六年级下册数学圆柱圆锥练习题含答案
圆柱圆锥练习题和答案
圆柱圆锥练习题和答案一、选择题1. 圆柱的体积公式是()A. V = πr²hB. V = πr² + hC. V = πr² - hD. V = πrh2. 圆锥的体积公式是()A. V = 1/3πr²hB. V = 3πr²hC. V = πr²h/3D. V = πr²h3. 圆柱的表面积公式是()A. S = 2πrh + 2πr²B. S = πrh + πr²C. S = 2πrhD. S = πr²4. 圆锥的侧面展开图是()A. 圆形B. 长方形C. 扇形D. 三角形5. 圆柱和圆锥的底面都是()A. 圆形B. 长方形C. 扇形D. 三角形二、填空题6. 一个圆柱的底面半径为3厘米,高为5厘米,其体积是_________立方厘米。
7. 一个圆锥的底面半径为4厘米,高为9厘米,其体积是_________立方厘米。
8. 一个圆柱的底面周长为12.56厘米,高为4厘米,其表面积是_________平方厘米。
9. 一个圆锥的底面半径为2厘米,高为6厘米,其表面积是_________平方厘米。
三、计算题10. 一个圆柱形容器的底面直径为20厘米,高为30厘米,求其容积。
11. 一个圆锥形沙堆,底面半径为5米,高为3米,如果将沙堆铺在长10米,宽6米的长方形地面上,求铺成的沙堆高度。
四、解答题12. 一个圆柱形油桶,底面半径为0.8米,高为1.5米,求油桶的表面积和体积。
13. 一个圆锥形漏斗,底面半径为0.6米,高为0.9米,求漏斗的体积。
答案:1. A2. A3. A4. C5. A6. 141.37. 75.368. 150.729. 37.6810. 圆柱形容器的容积为3.14 × (20/2)² × 30 = 3000π 立方厘米。
11. 圆锥形沙堆的体积为1/3 × 3.14 × 5² × 3 = 78.5π 立方米。
人教版数学6年级下册 第3单元(圆柱和圆锥)课后作业练习题(含答案)
人教版六年级下册第三单元圆柱和圆锥课后作业练习题一.选择题1.把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,它的体积是()立方分米。
A.50.24B.56.52C.16.75D.200.962.36个铁圆柱,可以熔铸成等底等高的圆锥体的个数是()A.12个B.18个C.36个D.108个3.两个圆柱的底面积相等,高之比是3:2,它们的体积之比是()A.3:2B.2:3C.9:44.一个圆柱与一个圆锥等底等高,已知圆柱的体积比圆锥的体积多9立方米,圆锥的体积是()立方米.A.4.5B.3C.95.用两张同样的长方形硬纸板围成两个不同的圆柱形纸筒,再分别装上两个底面,那么这两个圆柱形纸筒的()一定相等。
A.底面积B.侧面积C.表面积D.体积6.一个圆柱与一个圆锥体积相等,底面直径也相等,则圆锥的高是圆柱的高的()A.13B.23C.3倍D.6倍7.一个圆柱和一个圆锥的底面直径相等,圆柱的高是圆锥的3倍,圆锥的体积是5立方分米,圆柱的体积是()立方分米.A.5B.15C.458.一个圆柱的体积比与它等底等高的圆锥的体积大()A.3倍B.2倍C.1 3二.填空题9.底面积是212cm、高是9cm的圆锥的体积是3cm,和它等底等高的圆柱的体积是3cm.10.把6个形状完全相同的圆柱体铁块熔化后,可浇铸成与这种圆柱体等底等高的圆锥体铁块件。
11.一个圆柱的体积是3188.4cm,高是15cm,它的底面积是2cm.12.一个圆柱的底面周长是9.42分米,高3分米,它个圆柱的侧面积是平方分米,体积是立方分米。
13.把一根3米长的圆柱体木材截成三段圆柱体,表面积增加了12平方分米,这根木料的体积是立方分米。
14.一个圆柱和一个圆锥等底等高,它们的体积差是94.2立方厘米,这个圆柱的体积是立方厘米.又知圆锥的底面半径是3厘米,这个圆柱的侧面面积是平方厘米.15.做一节底面直径是10厘米,长为1米的圆柱形烟囱,至少需要一张平方厘米的铁皮。
六年级下册数学《圆柱与圆锥》专项练习题50道附答案【达标题】
六年级下册数学《圆柱与圆锥》专项练习题50道一.选择题(共10题,共20分)1.在半径为50cm的圆形铁皮上剪去一块扇形铁皮,用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为()。
A.228°B.144°C.72°D.36°2.把这面小旗旋转后得到的图形是()。
A.长方形B.圆柱C.圆锥D.球3.圆柱的底面直径是10厘米,高8厘米,它的表面积是()。
A.408.2cm2B.251.2cm2C.157cm2D.517cm24.把一个圆柱削成一个最大的圆锥,圆柱与削去部分的体积比是()。
A.3:1B.2:1C.3:2D.2:35.下面的平面图形分别绕虚线旋转一周会形成圆柱的是()。
A. B. C.D .6.一个圆柱的侧面积是125.6平方米,高是10分米,它的体积是()立方分米。
A.125.6B.1256C.12560D.12560007.一根圆柱形木料底面半径是0.2米,长是3米。
将它截成6段,如下图所示,这些木料的表面积比原木料增加了()平方米。
A.1.5072B.1.256C.12.56D.0.75368.求圆柱形罐头盒的用料就是求圆柱()。
A.体积B.容积C.表面积9.两块同样的长方形纸板,卷成形状不同的圆柱(接头处不重叠),并装上两个底面,那么制成的两个圆柱体的()相等。
A.底面积B.侧面积C.表面积10.求做一个汽油桶至少需要多少铁皮,就是求汽油桶的()。
A.体积B.侧面积C.表面积二.判断题(共10题,共20分)1.一个圆锥和一个圆柱等底等高,圆锥的体积是圆柱体积的。
()2.圆柱体的底面直径是3厘米,高是9.42厘米,它的侧面展开后是一个正方形。
()3.圆锥有无数条高。
()4.一个圆锥的底面积是18cm2,高是2cm,体积就是36cm3。
()5.一个圆锥的体积是与它等底等高的圆柱体积的三分之一。
()6.圆柱的体积一般比它的表面积大。
(完整版)六年级数学圆柱圆锥练习题及答案
(四)例例2、求下面立体图形的底面周长和底面积。
半径3厘米直径10米例3、判断:圆柱和圆锥都有无数条高。
例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
例6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30厘米,高是50厘米。
做这样一个水桶,至少需用铁皮6123平方厘米。
例7、(考点透视)一个圆柱的侧面积展开是一个边长15.7厘米的正方形。
这个圆柱的表面积是多少平方厘米?例8、(考点透视)一个圆柱形的游泳池,底面直径是10米,高是4米。
在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?例9、(考点透视)把一个底面半径是2分米,长是9分米的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分米?4、求下列圆柱体的侧面积(1)底面半径是3厘米,高是4厘米。
(3)底面周长是12.56厘米,高是4厘米。
5、求下列圆柱体的表面积(1)底面半径是4厘米,高是6厘米。
(3)底面周长是25.12厘米,高是8厘米。
6、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
8、一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥20千克,一共要用多少千克水泥?一、圆柱体积1、求下面各圆柱的体积。
(3)底面直径是8米,高是10米。
(4)底面周长是25.12分米,高是2分米。
2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。
这支牙膏可用36次。
人教版数学六年级下册圆柱和圆锥专项练习题附答案
圆柱和圆锥练习一、单选题(每道小题 5分共 20分 )1.、等底等高的圆柱、正方体、长方体的体积相比较. [ ]A.正方体体积大 B.长方体体积大C.圆柱体体积大 D.一样大2、圆柱体的体积和底面积与一个圆锥体相等, 圆柱体的高是圆锥体的[ ]3.、24个铁圆锥, 可以熔铸成等底等高的圆柱体的个数是: [ ]A.12个B.8个 C.36个 D.72个4. 圆柱体的底面半径和高都扩大3倍, 它的体积扩大的倍数是: [ ]A.3B.6C.9D.27二、填空题1. 用一张边长是20厘米的正方形铁皮, 围成一个圆柱体, 这个圆柱体的侧面积是().2. 直圆柱的底面周长6.28分米, 高1分米, 它的侧面积是( )平方分米, 体积是()3. 一个圆柱体的底面直径和高都是0.6米, 它的体积是( )立方分米.4. 一个圆锥体和它的等底等高的圆柱体的体积相差12立方厘米, 圆锥体的体积是()。
5. 一个圆柱形铅块, 可以熔铸成( )个和它等底等高的圆锥形零件.6. 做一个圆柱体, 侧面积是9.42平方厘米, 高是3厘米, 它的底面半径是()。
7. 一个圆锥体体积是2立方米, 高是4分米, 底面积是( ).8. 一个圆柱体和一个圆锥体的体积与高都相等, 圆柱的底面积是18平方厘米, 圆锥的底面积是( )平方厘米.9. 一个圆柱体和一个圆锥体的底面积和高都相等.已知圆锥体的体积是7.8立方米, 那么圆柱体的体积是( ).10. 一个圆锥的体积是76立方米, 底面积是19平方米, 这个圆锥的高是()。
11. 把一个高6厘米的圆柱体削成最大圆锥体, 这个圆锥的体积是9.42立方厘米, 它的底面积是( ).12. 一个圆锥的体积是62.4立方厘米, 它的体积是另一个圆锥的4倍.如果另一个圆锥的高是2.5厘米, 这个圆锥的底面积是( ).14. 一个圆柱体削成一个与它等底等高的圆锥体, 削去的部分是圆锥体的()%。
15. 等底等高的圆柱体和圆锥体, 其中圆锥体的体积是126立方厘米, 这两个形体的体积之和是( ).三、应用题1. 一个圆锥形砂堆, 底面周长是31.4米, 高3米, 每方砂重1.8吨, 用一辆载重4.5吨的汽车, 几次可以运完? (得数保留整数)(5分)2. 一个圆形水池, 它的内直径是10米, 深2米, 池上装有5个同样的进水管, 每个管每小时可以注入水7.85立方米, 五管齐开几小时可以注满水池?3. 一个圆锥形的稻谷堆, 底周长12.56米, 高1.5米, 把这堆稻谷装进一个圆柱形粮仓, 正好装满.这个粮仓里面的底直径为2米, 高是多少米?4. 把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长是5厘米的正方体铁块, 熔铸成一个圆柱体, 这个圆柱体的底面直径是20厘米, 高是多少厘米?5. 一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?6. 一个圆柱体底面半径是2分米, 圆柱侧面积是62.8平方分米, 这个圆柱体的体积是多少立方分米?7. 用一张长2.5米, 宽1.5米的铁皮做一个圆柱形烟筒, 这个烟筒的侧面积是多少? (接口处忽略不计) 8. 一个无盖的圆柱形铁皮水桶, 高50厘米, 底面直径30厘米, 做一对水桶大约需用多少铁皮? (得数保留整数)9. 一个圆柱形水池, 底面半径3米, 池高1.5米, 这个水池最多可盛水多少吨? (1立方米的水重1吨)10. 晒谷场上有一个近似圆锥形的小麦堆, 测得底面周长为12.56米, 高1.2米.每立方米小麦约重730千克. 这堆小麦大约有多少千克? (得数保留整千克)。
六年级数学《圆柱和圆锥》同步练习题及答案
六年级数学《圆柱和圆锥》同步练习题及答案六年级数学《圆柱和圆锥》同步练习题及答案一、填空(1)一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的( ),圆柱的体积是圆锥体积的( ).(2)一个圆柱底面半径是1厘米,高是2.5厘米。
它的侧面积是 ( )平方厘米。
(3)一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是 ( )厘米。
(4)底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是( )立方米,圆锥的体积是( )立方米。
(5)一个圆锥体的底面周长是12.56分米,高是6分米,它的体积是( )立方分米。
(6)一个圆锥体底面直径和高都是6厘米,它的体积是( )立方厘米。
(7)一根长2米的圆木,截成两同样大小的圆柱后,表面积增加48平方厘米,这根圆木原来的体积是( )立方厘米。
(8)一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是( )立方厘米。
(9)圆柱的底面半径是3厘米,体积是6.28立方厘米,这个圆柱的高是( )厘米。
(10) 圆锥的底面半径是6厘米,高是20厘米,它的体积是( )立方厘米。
(11) 一个圆柱体高4分米,体积是40立方分米,比与它等底的圆锥体的体积多10立方分米。
这个圆锥体的高是( )分米。
(12) 把一段圆钢切削成一个最大的圆锥体,切削掉的部分重8千克,这段圆钢重( )千克.(13) 一个圆锥的体积是7.2立方米,与它等底等高的圆柱的体积是( )立方米.(14) 一个棱长是4分米正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是( )分米。
(15) 一个圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是( )厘米.(16) 一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的( ),圆柱的体积是圆锥体积的( ).(17) 一个直圆柱底面半径是1厘米,高是2.5厘米。
六年级下册数学圆柱圆锥练习题(含答案)
六年级下册数学圆柱圆锥练习题(含答案)一、1. 一个圆柱的底面直径为8厘米,高为10厘米,求其体积和表面积。
解:圆柱的体积公式为V = πr^2h,表面积公式为S = 2πr(r+h)。
其中r为底面半径,h为高度。
先求出底面半径r = 8/2 = 4厘米。
体积V = π(4^2)×10 = 160π≈ 502.65 cm^3表面积S = 2π×4(4+10) = 2π×4×14 ≈ 351.86 cm^22. 一个圆锥的底面半径为6厘米,高为8厘米,求其体积和表面积。
解:圆锥的体积公式为V = 1/3πr^2h,表面积公式为S = πr(r+√(r^2+h^2))。
先求出底面半径r = 6厘米。
体积V = 1/3π(6^2)×8 = 96π≈ 301.59 cm^3表面积S = π×6(6+√(6^2+8^2)) ≈ 150.80 cm^2二、3. 一个圆柱的底面直径是12.6厘米,高是16厘米,求其体积和表面积。
解:首先计算底面半径r = 12.6/2 = 6.3厘米。
体积V = π(6.3^2)×16 = 633.6π≈ 1991.05 cm^3表面积S = 2π×6.3(6.3+16) ≈ 570.97 cm^24. 一个圆锥的底面直径是9.8厘米,高是12厘米,求其体积和表面积。
解:先计算底面半径r = 9.8/2 = 4.9厘米。
体积V = 1/3π(4.9^2)×12 ≈ 237.67 cm^3表面积S = π×4.9(4.9+√(4.9^2+12^2)) ≈ 145.55 cm^2三、5. 一个圆柱的底面半径是5厘米,高是18厘米,求其体积和表面积。
解:底面半径r = 5厘米。
体积V = π(5^2)×18 = 450π≈ 1413.72 cm^3表面积S = 2π×5(5+18) ≈ 376.99 cm^26. 一个圆锥的底面半径是7厘米,高是10厘米,求其体积和表面积。
圆柱圆锥练习题以及答案
圆柱圆锥练习题以及答案圆柱圆锥练习题以及答案圆柱和圆锥是几何学中常见的几何体,它们具有广泛的应用。
在学习几何学时,我们经常会遇到与圆柱和圆锥相关的练习题。
下面,我将给大家提供一些圆柱和圆锥的练习题以及相应的答案,希望能帮助大家更好地理解和掌握这些概念。
练习题一:计算圆柱的体积已知一个圆柱的底面半径为5cm,高度为10cm,求其体积。
解答:圆柱的体积公式为V = πr²h,其中r为底面半径,h为高度。
将已知数据代入公式,可得V = 3.14 × 5² × 10 = 785 cm³。
因此,该圆柱的体积为785立方厘米。
练习题二:计算圆锥的体积已知一个圆锥的底面半径为8cm,高度为12cm,求其体积。
解答:圆锥的体积公式为V = (1/3)πr²h,其中r为底面半径,h为高度。
将已知数据代入公式,可得V = (1/3) × 3.14 × 8² × 12 = 803.84 cm³。
因此,该圆锥的体积为803.84立方厘米。
练习题三:计算圆柱的表面积已知一个圆柱的底面半径为6cm,高度为15cm,求其表面积。
解答:圆柱的表面积由底面积和侧面积组成。
底面积为πr²,侧面积为2πrh。
将已知数据代入公式,底面积为3.14 × 6² = 113.04平方厘米,侧面积为2 ×3.14 × 6 × 15 = 565.2平方厘米。
因此,该圆柱的表面积为113.04 + 565.2 = 678.24平方厘米。
练习题四:计算圆锥的表面积已知一个圆锥的底面半径为10cm,高度为16cm,求其表面积。
解答:圆锥的表面积由底面积、侧面积和底面到顶点的距离构成。
底面积为πr²,侧面积为πrl,其中l为底面到顶点的距离。
根据勾股定理,l = √(r² + h²)。
圆柱圆锥练习题以及答案
圆柱圆锥练习题以及答案一、选择题1. 一个圆柱的底面半径为3厘米,高为5厘米,其体积为:A. 141.3立方厘米B. 282.6立方厘米C. 94.2立方厘米D. 47.1立方厘米2. 一个圆锥的底面半径为4厘米,高为9厘米,其体积为:A. 75.36立方厘米B. 100.48立方厘米C. 50.24立方厘米D. 37.68立方厘米3. 圆柱的侧面积公式是:A. 2πr²B. πr²C. 2πrhD. πrh4. 圆锥的侧面积公式是:A. πr²B. πrlC. πr²+πrlD. 2πrh二、填空题1. 一个圆柱的底面直径为6厘米,高为10厘米,其侧面积为______平方厘米。
2. 一个圆锥的底面半径为5厘米,高为12厘米,其体积为______立方厘米。
三、解答题1. 一个圆柱形水桶的底面直径为40厘米,高为60厘米,求这个水桶的容积。
2. 一个圆锥形沙堆,底面半径为3米,高为4米,如果每立方米沙重1.5吨,求这堆沙的重量。
四、计算题1. 一个圆柱形油桶,底面直径为50厘米,高为80厘米,求油桶的表面积。
2. 一个圆锥形粮仓,底面直径为20米,高为15米,如果每立方米粮食重750千克,求粮仓的容积以及能装多少千克的粮食。
答案:一、选择题1. B2. B3. C4. C二、填空题1. 376.82. 188.4三、解答题1. 水桶的容积为:V=πr²h=π×(20)²×60=37680立方厘米。
2. 圆锥形沙堆的体积为:V=1/3πr²h=1/3×π×(3)²×4=12.56立方米。
沙堆的重量为:12.56×1.5=18.84吨。
四、计算题1. 油桶的表面积为:A=2πr(h+r)=2π×25(80+25)=4712.5平方厘米。
2. 圆锥形粮仓的体积为:V=1/3πr²h=1/3×π×(10)²×15=1570立方米。
人教版小学数学六年级《圆柱与圆锥》练习题(有答案)
3 / 10
【巩固练习】 1.圆柱体的底面半径和高都扩大 2 倍.它的体积扩大(
)倍.
①2
②4
③6
④8
2.等底等高的圆柱体.正方体.长方体的体积相比较.( ).
少平方米? (取)
1 0.5
1 1
1 1.5
【解析】从上面看到图形是右上图.所以上下底面积和为(立方米).侧面积为(立方米).所以该物体的表 面积是(立方米). 23.141.52 14.13 23.14 (0.5 11.5)118.84 14.1318.84 32.97 【例题 2】有一个圆柱体的零件.高厘米.底面直径是厘米.零件的一端有一个圆柱形的圆孔.圆孔的直径 是厘米.孔深厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆.那么一共要涂多少平方厘米? 10 6 4 5
22
瓶中剩余空间的体积
酒瓶容积:
(30
25)π
10 2
10 2
125π
375π
125π
500π
1500(ml)
【变式 3】一个盖着瓶盖的瓶子里面装着一些水.瓶底面积为平方厘米.(如下图所示).请你根据图中标
明的数据.计算瓶子的容积是______.10
7cm
5cm
4cm
【解析】由已知条件知.第二个图上部空白部分的高为.从而水与空着的部分的比为.由图 1 知水的体积
157.7536 25.12 182.8736
6 / 10
【例题 5】一个圆柱体形状的木棒.沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆 柱体的表面积大.则这个圆柱体木棒的侧面积是________.(取) 2008cm2 cm2 π 3.14
(完整版)圆锥的体积练习题及答案
六年级数学下册圆锥的体积一、填空 1.把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米。
2.一个圆柱和一个圆锥的体积和底面积相等,圆锥的高是9厘米,圆柱的高是()厘米。
3.圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。
4.一个棱长是4分米正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是()分米。
二、判断 1.一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的 。
( )13 2.把一个圆柱削成一个圆锥,这个圆锥的体积是圆柱体积的 。
( )13 3.圆柱体积比与它等底等高的圆锥体的体积大2倍。
( )4.圆锥的底面周长是12.56分米,高是4分米,它的体积是( )立方分米。
三、选择 1.把一段圆钢切削成一个最大的圆锥体,切削掉的部分重8千克,这段圆钢重( )千克。
①24 ②16 ③12 ④8 2.一个圆柱体积比一个与它等底等高的圆锥体的体积大( ) ① ②1 ③2倍 ④3倍23 3.一个底面直径是27厘米,高9厘米的圆锥体木块,分成形状大小完全相同的两个木块后,表面积比原来增加( )平方厘米。
①81 ②243 ③121.5 ④125.6四、应用题1.一根圆柱形钢管,长30厘米,外直径是长的 ,管壁厚1厘米,已知每立方厘米的钢15重7.8克,这根钢管重多少千克?2.一辆货车箱是一个长方体,它的长是4米,宽是1.5米,高是4米,装满一车沙,卸后沙堆成一个高是0.5米的圆锥形,它的底面积是多少平方米?参考答案一、填空1.6立方厘米。
2.3厘米。
3. 厘米。
234.16分米。
二、判断1.×2.×3.√4.×三、选择1.①2.③3.③四、应用题1. 外直径:30× =6(厘米) 外半径:156÷2=3(厘米) 内直径:6-1-1=4(厘米) 内半径:4÷2=2(厘米) 体积:3.14×(3×3-2×2)×30=471(立方厘米) 重量:7.8×471=3673.8(克) 答:这根钢管重3673.8克。
六年级下册数学圆柱圆锥练习题(含标准答案)
六年级下册数学圆柱圆锥练习题(含答案)————————————————————————————————作者:————————————————————————————————日期:圆柱和圆锥一、认真读题,谨慎填写。
1.沿着圆柱的高剪,侧面展开得到一个(),它的一条边就等于圆柱的(),另一条边就等于圆柱的()。
2.8050毫升=()升()毫升5.4平方分米=()平方厘米 8立方米=()立方分米;3. 5平方米40平方分米=()平方米4.把一段圆柱形木料削成一个最大的圆锥,削去部分是圆锥体积的()倍。
5.一个长方形长5厘米,宽4厘米,如果以宽为轴旋转一周得到一个立体图形,得到的是(),这个图形的体积是()立方厘米。
6.一个盛满水的圆锥体容器高9厘米,如果将水全部倒入与它等底等高的圆柱体容器中,则水高()厘米。
7.做一节底面直径为10分米,长40分米的烟筒,至少需要()平方分米铁片。
8.等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米,圆锥的体积是()立方米.9.一圆柱形罐头盒,高是1分米,底面周长6.28分米,罐头盒的侧面商标纸的面积最大是()平方分米,这个罐头盒至少要用()平方分米的铁皮。
10.一根长4米,横截面半径为2分米的圆柱形木料截成同样长的5段,表面积比原来增加()平方分米。
11、一个盛满水的圆锥体容器高9厘米,如果将水全部倒入与它等底等高的圆柱体容器中,则水高()厘米。
12、把一个棱长2分米正方体的削成一个最大的圆柱体,这个圆柱体的体积是()立方分米13、一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是( )厘米。
14、等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米,圆锥的体积是()立方米.15、等底等高的圆柱体和圆锥体, 其中圆锥体的体积是126立方厘米, 这两个的体积之和是( ).16、用一张边长是20厘米的正方形铁皮, 围成一个圆柱体, 这个圆柱的侧面积是( ).17、一个圆锥和它的等底等高的圆柱的体积相差12立方厘米, 圆锥的体积是( ).18、一个圆锥的体积是62.4立方厘米, 它的体积是另一个圆锥的4倍,如果另一个圆锥的高是2.5厘米, 另一个圆锥的底面积是( ).19、一个圆柱体削成与它等底等高的圆锥体, 削去的部分是圆锥体的( )%.二、判断对错。
六年级圆柱圆锥练习题及答案
六年级圆柱圆锥练习题及答案六年级圆柱圆锥练习题及答案在六年级学习数学的过程中,我们经常会遇到一些几何图形的题目,其中包括圆柱和圆锥。
这两个几何图形在我们的日常生活中随处可见,比如圆柱形的铅笔盒、圆锥形的冰淇淋筒等等。
今天,我们就来练习一些关于圆柱和圆锥的题目,并给出相应的答案。
题目一:圆柱的体积计算小明有一个圆柱形的水杯,底面半径为5厘米,高为10厘米。
请计算这个水杯的体积。
解答一:圆柱的体积计算公式为V = πr²h,其中V表示体积,r表示底面半径,h表示高。
根据题目中的数据,我们可以代入计算,得到V = 3.14 × 5² × 10 = 785立方厘米。
所以,这个水杯的体积为785立方厘米。
题目二:圆锥的表面积计算小红买了一个圆锥形的帽子,底面半径为8厘米,斜高为15厘米。
请计算这个帽子的表面积。
解答二:圆锥的表面积计算公式为S = πr(r + l),其中S表示表面积,r表示底面半径,l表示斜高。
根据题目中的数据,我们可以代入计算,得到S = 3.14 ×8(8 + 15) = 3.14 × 8 × 23 = 579.04平方厘米。
所以,这个帽子的表面积为579.04平方厘米。
题目三:圆柱的侧面积计算小华正在制作一个圆柱形的纸筒,底面半径为6厘米,高为12厘米。
请计算这个纸筒的侧面积。
解答三:圆柱的侧面积计算公式为A = 2πrh,其中A表示侧面积,r表示底面半径,h表示高。
根据题目中的数据,我们可以代入计算,得到A = 2 × 3.14 × 6 × 12 = 452.16平方厘米。
所以,这个纸筒的侧面积为452.16平方厘米。
题目四:圆锥的体积计算小明正在制作一个圆锥形的糖果盒,底面半径为4厘米,高为9厘米。
请计算这个糖果盒的体积。
解答四:圆锥的体积计算公式为V = (1/3)πr²h,其中V表示体积,r表示底面半径,h表示高。
圆柱圆锥练习题和答案
圆柱圆锥练习题和答案圆柱和圆锥是几何学中常见的立体图形,它们在数学问题中经常出现。
以下是一些关于圆柱和圆锥的练习题以及相应的答案。
练习题1:一个圆柱的底面半径为3厘米,高为10厘米。
求这个圆柱的体积。
答案1:圆柱的体积公式是V = πr²h,其中 r 是底面半径,h 是高。
将给定的值代入公式,我们得到V = π * (3cm)² * 10cm = 90πcm³。
练习题2:一个圆锥的底面半径为4厘米,高为12厘米。
求这个圆锥的体积。
答案2:圆锥的体积公式是 V = (1/3)πr²h。
将给定的值代入公式,我们得到V = (1/3) * π * (4cm)² * 12cm= 64π cm³。
练习题3:如果一个圆柱的体积是100π cm³,底面半径是5厘米,求这个圆柱的高。
答案3:根据圆柱体积公式V = πr²h,我们可以解出高h = V / (πr²)。
将给定的值代入公式,我们得到h = 100π cm³ / (π * (5cm)²)= 4 cm。
练习题4:一个圆锥的体积是150π cm³,底面半径是5厘米,求这个圆锥的高。
答案4:根据圆锥体积公式V = (1/3)πr²h,我们可以解出高 h = (3V) / (πr²)。
将给定的值代入公式,我们得到h = (3 * 150π cm³) / (π *(5cm)²) = 18 cm。
练习题5:一个圆柱和一个圆锥等底等高,已知圆柱的体积是120π cm³,求圆锥的体积。
答案5:由于圆柱和圆锥等底等高,圆锥的体积是圆柱体积的1/3。
所以,圆锥的体积是120π cm³ / 3 = 40π cm³。
练习题6:一个圆柱和一个圆锥的底面半径和高都相等,如果圆柱的体积是圆锥体积的2倍,求圆柱的高。
圆柱圆锥练习题及答案
圆柱圆锥练习题及答案一、选择题1. 下列图形中,可以看作是圆柱的是:A. 棱台B. 球体C. 圆锥D. 圆筒答案:D. 圆筒2. 已知圆锥的底面半径为3cm,高度为4cm,求圆锥的体积(取π=3.14)。
A. 18.84cm³B. 37.68cm³C. 25.12cm³D. 75.36cm³答案:B. 37.68cm³(计算公式:体积V = (1/3)πr²h = (1/3) × 3.14 × 3² × 4 = 37.68cm³)3. 在一个圆锥中,底面圆的周长为12cm,高度为5cm,求圆锥的侧面积(取π=3.14)。
A. 52.2cm²B. 57.68cm²C. 62.8cm²D. 63.4cm²答案:C. 62.8cm²(计算公式:侧面积S = πrl = 3.14 × 3 × 5 =47.1cm²)二、填空题1. 已知圆柱的底面半径为4cm,高度为12cm,求圆柱的体积(取π=3.14)。
答案:V = πr²h = 3.14 × 4² × 12 = 602.88cm³2. 在一个圆锥中,底面圆的半径为6cm,高度为8cm,求圆锥的侧面积(取π=3.14)。
答案:S = πrl = 3.14 × 6 × 10 = 188.4cm²3. 在一个圆柱中,底面圆的半径为5cm,高度为7cm,求圆柱的表面积(取π=3.14)。
答案:S = 2πrh + 2πr² = 2 × 3.14 × 5 × 7 + 2 × 3.14 × 5² = 219.8cm²三、解答题1. 一个圆柱的底面圆的周长为20cm,高度为8cm,求圆柱的体积和表面积(取π=3.14)。
六年级数学圆柱和圆锥试题答案及解析
六年级数学圆柱和圆锥试题答案及解析1.(1分)如图,这支铅笔的圆柱部分长度是圆锥的3倍,圆柱的体积是圆锥体积的倍.【答案】9【解析】观察图形可知:圆柱部分与圆锥部分的底面积相等,由此设圆柱部分与圆锥的部分的底面积为S,圆锥部分的高是h,圆柱部分的高是3h,利用圆锥与圆柱的体积公式即可求出圆柱的体积是圆锥体积的几倍,由此即可解决问题.解:设圆柱部分与圆锥的部分的底面积为S,圆锥部分的高是h,圆柱部分的高是3h,所以圆锥部分的体积为:Sh,圆柱部分的体积为:S×3h=3Sh,则圆柱的体积是圆锥体积的3sh÷sh=9;答;圆柱的体积是圆锥体积的9倍.故答案为:9.点评:此题考查了圆柱与圆锥的体积公式的灵活应用.2.(9分)一个底面半径为5厘米,高为28厘米圆柱形水桶装满水,另一个圆锥形空水桶,它的上口周长为56.52厘米,现在把圆柱形水桶里的水往圆锥形水桶里倒,当圆锥形水桶装满时,圆柱形水桶里还剩下13厘米高的水,求圆锥形水桶的高(结果保留两位小数).【答案】13.89厘米.【解析】已知圆柱水桶的高是28厘米,现在把圆柱形水桶里的水往圆锥形水桶里倒,当圆锥形水桶装满时,圆柱形水桶里还剩下13厘米高的水,水面下降了28﹣13=15厘米,根据圆柱的体积公式:v=sh,求出圆柱水桶中减少的水的体积,也就是圆锥形水桶的容积.再根据圆锥的容积公式:v=sh,用圆锥的体积除以除以底面积,即可求出高.解:3.14×52×(28﹣13)÷[3.14×(56.52÷3.14÷2)2],=3.14×25×15[3.14×92],=1177.5×3÷254.34,=3532.5÷254.34,≈13.89(厘米),答:圆锥形水桶的高约是13.89厘米.点评:此题解答关键是理解圆柱水桶中减少的水的体积等于圆锥形水桶的容积,再根据圆锥的容积公式解答.3.一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。
北师大小学数学六年级下册圆柱与圆锥典型难题练习题带答案
小学数学圆柱与圆锥练习题一.选择题(共30小题)1.如果一个圆柱体和一个圆锥体等底等高,它们的体积一共是48立方厘米,那么圆柱的体积是()立方厘米.A.36B.24C.162.从圆柱的正面看,看到的轮廓是一个正方形,说明圆柱的()相等.A.底半径和高B.底面直径和高C.底周长和高3.一个圆锥的体积是6立方分米,与它等底、等高的圆柱的体积是()立方分米.A.2B.6C.184.把一个圆柱削成一个最大的圆锥,削去部分的体积是这个圆柱体积的()A.B.C.2倍5.圆柱的侧面沿直线剪开,在下列的图形中,不可能出现()A.长方形或正方形B.三角形C.平行四边形6.12个同样的铁圆锥,可以熔铸成等底等高的圆柱体的个数是()A.6B.4C.187.圆柱的底面直径是6分米,高是8分米,与它等底等高的圆锥的体积是()立方分米.A.113.04B.226.08C.75.368.图中线段AB围绕A点旋转到AB2的位置,是按逆时针方向旋转()°.A.30B.60C.909.用一块长25.12厘米,宽18.84厘米的长方形铁皮,配上、下面()圆形铁片,正好可以做成圆柱形容器.A.r=8cm B.d=4cm C.r=3cm D.d=3cm10.下面图形中,()是圆柱的展开图.A.B.C.11.下面图形中,()绕着中心点旋转60°后能和原图重合.A.B.C.12.圆柱和圆锥的底面积、体积分别相等,圆锥的高是圆柱的高的()A.B.C.2倍D.3倍13.一个圆的直径扩大3倍,那么它的面积扩大()倍.A.3B.6C.9D.414.一个图形以中心点为旋转点顺时针旋转90°和()的图形重合.A.顺时针旋转360°B.逆时针旋转270°C.逆时针旋转90°15.一个圆锥和一个圆柱等底等高,那么()A.圆锥的体积是圆柱的3倍B.圆柱的体积是圆锥的3倍C.圆柱的体积是圆锥的16.一个圆柱的侧面展开是一个正方形,这个圆柱的底面半径和高的比是()A.1:πB.1:2πC.π:1D.2π:117.把一段圆柱形的木料削成一个最大的圆锥,削去部分体积是圆锥体积的()A.B.2倍C.3倍D.18.如图是一个直角三角形,两条直角边的长分别为3cm、4cm,斜边的长为5cm.如果以斜边为轴旋转一周,求所形成的立体图形的体积算式是()A.3.14×32×4÷3 B.3.14×42×3÷3C.3.14×(3×4÷5)2×5÷3 D.3.14×32×5÷319.一张长方形纸可以沿较长边或较短边围成不同的圆柱形纸筒(如图).如果给两个纸筒都配上两个底面,则圆柱A 的表面积与圆柱B的表面积相比,()A.A>B B.A<B C.A=B D.无法比较20.如图中瓶子的底面积和圆锥形杯口的面积相等,若将瓶子中的液体倒入圆锥形杯子中,能倒满()杯.A.3B.4C.6D.921.如图,把一个圆柱切成若干等份,拼成一个近似的长方体,表面积增加了40平方厘米.圆柱的侧面积是()平方厘米.A.40B.20πC.40πD.160π22.图中的正方体、圆柱体和圆锥体的底面积相等,高也相等,下面说法正确的是?()A.圆锥的体积与圆柱的体积相等B.圆柱的体积比正方体的体积大一些C.圆锥的体积是正方体体积的D.以上说法都不对23.有一个圆柱和一个圆锥的体积相等,圆柱的高是圆锥的一半,圆锥的底面积是9cm2,圆柱的底面积是()cm2A.6B.3C.924.如图可以看作是由绕一个顶点经过()变换而得到的.A.平移B.旋转C.平移和旋转25.一棵大树,量得底部直径为40厘米,树干高10米,这棵树干的体积是多少?下列说法最符合实际的是()(π=3)选择的理由:A.树干的体积正好是1.2立方米B.树干的体积比1.2立方米略多些C.树干的体积比1.2立方米略少些D.树干的体积比12立方米略少些26.一个圆柱底面直径为8厘米,若高增加1厘米.则表面积增加()平方厘米.A.3.14B.8C.25.12D.6.2827.等底等高的圆柱体和圆锥体,已知圆柱体体积比圆锥体体积大9.42立方厘米,圆锥体的体积是()A.4.71立方厘米B.3.14立方厘米C.18.84立方厘米28.一个圆柱和一个圆锥体积和高都相等,那么圆锥的底面积是圆柱底面积的()A.2倍B.3倍C.6倍29.把长60厘米的圆柱体按3:2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米.截成的较长一个圆柱的体积是()立方厘米.A.360B.540C.720D.108030.一个圆柱和一个圆锥等底等高,圆锥的体积比圆柱的体积少0.8立方分米,那么圆柱的体积是()立方分米.A.0.4B.0.8C.1.2D.2.4二.填空题(共5小题)31.一个底面半径为10厘米的圆柱形玻璃杯中装有10厘米深的水,将一个底面直径是2厘米、高是6厘米的圆锥形铅锤放入杯中,水面会上升厘米.32.一个圆柱体高不变,如果底面周长增加20%,那么体积则增加%.33.有甲乙两个圆柱体,如果甲的高等于乙的底面直径,甲的体积将缩小,如果乙的底面直径等于甲的高,乙的体积将增加倍.34.如图所示,圆锥形容器装有32升水,水面高度正好是圆锥高度的一半,这个容器还能装升水.35.将一根高是1.5米的圆柱形木料沿直径劈成两个半圆柱后,(如图)发现表面积比原来增加了60平方分米,原来这根木料的体积是立方分米.三.计算题(共1小题)36.看图计算(单位:厘米)(1)计算圆柱的表面积和体积.(2)计算圆锥的体积.四.应用题(共2小题)37.一根长1米,横截面直径是20厘米的木头浮在水面上,小明发现它正好是一半露出水面,请你求出这根木头与水接触的面的面积是多少平方厘米.这根木头的体积是多少立方厘米?38.把一根长2米的圆柱形钢材横截成三段,表面积比原来增加24平方厘米.原来这根圆柱形钢材的体积是多少立方厘米?五.操作题(共1小题)39.请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择.(1)你选择的材料是号和号(2)你选择的材料制成的水桶表面积是多少平方分米?六.解答题(共1小题)40.一个圆锥形沙堆,底面积是28.26平方米,高是2.5米.用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?参考答案与试题解析一.选择题(共30小题)1.【解答】解:48÷(3+1)×3,=48÷4×3,=36(立方厘米),答:圆柱的体积是36立方厘米.故选:A.2.【解答】解:从圆柱的正面看,看到的轮廓是一个正方形,说明圆柱的圆柱的底面直径和高相等.故选:B.3.【解答】解:6×3=18(立方分米);故选:C.4.【解答】解:削成的最大圆锥与原来圆柱等底等高,则圆锥的体积是圆柱的体积的,所以削去部分的体积是圆柱体积的:1﹣=.故选:B.5.【解答】解:围成圆柱的侧面的是一个圆筒,沿高直线剪开会得到长方形或正方形,沿斜直线剪开会得到平行四边形.但是无论怎么直线剪开,都不会得到三角形.故选:B.6.【解答】解:因为,等底等高的圆柱体的体积是圆锥体体积的3倍,因此,12个铁圆锥,可以熔铸成等底等高的圆柱体的个数是:12÷3=4(个),答:12个铁圆锥,可以熔铸成等底等高的圆柱体的个数是4个,故选:B.7.【解答】解:3.14×(6÷2)2×8,=3.14×9×8,=226.08(立方分米),226.08×=75.36(立方分米),答:圆锥的体积是75.36立方分米.故选:C.8.【解答】解:根据旋转的性质并结合题意可知:图中线段AB围绕A点旋转到AB2的位置,是按逆时针方向旋转90°;故选:C.9.【解答】解:25.12÷3.14÷2=4(厘米);d=4×2=8(厘米);或:18.84÷3.14÷2=3(厘米);d=3×2=6(厘米);故选:C.10.【解答】解:A:底面周长为:3.14×3=9.42,因为长=3,所以不是圆柱的展开图,B:底面周长为:3.14×4=12.56,因为长=12,所以不是圆柱展开图,C:底面周长为:3.14×2=6.28,因为长=6.28,所以是圆柱展开图,故选:C.11.【解答】解:A、是旋转对称图形,绕旋转中心旋转120°后能与自身重合.B、是旋转对称图形,绕旋转中心旋转90°后能与自身重合;C、是旋转对称图形,绕旋转中心旋转60°后能与自身重合;所以C答案是正确的.故选:C.12.【解答】解:等底等高的圆柱的体积是圆锥体积的3倍,可知一个圆柱和一个圆锥底面积相等,体积也相等,那么圆锥的高是圆柱高的3倍.故选:D.13.【解答】解:假设这个圆原来的直径是2厘米,则扩大后是6厘米.原来圆的面积S=πr2=3.14×(2÷2)2=3.14(平方厘米)扩大后圆的面积S=πr2=3.14×(6÷2)2=28.26(平方厘米)28.26÷3.14=9故选:C.14.【解答】解:逆时针旋转:360﹣90=270(度)故选:B.15.【解答】解:如果一个圆锥和一个圆柱等底等高,那么圆柱的体积是圆锥体积的3倍,圆锥的体积是圆柱体积的.故选:B.16.【解答】解:设圆柱的底面半径为r,则圆柱的底面周长是:2πr,即圆柱的高为:2πr,圆柱的底面半径和高的比是:r:2πr=1:2π;故选:B.17.【解答】解:(1﹣)÷=2;故选:B.18.【解答】解:如图,斜边的高为:3×4÷5=2.4(厘米),×3.14×2.42×5=×3.14×5.76×5=30.144(立方厘米);综合算式为:3.14×(3×4÷5)2×5÷3.故选:C.19.【解答】解:假设这张长方形纸的长是12.56厘米,宽是9.42厘米,圆柱A的表面积:3.14×(9.42÷3.14÷2)2×2+12.56×9.42=3.14×1.52×2+118.3152=3.14×2.25×2+118.3152=14.13+118.3152=132.4452(平方厘米)圆柱B的表面积:3.14×(12.56÷3.14÷2)2×2+12.56×9.42=3.14×22×2+118.3152=3.14×4×2+118.3152=25.12+118.3152=143.4352(平方厘米)143.4352>132.4452答:圆柱A的表面积大.故选:B。
人教版小学数学六年级《圆柱与圆锥》练习题(有答案)
圆柱与圆锥立体图形表面积体积h r圆柱222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱h r圆锥22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长21π3V r h =圆锥体【基础练习】一、选一选。
(将正确答案的序号填在括号里) 1、下面物体中,( )的形状是圆柱。
A 、B 、C 、D 、2、一个圆锥的体积是36dm 3,它的底面积是18dm 2,它的高是( )dm 。
A 、23 B 、2 C 、6 D 、183、下面( )图形是圆柱的展开图。
(单位:cm )4、下面( )杯中的饮料最多。
5、一个圆锥有( )条高,一个圆柱有( )条高。
A 、一 B 、二 C 、三 D 、无数条6、如右图:这个杯子( )装下3000ml 牛奶。
A 、能B 、不能C 、无法判断二、判断对错。
()1、圆柱的体积一般比它的表面积大。
()2、底面积相等的两个圆锥,体积也相等。
()3、圆柱的体积等于和它等底等高的圆锥体积的3倍。
()4、“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。
()5、把圆锥的侧面展开,得到的是一个长方形。
三、想一想,连一连。
四、填一填。
1、2.8立方米=()立方分米6000毫升=()3060立方厘米=()立方分米5平方米40平方分米=()平方米2、一个圆柱的底面半径是5cm,高是10cm,它的底面积是()cm2,侧面积是()cm2,体积是()cm3。
3、用一张长分米,宽分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是()平方分米。
(接口处不计)4、一个圆锥和一个圆柱等底等高,圆锥的体积是76cm3,圆柱的体积是()cm3。
5、一个圆锥的底面直径和高都是6cm,它的体积是( )cm3。
五、求下面图形的体积。
(单位:厘米)六、解决问题。
1、⑴制作这个薯片筒的侧面标签,需要多大面积的纸?⑵这个薯片筒的体积是多少?2、在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-WORD格式--可编辑--
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _名姓
_ _ _ _ _ _ _ _ _ _ _ _ _ _号学
_
_ _ _ _ _ _ _ _ _ _ _ _级班
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _校学⋯数学第二单元测试卷
⋯
⋯(圆柱和圆锥)
⋯
⋯
一、认真读题,谨慎填写。
(每空 1 分,共 21 分)
⋯
⋯
1.沿着圆柱的高剪,侧面展开得到一个(长方形),它的一条边就等于圆
⋯
⋯
⋯柱的(底面周长),另一条边就等于圆柱的(高)。
⋯
⋯
2. 8050 毫升 =( 8)升( 50 )毫升; 5.4 平方分米=( 540)平方厘米
⋯
⋯
2.8 立方米 =(2800)立方分米; 5平方米 40 平方分米 =( 5.4)平方米⋯
⋯
⋯3.把一段圆柱形木料削成一个最大的圆锥,削去部分是圆锥体积的(2)倍。
⋯
⋯
4.一个圆柱的底面周长是12.56 厘米,高是 5 厘米,它的侧面积是(62.8 )平方
⋯
⋯
⋯厘米,表面积是(87.92 )平方厘米,体积是(62.8 )立方厘米。
⋯
⋯
5.一个长方形长 5 厘米,宽 4 厘米,如果以宽为轴旋转一周得到一个立体图形,得
题
答
得到的是(圆柱体),这个图形的体积是( 314 )立方厘米。
不
内
6.一个盛满水的圆锥体容器高9 厘米,如果将水全部倒入与它等底等高的圆柱体容
线
封
器中,则水高(3)厘米。
密
⋯
10 分米,长40 分米的烟筒,至少需要(1334.5 )平方分米
⋯ 7.做一节底面直径为
⋯
⋯铁片。
⋯
⋯
8.等底等高的圆柱和圆锥的体积相差16 立方米,这个圆柱的体积是(24)⋯
⋯
⋯立方米,圆锥的体积是(8)立方米.
⋯
⋯
9.一圆柱形罐头盒,高是 1 分米,底面周长 6.28分米,罐头盒的侧面商标纸的面
⋯
⋯
⋯积最大是( 6.28 )平方分米,这个罐头盒至少要用( 12.56 )平方分米的铁皮。
⋯
⋯10.一根长 4 米,横截面半径为 2 分米的圆柱形木料截成同样长的 5 段,表面积比原⋯
⋯
来增加( 100.48 )平方分米。
⋯
⋯
二、巧思妙断,判断对错。
(对的打“√”,错的打“×”。
每题 2 分,共 12 分)
⋯
⋯
1 .“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。
⋯⋯⋯⋯⋯⋯(√)⋯
⋯
2.一个容器的体积就是它的容积。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(√)⋯
3.长方体、正方体、圆柱的体积都可用底面积×高来表示。
⋯⋯⋯⋯⋯⋯⋯(√ )4.长方形绕着一条边转动所产生的图形是圆柱。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(√)5.圆锥顶点到底面上任意一点的距离就是它的高。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(×)6.一段圆柱体的钢材,切削成一个最大的圆锥体,切去部分是圆锥体积的 2 倍。
(√)三、反复比较,精心选择。
(每空 2 分,共 14 分)。
1.下面(A)图形是圆柱的展开图。
(单位:cm)
2.求圆柱形木桶内盛多少升水,就是求水桶的(A.侧面积B.表面积C
D
.体积
)。
D.容积
3.小军做了一个圆柱体容器和几个圆锥体容器,尺寸如下图所示(单位:㎝),将圆柱体内的水倒入(A)圆锥体内,正好倒满。
4.在下图中,以直线为轴旋转,可以得出圆柱体的是(B),得出圆锥体的是(C)。
A B C D
5.一个圆柱体杯中盛满 15 升水,把一个与它等底等高的铁圆锥倒放入水中,杯中还
有( C)水。
A.5升B.7.5 升C.10升D.9升
6.把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体。
下面
哪句话是正确的?( C )
A.表面积和体积都没变B.表面积和体积都发生了变化
C.表面积变了,体积没变D.表面积没变,体积变了
四、观察图形,细心计算。
(12分)
1、根据条件求圆柱的表面积和体积。
(单位:厘米)( 8分)
表面积196.25 平方厘米
体积 196.25 立方厘米
2、根据条件求圆锥的体积。
(单位:厘米)(4分)
29.4375 立方厘米
五、动手实践,操作应用。
(6 分)
请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
( 1)你选择的材料是(2)号和( 3)号。
9.42 分米米分
米6
分 4 分米5米
.
22分
1
3
5 分米
( 1)号( 2)号( 3)号( 4)号( 2)你选择的材料做成的水桶最多能装水多少千克?(1 升水重 1千克)
62.8 千克
六、运用知识,灵活解题。
(共 35分)
1.⑴制作这个薯片筒的侧面标签,需要多大面积的纸?(5 分)
188.4 平方厘米
⑵这个薯片筒的体积是多少?(4 分)
282.6 立方厘米
2.一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径 6 米,池深 1.2米。
镶瓷砖的面积是多少平方米?(6 分)
50.868平方米
3.在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径 4 米,高 1.5 米。
每立方米沙大约重 1.7 吨,这堆沙约重多少吨?(得数保留整吨数)( 6分)
11 吨
4.张师傅要把一根圆柱形木料(如右图)削成一个圆锥,削成的圆锥的体积最大是多少立方分米?(6 分)
3.14 立方分米
5.某种饮料罐的形状为圆柱形,底面直径是7cm,高是12cm。
将 24 罐这样的饮料放入一个长方形纸箱内(如下图)。
( 1)这个纸箱的长、宽、高至少各是多少厘米?(4 分)
长42厘米宽 28厘米高12厘米
( 2)这个纸箱的容积至少是多少?(4分)14112 立方厘米。