶罐头。
提问鱼罐头的包装盒属于哪种立体图形?认识圆柱总结:1.圆柱的上下两个底面面积相等。
2.周围的面(除底面外)叫做侧面。
思考:将圆柱沿侧面展开后得到什么图形?思考1.圆柱的侧面积=底面周长×高。
S侧=2πrh。
2.圆柱的表面积=圆柱的侧面积+两个底面圆的面积。
S表=2πrh+2πr²思考:一个圆柱体底面半径是1厘米,高是5厘米,那么它的侧面积和表面积分别是多少?(π取3.14)步骤:圆柱的表面积分为几个部分?三部分:两个底面积和一个侧面积。
两个底面积是多少?S底=3.14×1²×2=6.28平方厘米。
侧面积是多少?侧面积=底面周长×高。
S侧=3.14×1×2×5=31.4平方厘米。
圆柱体的表面积是多少?6.28+31.4=37.68平方厘米。
思考:如果把圆柱横着切一刀,它的表面积有什么变化?总结:切一刀表面积增加两个圆的面积。
思考:把一根长1米的圆柱分成3段,表面积增加了48平方厘米,原来圆柱的表面积是多少平方厘米?(π取3)步骤:分成三段增加几个面?(3-1)×2=4个。
圆柱的底面半径是多少厘米?48÷4=12平方厘米。
12÷3=4 4=2×2。
所以半径是2厘米。
原来圆柱的表面积是多少?1米=100厘米2×3×2×100=1200平方厘米1200+12×2=1224平方厘米思考:把一张长方形铁皮按图剪开,正好能制成一个圆柱形水桶(有盖),那么这个水桶的表面积是多少平方厘米?(π取3.14,接头处忽略不计)步骤:水桶的表面积包含哪几部分?两个底面圆的面积和侧面积。
圆柱的底面周长等于右侧小长方形的长还是宽?等于小长方形的长。
冀教版数学六年级下学期第四单元《圆柱和圆锥》单元知识点归纳与教案
四圆柱和圆锥一、认识圆柱、圆柱的组成部分1.圆柱的形成:圆柱是以长方形的一条边为轴旋转得到的;也可以由长方形卷起来得到。
2.生活中常见的圆柱:3.圆柱各部分的名称及其特征:(1)圆柱的上、下两个面都是圆形的,大小相同,叫做底面。
(2)圆柱周围的面是曲面,我们叫它侧面。
(3)圆柱两底之间的距离叫做高,一个圆柱有无数条高,它们都相等。
二、圆柱的侧面以及侧面积的求法1.圆柱的侧面展开图及其形状:(1)沿着高展开,展开图是长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高;当底面周长和高相等时(h=2πr),侧面展开图为正方形。
(2)如果不沿着高展开,展开图形是平行四边形或不规则图形。
(3)无论如何展开都得不到梯形。
2.圆柱的侧面展开后各个部分与圆柱的关系:展开后长方形的长等于圆柱的底面周长,宽等于圆柱的高。
3.圆柱的侧面积=底面的周长×高,即S侧=Ch=πd×h=2πr×h。
三、圆柱的表面积的计算1.圆柱的侧面积加上两个底面的面积就是圆柱的表面积。
巧记小圆柱直挺挺,上、下底面都相同,可以看作是由长方形旋转而成的,还可以看作是由平面卷曲而成的。
易错点:1.圆柱的侧面是曲面,高有无数条,不是1条。
2.高指圆柱两底面之间的距离。
易错点:1.如果底面周长和高相等,展开图为正方形。
2.底面直径和高相等,侧面展开图不是正方形。
巧记规律沿高剪,圆柱侧面展开是长方形,侧面积是底面周长和高的积。
2.圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2πr2。
3.圆柱的切割引起表面积的变化:(1)横切:切面是圆,表面积增加2个底面积,即S增=2πr2。
(2)竖切(过直径):切面是长方形(如果h=2r,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh。
四、圆柱表面积的计算在实际生活中的应用在实际生活中,有时需要计算圆柱的表面积,如制作水桶时,不要上底面;制作圆柱形通风管时,不需要两个底面,这时需要计算圆柱的侧面积。
苏科版数学六年级下册圆柱与圆锥单元复习知识梳理与总结
学科教师辅导教案授课类型圆柱和圆锥教学目标1、认识圆柱和圆锥的特点2、掌握圆锥的体积以及圆柱的体积和表面积的应用星级★★★★进门测1、小欣统计了六年级某次数学测试的成绩,制成了如图所示的两个不完整的统计图.(1)扇形统计图用整个圆表示六年级某次数学测试的总人数.(填“单位1“以外的答案)(2)成绩为的人数占了测试总人数的12,所在扇形的圆心角是.(3)对照两个统计图的数据,可求出六年级一共有人参加了本次测试.(4)把如图所示的两个统计图分别补充完整.2.下面的数据,()适合用折线统计图表示.A.本年级各班人数B.一年内气温的变化情况C.女生人数占全校人数的百分之几3.如图,用一张长165.6厘米的铁皮,剪下一个最大的圆作为圆柱的底面,剩下的部分围在底面上做成一个无盖的铁皮水桶,算一算这个铁皮水桶的容积是多少?(铁皮厚度不计, 取3.14)知识梳理根据书本上的实验可以得到结论:等底等高的圆柱和圆锥,圆柱的体积是圆锥的 3 倍,或者说圆锥的体积是圆柱的三分之一。
用字母表示为V 圆柱=3V 圆锥或者V 圆锥=1/3V 圆柱。
相关公式:只需要在圆柱的相关公式前面乘以三分之一。
①已知半径和高,V 圆锥=________________②已知直径和高,V 圆锥=_________________③已知周长和高,V 圆锥=__________________知识点六:圆柱和圆锥的横截面理解掌握:★圆柱横截面的分割方法:①按底面的直径分割,这样分割的横截面是长方形或者是正方形,如果横截面是正方形说明圆柱的底面直径和高相等。
②按平行于底面分割,这样分割的横截面是圆。
圆锥横截面的分割方法:①按圆锥的高分割,这样分割的横截面是等腰三角形。
②按平行于底面分割,这样分割的横截面是圆。
精讲精练考点1:圆柱的特征例1、用塑料绳捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去绳长32厘米.扎这个盒子至少用去塑料绳多少厘米?举一反三1.下面的平面图形分别绕虚线旋转一周会形成圆柱的是()A.B.C.D.2.李师傅先选好了一个直径是30厘米的圆形铁板做桶底.然后从下面三块铁板中选择一块做桶身.第块比较合适.3.用塑料绳捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去绳长15厘米.扎这个盒子至少用去塑料绳多少厘米?考点2:圆锥的特征例2.一个圆锥的底面周长是18.84厘米,高是4厘米.从圆锥的顶点沿着高将它切成两半后,表面积比原来的圆锥增加了多少平方厘米?举一反三1.以一个等腰直角三角形的一条直角边为轴,旋转一周生成的图形是圆锥.如果这个等腰直角三角形的一条直角边的长是10厘米,那么生成图形的高是厘米,底面积是平方厘米.2.从纸上剪下一个半径是30厘米、圆心角是120度的扇形,用这个扇形做一个圆锥的侧面,另外再配一个底面,这个底面的直径是厘米.3.在正方形铁皮上剪下一个圆形和扇形,恰好围成一个圆锥形(如图).如果圆的半径为r,扇形的半径为R;那么圆的半径占扇形半径的%.考点3:圆柱的侧面积、表面积和体积例3.如图是个圆柱体,求它的侧面积、表面积和体积(单位:)cm举一反三1.计算如图所示的圆柱的侧面积和体积(单位:)cm(1)如图,圆柱的侧面积是多少?(2)如图,圆柱的体积是多少?2.计算如图图形的体积和表面积.(单位:)cm3.计算空心钢管的表面积(所有与空气接触的面)(单位:厘米)例4.求如图的表面积和体积.(单位:)dm举一反三1.求如图的体积(单位:厘米)2.求下面图形的表面积和体积.3.在一个底面积是16平方厘米的正方体铸铁中,以相对的两个面为底,挖出一个最大的圆柱体.求剩下的铸铁的表面积是多少平方厘米.( 取3.14)例5.一个圆柱,如果高减少2厘米,表面积就减少25.12平方厘米,体积减少15.这个圆柱原来的体积是多少立方厘米?举一反三1.一个底面积是15平方厘米的玻璃杯中装有高3厘米的水.现把一个底面半径是1厘米、高5厘米的圆柱形铁块垂直放入玻璃杯水中,问水面升高了多少厘米(圆周率取3)2.一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积增加25.12平方厘米,求原来圆柱的表面积是多少平方厘米?3.一个正方体的木块,它的棱长总和是240厘米,在这个正方体木块里削一个最大的圆柱,这个圆柱的体积是多少立方厘米?(画出草图)考点4:圆锥的体积例6.一个直角三角形的三条边分别是3厘米、4厘米、5厘米,以一条直角边为轴旋转一周可以形成一个什么图形?体积最大是多少立方厘米?举一反三1.如图为一个棱长6分米的正方体,以正方体的底面向内挖去一个最大的圆锥体,求剩下的体积是原正方体体积的百分之几?2.红星广场有一个圆锥形玻璃罩,底面周长31.4米,高15米,这个玻璃罩的容积是多少立方米?(玻璃厚度忽略不计)3.一个圆锥形沙堆,底面积是28.26平方米,高是2.5米.用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?考点5:组合图形的体积例7.如图是一种钢制的配件(图中数据单位:)cm请计算它的表面积和体积.举一反三1.一个零件,如图,求它的体积.( 取3)2.求图中图1图2的体积.3.如图,将三个高都是1米,底面半径分别是1.5米、1米、0.5米的3个圆柱体组成一个物体.①求这个物体的体积?②求这个物体的表面积?例8.求体积.(单位:)cm举一反三1.如图所示,直角三角形三条边分别长为3厘米、4厘米、5厘米.求绕斜边旋转一周后所形成的物体体积.2.一囤小麦,上面是圆锥形,下面是圆柱形.如图所示.(1)这个麦囤约有多少立方米的小麦?(得数保留整数)(2)如果每立方米小麦大约重735千克,小麦的出粉率是85%,这些小麦能磨出面粉多少千克?3.这只工具箱的下半部是棱长为20cm的正方体,上半部分是圆柱体的一半.这只箱子的体积是多少?(单位:厘米)考点6:体积的等积变形例9.如图,一个酒瓶里面深24厘米,底面内径是16厘米,瓶里酒高15厘米.把酒瓶塞紧后,使其瓶口向下倒立,这时酒高19厘米,酒瓶容积是多少毫升?举一反三1.一个酸奶瓶(如图),它的瓶身呈圆柱形(不包括瓶颈),容积是32.4立方厘米.当瓶子正放时,瓶内酸奶高为8厘米,瓶子倒放时,空余部分高为2厘米.请你算一算,瓶内酸奶体积是多少立方厘米?2.为了测量一个如图形状的酒瓶容积,一位同学先向酒瓶倒入了一些水,塞上瓶盖,量得了一些数据,再将酒瓶旋转过来又量得一些数据.你能帮他算一下酒瓶的容积吗?(单位:厘米)3.刘华测量一个瓶子的容积,测得瓶子的底面直径12厘米,然后给瓶子内盛入一些水,正放时水高20厘米,倒放时水高25厘米,瓶子深30厘米.你能根据这些信息求出瓶子的容积吗?。
小学数学六年级圆柱、圆锥知识点总结复习
小学数学六年级圆柱、圆锥十大知识点总结复习知识点1、点线面的关系,以及常见的立体图形的认识点的运动形成线,线的运动形成面,面的旋转形成立体图形,常见的立体图形有长方体正方体圆柱圆锥棱柱球等1.用纸片和小棒做成下面的小旗,快速旋转小棒,想象纸片旋转所形成的图形,再连一连。
1.【解析】半圆旋转形成球,长方体(正方体)旋转形成圆柱,直角三角形旋转形成圆锥,三角形和长方形组合图形旋转形成的是圆柱与圆锥的组合立体图形。
知识点2、圆柱圆锥的行程,展开图以及各部分的名称圆柱是由长方形(或正方形)旋转而成(可以由长正方形绕一条边或者一条高旋转而成)圆锥是由直角三角形绕它的一条直角边旋转而成(还可以由等腰三角形绕它底边上的高旋转而成,)圆柱的展开图:侧面可能是长方形或正方形(沿着一条高线展开),也有可能是平行四边形(不是沿着高线展开)底面是两个完全一样的圆(要求会求圆柱的侧面积和表面积)圆锥的展开图:侧面是一个扇形,底面是一个圆(不要求会求圆锥的侧面积和表面积)2.下面()图形是圆柱的展开图。
(单位:cm)2.A【解析】圆柱的展开图,侧面是长方形(或正方形)底面是两个圆,并且底面圆的周长等于长方形的长,高是长方形的宽。
三个选项中底面圆的直径是3,底面周长是3.14×3=9.42,三个选项的高都是2,所以选择A。
3.一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。
3.246.49平方分米【解析】圆柱体的侧面是一个正方形,说明圆柱的底面圆的周长与圆柱的高相等。
底面圆的周长等于3.14×5=15.7(分米),即正方形的边长是15.7分米,所以面积是15.7×15.7=146.49(平方分米)。
4.用一张长4.5分米, 宽2分米的长方形纸,围成一个圆柱形纸筒, 它的侧面积是。
4.9平方分米【解析】圆柱形纸筒的侧面积就是长方形的面积:4.5×2=9(平方分米)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆柱和圆锥》知识点总结
1.圆柱:以长方形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体
底面
2.名词:圆柱的高:两个底面之间的距离叫做高(高有无数条)。
圆柱的底面:圆柱的两个圆面叫做底面(又分上底和下底)。
圆柱的侧面:圆柱有一个曲面,叫做侧面;(展开图是长方形,正方形或平行平行四边形)。
3. 圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
圆柱体积=底面积×高 V柱=Sh =πr2·h
圆柱的高=体积÷底面积h =V柱÷S=V柱÷(πr2)
圆柱的底面积=体积÷高S=V柱÷h
4.圆柱的侧面积:圆柱的侧面积=底面的周长×高, S侧=Ch (注:c为π
d)
5.圆柱的表面积=两个底面积+一个侧面积 S表=2πr2 +Ch
6. 圆柱的切割:
a.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2
横切切面
b.
柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh
6.圆柱高增加减少,圆柱表面积增加减少的只是侧面积。
7.考试常见题型:
a.已知圆柱的底面半径和高,求圆柱的侧面积,表面积,体积,底面周长;
C=2πr S侧=2πrh S表=2πr2 +2πrh V=πr2·h
b.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积;
S侧=Ch S表=2π(C÷π÷2)²+ Ch V=π(C÷π÷2)²h S底=π(C÷π÷2)²
c.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积;
h= V÷(C÷π÷2)²
先求h= V÷(C÷π÷2)²再求S侧=Ch
先求h= V÷C÷π÷2)²再求 S表=2π(C÷π÷2)²+ Ch
S底=π(C÷π÷2)²
d.已知圆柱的底面直径和高,求圆柱的侧面积,表面积,体积;
S侧=πdh S表=2π(d÷2)²+πdh V=π(d÷2)²h
e.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积。
r=S侧÷h÷π÷2 先求r=S侧÷h÷π÷2 再求S表=2πr2 + S侧
先求r=S侧÷h÷π÷2再求V=πr2·h 先求r=S侧÷h÷π÷2再求S底=πr²
以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
8. 常见的圆柱解决问题:
①压路机压过路面面积、烟囱、教学楼里的支撑柱、通风管、出水管(求侧面积);
②压路机压过路面长度(求底面周长);
③水桶铁皮(求侧面积和一个底面积);
④鱼缸、厨师帽(求侧面积和一个底面积);
⑤V钢管=(πR2﹣πr2)×h
1.圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
该直角边叫圆锥的轴。
2. 名词:
顶点高:圆锥的顶点到底面圆心的距离(圆锥有一条高)
底面:圆锥的圆面(圆锥有一个底面)。
侧面:圆锥的曲面(展开图是扇形)
3.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。
一个圆锥的体积等于与它等底等高的圆柱的体积的
根据圆柱体积公式V=Sh(V=πr2h),得出圆锥体积公式:V=Sh
S是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径
圆锥的高=圆锥体积×3÷底面积h =3 V锥÷S=3 V锥÷(πr2)
圆锥的底面积=圆锥体积×3÷高S=3 V锥÷h
4.圆锥的切割: a.横切:切面是圆
b.竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S增=2Rh
5.考试常见题型:
a 已知圆锥的底面积和高,求体积;
b已知圆锥的底面周长和高,求圆锥的体积,底面积;
c已知圆锥的底面周长和体积,求圆锥的高,底面积。
以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆锥的相关计算公式进行计算。
生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。
圆锥在日常生活中也是不可或缺的。
6.圆柱和圆锥的关系:
(1).圆柱的特征:一个侧面、两个底面、无数条高且侧面沿高展开图是长方形。
(2).圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展开图是扇
形。
(3).a.圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
等底等高:V锥:V柱=1:3
b.圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。
等底等体积:h锥:h柱=3:1
c.圆柱与圆锥等高等体积,圆锥的底面积(注意:不是底面半径)是圆柱的3倍。
等高等体积:S锥:S柱=3:1 圆柱体积比等底等高圆锥体积多2倍。
d.圆锥体积比等底等高圆柱体积少
7.题型总结:
(1).高不变半径扩大(缩小)n倍,直径、底面周长、侧面积扩大(缩小)n倍,底面积、体积扩大(缩小)n2倍。
(2).半径不变高扩大(缩小)n倍,侧面积、体积扩大(缩小)n倍。
(3).削成最大体积的问题:
正方体里削出最大的圆柱、圆锥:圆柱、圆锥的高和底面直径等于正方体棱长。
长方体里削出最大的圆柱、圆锥:圆柱、圆锥底面直径等于宽(宽﹥高),圆柱、圆锥高等于长方体高。
(4).浸物体积问题(排水法测不规则物体的体积):水面上升部分的体积就是浸入水中物品的体积,等于盛水容器的底面积乘上升的高度。
也就是变化的水的体
积。
主要类型:①盛满水,浸物溢水;②浸物水面上升;③取物水面下降。
(5).等体积转换问题:圆锥体沙堆铺路;长方体钢材熔铸成圆柱或圆锥;橡皮泥改变形状;圆柱中的溶液倒入圆锥……都是体积不变的问题。
解决此类问题,最好列出体积相等公式,再代入数据进行计算。
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。