(六年级下册)圆柱与圆锥常考题型分类与答案

合集下载

(六年级下册)圆柱与圆锥常考题型分类与答案

(六年级下册)圆柱与圆锥常考题型分类与答案

六年级数学下册——圆柱与圆锥常考题型汇总与答案圆柱与圆锥的表面积与体积一、基本题型:公式直接求表面积(略)二、横切:把一个圆柱切成几个圆柱。

表面积变化情况?1、把一根长2m的圆柱形木料锯成三段,表面积增加了100.48cm3,这段木料的体积?三、纵切:把一个圆柱切成几个半圆柱。

表面积变化情况?2、一个底面直径是4cm,高是5cm的圆柱,沿着底面直径切开,表面积增加();沿着底面切开,表面积增加()。

四、叠加:几个圆柱摞在一起。

3、将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面是多少平方米?五、整体代换法的应用:4、一个圆锥的高和底面半径都等于一个正方体的棱长,已知正方体的体积是90立方厘米,求这个圆锥的体积?六、圆柱体转换成长方体:5、将一个高为8cm的圆柱沿着底面直径平均切成若干等份,在拼成一个与它等底等高的长方体后,表面积增加了80cm2 ,求原来圆柱的体积?七、水中浸物:6、一个圆柱水槽,底面半径是8厘米,水槽中完全浸没着一块铁,当铁块取出时,水面下降了5厘米。

这块铁的体积是多少?八、熔铸问题:由一个物体变成另一个物体。

7、把一块高12cm,横截面半径是3cm的圆柱形钢坯铸成一块底面半径是6cm的圆锥形钢坯,这个钢坯的高是多少?九、旋转问题:8、一个长4cm、宽3cm的长方体,以一条边为轴旋转一周,得到一个(),体积最大是();直角边分别为4cm与3cm的直角三角形,以一条直角边为轴旋转一周,得到一个(),体积最大是()。

十、扩大问题:9、一个圆柱的底面直径扩大2倍,高不变,它的底面积扩大(),侧面积扩大(),体积扩大()。

十一、圆柱圆锥比例问题:10、一个圆锥与圆柱的体积比是3:2,底面积比是2:3,求圆柱与圆锥的高之比?其他问题:压路机问题11、一台压路机的滚筒宽5m,直径为1.8m,如果它滚动了20周压路的面积是多少平方米?12、一台压路机的滚筒长1.2m,底面直径为0.8m的圆柱,如果它分钟转5圈,那么它每分钟前进多少米?每分钟压过的面积是多少米?圆锥公式的理解与易错题汇总一、公式的理解1、2、一个圆锥的体积是50.24,底面半径是2cm,求圆锥的高()。

(必考题)小学数学六年级下册第三单元圆柱与圆锥检测(包含答案解析)

(必考题)小学数学六年级下册第三单元圆柱与圆锥检测(包含答案解析)

A. 1.57 升 米
B. 6.28 平方分米
C. 628 毫升
D. 157 平方厘
二、填空题
13.一根长 2m 的圆柱形木料截成 3 段后表面积增加了 50.24 平方分米,这根木料的体积 是________立方分米。 14.把一个底面半径是 4 厘米,高是 6 分米的铁制圆锥体放入盛满水的桶里,将有 ________立方厘米的水溢出。 15.如果一个圆柱的侧面展开是一个边长为 3.14 分米的正方形,圆柱的高是________分 米,底面积是________平方分米。 16.一个圆柱形的保温杯,底面直径是 4 厘米,高是 8 厘米。它的表面积是________平方 厘米,容量是________毫升。 17.把一根圆柱形木料截成 3 段,表面积比原来增加了 45.12cm2 , 这根木料的底面积是 ________cm2。 18.一个圆柱的侧面展开得到一个长方形,长方形的长是 6.28 厘米,宽是 3 厘米,这个圆 柱体的侧面积是________平方厘米,表面积是________平方厘米. 19.一个圆柱,底面周长是 31.4 厘米,高是 6 厘米。它的侧面积是________。
8.C
解析: C 【解析】【解答】2×2²=2×4=8 故答案为:C。 【分析】圆锥体积扩大的倍数=圆锥高扩大的倍数×圆锥底面半径扩大倍数的平方。
9.D
解析: D 【解析】【解答】10×8=80(平方厘米) 故答案为:D 【分析】本题中,圆柱的侧面积就是这个长方形的面积,用长方形面积公式 S=ab,求解即 可。
二、填空题
13.2【解析】【解答】2m=20dm5024÷4=1256(平方分米)1256×20=2512(立 方分米)故答案为:2512【分析】将一根圆柱形的木料截成 3 段后表面积增加 了 4 个底面积表面积增加的部分÷4

(六年级下册)圆柱与圆锥详细题型分类与答案 最终版

(六年级下册)圆柱与圆锥详细题型分类与答案  最终版

一、圆柱的表面积1.例题12.巩固3.拓展4.巩固圆柱与圆锥(一)本节课学习圆柱体表面积的一些运用.解决这些问题,有时需要结合实际,明确所求圆柱体的表面积有几个面;有时需要灵活地利用条件,间接得出所需要的数据进行计算;有时还需要观察图形,在观察与比较中搜索需要的信息.某化工厂有一个烟面,形状为圆柱形,底面半径是厘米,高是米,现在 要将烟囱增高到米.每增加平方米材料需要费用元,一共需要多少费用?808251120一个圆柱体的有盖油桶高分米,它的侧面展开后得到一个长分米的长方形.这个油桶共享了多少平方分米的铁皮?1025.12如图所示,有一块长方形铁皮,把其中的阴影部分剪下制成一个圆柱形油桶,求圆柱形油桶的表面积.如图所示,有一张长方体铁皮,剪下图中两个圆及一块长方形,正好可以做成一个圆柱体,这个圆柱体的底面半径为厘米,那么原来长方形铁皮的面积是多少平方厘米(取).10π 3.142.巩固3.拓展4.巩固把一个正方体削成一个体积最大的圆柱,如果圆柱的侧面积是平方厘米.求正方体的表面积.314把一个横截面是正方形的长方体术料削剪成一个最大的圆柱体,圆柱体的表面积为平方厘米.底面直径与高的比是,原来长方体的表面积是多少?32.971:3已知一个圆柱的底面半径等于一个正方体棱长的一半,高等于这个正方体的棱长,这个正方体的底面积是平方分米.求这个圆柱的表面积.25五、“整体代换”法在求圆柱体表面积或体积时的应用在分数的计算和圆的面积计算中,我们曾经学过“整体代换”的方法,例如:计算一个圆的面积,将圆周率乘半径的平方即可,但是,有的时候我们不知道这个圆的半径是多少,只告诉你,这时就可以直接用乘求得圆的面积.今天,我们学习“整体代换”法在求圆柱体表面积或体积时的应用.=8r 2 3.148圆柱与圆锥(一)(课后作业)圆柱与圆锥(课后作业)1.六年级上学期其它圆柱与圆锥一个圆柱体高厘米,侧面积平方分米,它的底面积是多少平方厘米?8025.122.六年级上学期其它圆柱与圆锥一个圆柱体的侧面展开是一个正方形,圆柱的底面直径是厘米,这个 圆柱体的表面积是多少平方厘米?203.六年级上学期其它圆柱与圆锥一个圆柱体木块,底面直径是分米,高是米,现在将它截成两个圆柱体小木块,那么,表面积增加多少平方分米?107.54.六年级上学期其它圆柱与圆锥一个圆柱体木块,底面周长是厘米,高是厘米,现在将它截成四个圆柱体小木块.那么,这四个圆柱体小木块的表面积为多少平方厘米?25.1265.六年级上学期其它圆柱与圆锥一个圆柱体的表面积和一个长方形的面积相等,长方形的长等于圆柱体的底面周长,已知长方形的面积为平方厘米,圆柱体的高是厘米,圆柱体的底面半径是多少?131.884如图所示,有一个立体图形.下部是一个棱长为厘米的正方体,上部是一个半圆柱体.求这个立体图形的表面积.409.六年级上学期其它圆柱与圆锥将一个正方体木块切削成一个最大的圆柱体,这个圆柱体的体积是立方厘米,问:原来正方体的体积有多大?125610.六年级上学期其它圆柱与圆锥如图所示,一个圆柱体的侧面展开图为正方形,已知它的一个底面面积是平方厘米.求这个圆柱体的表面积.108.六年级上学期其它圆柱与圆锥14.六年级上学期其它圆柱与圆锥如图所示.这是一个底面半径为厘米,高为厘米的圆柱,在它的中间依次向下挖去半径分别为厘米、厘米、厘米,高分别为厘米、厘米、厘米的圆柱.最后得到的立体图形表面积是多少?44321210.515.六年级上学期其它圆柱与圆锥如图所示,在长为厘米的圆筒形管子的横截面上,量出的最长线段为厘米,管子的体积是多少?201013.六年级上学期其它圆柱与圆锥有大、小两种不带盖的圆柱形水桶,它们的表面积的和是平方分米,小桶和大桶的用料面积的比是,小桶的底面周长是分米,大桶的底面周长是分米.求大、小两个桶的侧面积各是多少?54331:262.894.2圆柱与圆锥(奥赛训练)11.六年级上学期其它圆柱与圆锥工人师傅将一张铁皮按图裁剪后,做成一个圆柱形铁皮罐,求这个铁皮罐的表面积(单位:分米).12.六年级上学期其它圆柱与圆锥圆柱形的售报亭的高和底面直径相等,如图所示,开一个边长等于底面半径的正方形售报窗口.窗口处挖去的圆柱部分的面积占圆柱形侧面积的几分之几?所示.表面积增加了多少平方厘米?厘米.那么,它的体积是多少平方二、圆柱的表面积和体积(二)1.例题22.巩固3.巩固4.拓展5.巩固根据圆柱体底面、侧面和表面积的特征,以及它们之间的关系可以解决一些求体积的趣题.下面,我们就开始学习这方面的知识.一个圆柱体的高是厘米,它的侧面展开是一个正方形,求这个圆柱体的体积是多少立方厘米?12.56一个圆柱体的高是厘米,它的侧面展开是一个正方形.求这个圆柱体的体积.31.4一个侧柱体,它的侧面展开是一个长方形(宽为圆柱体的高).已知展开后的长方形的长是宽的倍,且宽是厘米.求这个圆柱体的体积.215.7如图所示,一个圆柱形木块高厘米,若被锯掉厘米后,则表面积减少了平方厘米.求原来圆柱的体积.1208251.2一个圆柱体的高是厘米,若高减少厘米,则表面积比原来减少平方厘米.求原来圆柱体的体积.10394.2平方厘米;如果按如图所示切成24平方厘米;如果按如图所示切成43五、水中浸物1.例题52.巩固3.拓展4.巩固我们知道,酒瓶或饮料瓶的瓶颈处一般都不是规则的圆柱体,如果要求体积等问题,这时该怎么办呢?把一根圆柱体钢材等物体放入一个长方体或圆柱体的容器内,要求水面的高度,必须先判断物体是否全部浸没.通过今天的学习,大家就会明白了.如图所示,有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是毫升.现在瓶中装有一些饮料,正放时饮料高度为厘米,倒放时空余部分的高度为厘米.瓶内现有饮料多少毫升?1500205如图所示,某种酒瓶的瓶身呈圆柱形(不包括瓶颈),瓶身内直径为厘米.现在瓶中装有一些酒,正放时酒的高度是厘米,倒放时空余部分的高度是厘米.求这个酒瓶的容积.48123在一个底面积是平方厘米的玻璃杯中装入高厘米的水.现把一个底面半径是厘米、高厘米的圆柱形铁块垂直放入玻璃杯水中,问水面升高了多少厘米?(取)15315π3如图所示,有一个高厘米,容积是毫升的圆柱形容器,里面装满了水.现在把长厘米的圆柱垂直放入,使的底面与的底面接触,这时一部分水从容器中溢出.当把从中拿出来后,中的水高度为厘米.求圆柱的体积.5850A 16B B A B A A 6B 5.巩固一个盛有水的圆柱形容器,底面内半径为厘米,深厘米,水深厘米.现在将一个底面半径为厘米、高为厘米的铁圆柱垂直放入容器中,求这时容器的水深是多少厘米?520152176.小学高年级六年级下学期其它把一个高为分米的圆柱形木块沿底面直径竖直切成相同的两块,表面积增加了平方分米.求这个圆柱体的体积.7.5757.小学高年级六年级下学期其它一个底面半径为厘米的圆柱体容器,放入一个石块后,浸没在水中,水面上升了厘米.求这个石块的体积.528.小学高年级六年级下学期其它在一只底面半径为厘米的圆柱形水桶里有一个直径为厘米的圆柱形钢材浸没在水中,当钢材取出后,桶里的水面下降了厘米,这段钢材长多少厘米?151029.小学高年级六年级下学期其它某种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是升.现在瓶中有一些饮料,正放时饮料高度为厘米,倒放时空余部分的高度为厘米,如图所示,瓶内现在有饮料多少升?21052五、专题演练1.例题52.巩固3.巩固4.拓展已知一个圆锥的底面半径和高都等于一个正方体的棱长.这个正方体的体积是立方分米.求这个圆锥的体积.216一个圆柱体,底面积是平方分米,把它削成一个最大的圆锥,削去部分的体积是立方分米.求这个圆柱体的高.56两个正方体的体积之差是立方厘米,如果以每个正方体的一面为底,加工成最大的圆锥,加工成的两个圆锥的体积之差是多少立方厘米?1200一个边长是厘米的正方体玻璃缸中装着水,水中浸没了一个底面直径为厘米、高为厘米的铁质圆锥体和一个底面直径为厘米、高为厘米的铁质圆柱体.当圆锥体、圆柱体都从桶中取出后,桶内水将下降多少厘米?20125855.拓展圆柱与圆锥(三)(课后作业)1.小学高年级六年级下学期其它张大爷去年用长米、宽米的长方体苇席围成容积最大的圆柱形粮囤.今年改用长米、宽米的长方形苇席围成容积最大2132的圆柱形的粮囤.问今年粮囤的容积是去年粮囤容积的多少倍?2.小学高年级六年级下学期其它一个圆柱形的铁块厚厘米,如果把它锻造成底面直径相同的圆锥体,这个圆锥体的高是多少厘米?103.小学高年级六年级下学期其它优秀生培养教程12级第2讲圆柱与圆锥本讲巩固第4题这里有一个圆柱和一个圆锥(如图下图所示),它们的高和底面直径都标在图上,单位是厘米.请问:圆锥体积与圆柱体积的比是多少?4.小学高年级六年级下学期其它把一个长、宽、高分别是厘米、厘米、厘米的铁块和一个棱长为厘米的正方体铁块,熔铸成一个底面直径为厘米的973510圆锥形铁块.求这个圆锥的高是多少厘米?5.小学高年级六年级下学期其它一个立体图形由一个圆柱和一个圆锥组成,如图所示,它们的底面直径都是厘米,高都是厘米.这个立体图形的体积是612圆柱与圆锥(一)答案一、圆柱的表面积1、10248.96元2、351.68平方分米3、131.88平方分米4、828平方厘米二、圆柱的表面积(二)1、401.92平方厘米2、452.16平方厘米3、12.56平方厘米4、12.56平方厘米三、圆柱的表面积(三)1、18cm2、3.5cm3、166.42平方厘米4、124.03平方厘米四、圆柱的表面积(四)1、1331.36平方厘米2、7536平方厘米3、2081.4平方厘米4、385.4平方厘米五、四圆柱的表面积(四)1、8立方厘米2、600平方厘米3、18平方厘米4、117.75平方分米圆柱与圆锥(一)(课后作业)圆柱与圆锥(课后作业)1.【答案】平方厘米78.52.【答案】平方厘米4571.843.【答案】平方分米1574.【答案】平方厘米552.645.【答案】厘米36.【答案】平方厘米251.27.【答案】平方分米94.28.【答案】平方厘米117689.【答案】立方厘米160010.【答案】平方厘米145.614.【答案】平方厘米254.3415.【答案】平方厘米1570圆柱与圆锥(二)答案一、圆柱的表面积和体积(一)1、16平方厘米2、30平方厘米3、75.36平方分米4、62.8立方厘米5、21.98平方分米二、圆柱的表面积和体积(二)1、157.7536cm 32、246.49cm 33、1232.45cm 34、1570cm 35、7.85cm 3三、圆柱的表面积和体积(三)1、314cm 32、351.68cm 33、339.12cm 34、25.12cm 35、54cm 四、圆柱的表面积和体积(四)1、113.04cm 32、56.52cm 33、1413cm 34、32cm5、21.98cm 3五、水中浸物1、400ml2、753.6ml3、0.75cm4、25cm 35、17.72cm 圆柱与圆锥(二)(课后作业)1.【答案】52.【答案】立方厘米197.823.【答案】立方厘米19719.2 4.【答案】升37.68圆柱与圆锥(三)答案一、圆柱的表面积和体积(五)1、1.57m2、 2.5dm3、0.998m 34、339.12cm 3二、圆锥的表面积和体积(一)1、16cm 32、6cm3、64、35、(π≈3)108cm 3135cm 3三、圆锥的表面积和体积(二)1、2.52、72四、圆锥的表面积和体积(三)1、227cm2、4273、225cm4、2升5、32五、专题演练1、216π2、59dm 3、314cm 34、1.256cm 5、112cm 2圆柱与圆锥(三)(课后作业)1.【答案】922.【答案】303.【答案】1/244.【答案】125.【答案】452.166.【答案】平方厘米727.【答案】98.【答案】圆柱:,圆锥:40329.【答案】2410.【答案】3611.【答案】厘米7.2。

新人教版六年级数学下册期末考试圆柱与圆锥常考应用题附答案

新人教版六年级数学下册期末考试圆柱与圆锥常考应用题附答案

圆柱与圆锥期末必考应用题类型:应用题复习项:圆柱与圆锥题量:100题年级:小学阶段1.将一个圆锥沿着高垂直于底面切成两半,表面积比原来增加了36cm2,测得圆锥的高是9cm。

原来这个圆锥的体积是多少立方厘米2.一根长1m,横截面直径为20cm的木头浮在水面上,小明发现它正好是一半露出水面。

(1)这根本头的体积是多少立方厘米?(2)这根木头与水接触面的面积是多少平方厘米?3.一个圆锥形砂石堆,底面直径为6m,高为1.5m,用这堆砂石铺一条宽1.5m,厚5cm的砂石路面,能铺多远?4.武老师朋友家刚买了一套新房,客厅长6m,宽4m,高3m。

请同学们帮武老师的朋友算一算装修时所需的部分材料。

(1)客厅准备用边长是5dm的方砖铺地,需要多少块? (用方程知识解答)(2)装修新房时,所选的木料是直径为4dm、长为3m的圆木,自己加工,大约需要5根。

求装修新房时所需木料的体积。

5.有一个底面周长是1.884m的圆柱形水桶,桶内装满水,将一个底面积是4dm2的长方体铁块沉入水中。

当从水中取出铁块时,桶内的水面下降4cm。

求长方体铁块的高是多少分米。

6.把一个长9cm,宽7cm,高3cm的长方体铁块和一个棱长为5cm的正方体铁块,熔铸成一个底面直径为10cm的圆锥形铁块,这个圆锥形铁块的高是多少厘米?7.如下图所示,把底面直径为8厘米的圆柱切成若干等份,拼成一个近似的长方体。

这个长方体的表面积比原来增加80平方厘米,那么圆柱的体积是多少立方厘米?8.甲圆柱容器是空的,乙长方体容器中水深6.28厘米,将乙容器中的水全部倒入甲容器,水深多少厘米?9.一种儿童玩具——陀螺(如下图),上面是圆柱,下面是圆锥。

经过测试,只有当圆柱底面直径为4厘米,高为5厘米,圆锥的高与圆柱的高的比是3:5时,才能旋转得又稳又快,试问这个陀螺的体积是多大?(保留整立方厘米)10.一个圆柱形的游泳池,底面周长是62.8米,深2.5米。

(1)在池底和四壁贴上瓷砖,贴瓷砖的面积是多少平方米?(2)水面离池口0.5米,这时池里的水有多少立方米?11.用图中的两个圆和一块长方形铁皮,正好做一个油桶,求油桶的容积。

新人教版六年级下册圆柱与圆锥常见题型归纳整理

新人教版六年级下册圆柱与圆锥常见题型归纳整理

圆柱圆锥常见题型归纳一、公式转换1.基本公式:①圆柱的相关计算公式:底面积:S底=底面周长:C= = 。

圆柱侧面积= ×(文字)S侧= = = 。

(字母)逆推公式有:C= 。

h= 。

圆柱的表面积:S=2S底+S侧= 。

圆柱的体积:V柱= =逆推公式有:S= h=②圆锥的相关计算公式a.底面积:S底=πR2b.底面周长:C=πd=2πRc 体积:V= 1/3πR2 h逆推公式有:S= h=③圆柱和圆锥的关系:1. 等底等高的情况下,圆柱体积是圆锥体积的倍。

2. 等底等高的情况下,圆锥体积是圆柱体积的。

3. 等底等高的情况下,圆锥体积比圆柱体积少。

4. 等底等高的情况下,圆柱体积比圆锥体积多倍。

5. 圆柱与圆锥等底等体积,圆锥的高是圆柱的倍。

6. 圆柱与圆锥等高等体积,圆锥的底面积是圆柱的倍。

2.题型总结①直接利用公式:分析清楚求的的是表面积,侧面积还是底面积以及体积。

半径变化导致底面周长,侧面积,底面积,体积的变化。

两个圆柱(或两个圆锥)半径,底面积,底面周长,侧面积,表面积,体积之比。

②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)③横截面的问题④浸水体积问题(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体。

⑥不规则物体求体积(倒置、拼切)⑤等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变1的问题,注意不要乘以3二、基本题型a求表面积:1,一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,求该圆柱的表面积是多少?求体积:2.一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食?求侧面积3.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm,高10m,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米?4逆推求高一个圆柱,表面积是345.4平方厘米,底半径是5厘米,求它的高。

六年级下册数学试题 - 圆柱与圆锥 人教版(含答案) (1)

六年级下册数学试题 - 圆柱与圆锥   人教版(含答案) (1)

六年级下册数学试题--圆柱与圆锥-53-人教新课标一、单选题(共2题;共4分)1.下面四幅图中,不可能是圆柱侧面展开图的是()。

A. B.C. D.【答案】 D【考点】圆柱的展开图【解析】【解答】圆柱侧面展开图不可能是梯形。

故答案为:D。

【分析】圆柱侧面展开图是长方形、正方形、平行四边形等。

因为圆柱展开图的长为圆柱底面周长,宽为圆柱的高,圆柱的底面周长相等即展开图上下两条边相等。

2.一个空罐(如图)可盛9碗水或8杯水。

如果将3碗水和4杯水倒入空罐中,水面应到达位置()。

A. PB. QC. RD. S【答案】A【考点】圆柱的体积(容积)【解析】【解答】解:3÷9=,3碗水倒入罐子占2格;4÷8=,4杯水倒入罐子占3格;共占7格,所以水面应到达P处。

故答案为:A。

【分析】先计算出3碗水占罐子的几分之几,然后确定3碗水占几格。

用同样的方法计算出4杯水占几格,然后判断出3碗水和4杯水共占几格即可确定水面应到达的位置。

二、判断题(共1题;共2分)3.把一个圆柱形木块削成一个最大的圆锥,圆锥的体积是削去部分体积的。

【答案】错误【考点】圆柱与圆锥体积的关系【解析】【解答】圆柱与圆锥等底等高时有:圆锥的体积=×圆柱的体积,÷(1-)=÷=所以圆锥的体积是削去部分体积的。

故答案为:错误。

【分析】等底等高的圆柱和圆锥的体积关系:圆锥的体积=×圆柱的体积,削去体积=圆柱的体积-圆锥的体积=×圆柱的体积,即可得出答案。

三、填空题(共3题;共4分)4.一根7m长的圆柱形木棒截成三段后,表面积增加了68dm2,这根圆柱形木棒的体积是________dm3。

【答案】119【考点】圆柱的侧面积、表面积,圆柱的体积(容积)【解析】【解答】圆柱底面积=68÷4=17(dm2),圆柱的体积=17×7=119(dm3)。

故答案为:119。

【分析】将一个圆柱沿圆柱的高截成3段,圆柱的表面积增加了4个底面积,根据“圆柱的底面积=增加的表面积÷4”即可得出圆柱的底面积,再根据圆柱的体积=底面积×高,即可得出圆柱的体积。

六年级数学圆柱和圆锥试题答案及解析

六年级数学圆柱和圆锥试题答案及解析

六年级数学圆柱和圆锥试题答案及解析1.做一对无盖的铁皮水桶,底面直径4分米,深0.5米.需要铁皮多少平方分米?这个水桶可盛水多少升?【答案】62.8升【解析】首先分清制作没有盖的圆柱形铁皮水桶,需要计算几个面的面积:侧面面积与底面圆的面积两个面,根据圆柱体侧面积和圆的面积计算方法即可求出需要多少平方分米的铁皮;再根据圆柱体积(容积)公式v=sh,列式解答即可.解:0.5米=5分米3.14×(4÷2)2+3.14×4×5=3.14×4+62.8=12.56+62.8=75.36(平方分米);75.36×2=150.72(分米);3.14×(4÷2)2×5=3.14×4×5=12.56×5=62.8(立方分米),62.8立方分米=62.8升;答:做这样的一对水桶至少需要150.72平方分米的铁皮,这个水桶能装水62.8升.点评:解答此题主要分清所求物体的形状,转化为求有关图形的体积或面积的问题,把实际问题转化为数学问题,再运用数学知识解决.2.沿着圆柱的高剪,侧面展开得到一个(),它的一条边就等于圆柱的(),另一条边就等于圆柱的()。

【答案】长方形或正方形;高;底面圆的周长【解析】本题考察圆柱圆锥的展开相关知识,以及展开后的图形与原图形的关系,沿着圆柱的高剪,侧面展开得到一个(长方形或正方形),它的一条边就等于圆柱的(高),另一条边就等于圆柱的(底面圆的周长)。

3.用纸片和小棒做成下面的小旗,快速旋转小棒,想象纸片旋转所形成的图形,再连一连。

【答案】【解析】半圆旋转形成球,长方体(正方体)旋转形成圆柱,直角三角形旋转形成圆锥,三角形和长方形组合图形旋转形成的是圆柱与圆锥的组合立体图形。

4.一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。

【答案】246.49平方分米【解析】圆柱体的侧面是一个正方形,说明圆柱的底面圆的周长与圆柱的高相等。

100例人教版六年级数学下册期末考试圆柱与圆锥常考应用题附答案

100例人教版六年级数学下册期末考试圆柱与圆锥常考应用题附答案

圆柱与圆锥期末必考应用题类型:应用题复习项:圆柱与圆锥题量:100题年级:小学阶段1.做5节相同的圆柱形通风管,通风管的底面直径是50厘米,长1.2米.做这些通风管至少需要多少平方米铁皮?(得数保留整数)2.一满瓶饮料,爸爸喝了一些后液面高度是10cm,若把瓶盖拧紧后倒置放平,空余部分高8cm,已知饮料瓶的内直径是6cm。

这瓶饮料原有多少毫升?3.下列直角三角形,沿一条直角边旋转一周,会得到一个,通过计算说明怎么旋转得到的体积大。

4.有一个圆锥形铁锤,它的底面周长是25.12cm,高是27cm。

每立方厘米铁重7.8g,这个铁锤大约重多少克?(得数保留整数)5.一个圆柱形水池,底面直径为10m,高为5m,要在它的四周和底面抹上水泥。

(1)抹水泥部分的面积是多少平方米?(2)如果抹水泥的人工费是每平方米12元,抹完整个水池一共需要人工费多少钱?6.某工厂接到订单,要生产1000个不锈钢热水瓶(侧面为不锈钢板)(如图所示)。

(1)一般需要多准备15%的材料作为损耗,那这个工厂一共需要准备多少平方米的不锈钢板?(接头处忽略不计)(2)这款热水瓶的瓶盖是一个底面直径8cm、高5cm的圆柱。

厂商准备在瓶盖的外面镀一层膜,如果不计损耗,一共需要多少平方米镀膜材料?7.计算下面组合图形的体积。

8.有一个长方体容器,里面装有水,测得水面高度为4.4厘米(如图1),为了得到冰水(冰水可用于水果保鲜),妈妈把一根圆柱形的冰柱垂直放入其中,水面升高至5.5厘米,这时刚好有13冰柱浸没在水中(如图2)。

(1)求冰柱的体积。

(2)已知冰化成水,体积减少原来的111,这根冰柱融化变成多少毫升的水?(3)求该冰柱完全融化时容器内的水面高度?9.一个圆柱形木块切成四块(如图1),表面积增加48平方厘米;切成三块(如图2),表面积增加了50.24平方厘米。

若削成一个最大的圆锥体(如图3),体积减少了多少立方厘米?10.一个底面为正方形的长方体纸盒,底面边长为1.2米,它比高长13,这个纸盒的高是多少米?制作这样一个无盖纸盒要用多少纸板?11.一个装有水的密封容器,如下图所示。

(常考题)新人教版小学数学六年级下册第三单元圆柱与圆锥测试卷(含答案解析)

(常考题)新人教版小学数学六年级下册第三单元圆柱与圆锥测试卷(含答案解析)
二、填空题
13.【解析】【解答】解:5m=50dm60÷4×50=750dm3 所以这根圆柱形木棒的 体积是 dm3 故答案为:750【分析】先将单位进行换算即 5m=50dm 把一个圆柱 截成三段截了两次表面积多出了 2×2=4
解析:【解析】【解答】解:5m=50dm,60÷4×50=750dm3 , 所以这根圆柱形木棒的体积 是 dm3。 故答案为:750。 【分析】先将单位进行换算,即 5m=50dm,把一个圆柱截成三段,截了两次,表面积多 出了 2×2=4 个面,所以这个圆柱的底面积=增加的表面积÷4,圆柱的体积=圆柱的底面积× 长。
9.D
解析: D 【解析】【解答】10×8=80(平方厘米) 故答案为:D 【分析】本题中,圆柱的侧面积就是这个长方形的面积,用长方形面积公式 S=ab,求解即 可。
10.B
解析: B 【解析】【解答】解:制成的两个圆柱体侧面积相等。 故答案为:B。 【分析】卷成的这两个圆柱体的长方形直板面积相同,所以它们的侧面积相同。
7.B
解析: B 【解析】【解答】解:B 项中的图形旋转就会形成圆锥。 故答案为:B。 【分析】A 项中的图形旋转就会形成圆柱;B 项中的图形旋转就会形成圆锥;C 项中的图 形旋转就会形成由两个圆锥形成的图形。
8.C
解析: C 【解析】【解答】3×3×3=27. 故答案为:C。 【分析】圆柱的底面积=π×半径的平方,圆柱的体积=圆柱的底面积×高;底面半径乘 3,体 积扩大 9 倍,高乘 3,体积扩大 3 倍,所以它的体积扩大 27 倍。
10.两块同样的长方形纸板,卷成形状不同的圆柱(接头处不重叠),并装上两个底面,
那么制成的两个圆柱体( )。
A. 底面积一定相等 相等
B. 侧面积一定相等

《常考题》小学数学六年级下册第三单元圆柱与圆锥测试题(答案解析)(2)

《常考题》小学数学六年级下册第三单元圆柱与圆锥测试题(答案解析)(2)

《常考题》小学数学六年级下册第三单元圆柱与圆锥测试题(答案解析)(2)一、选择题1.圆锥的高与底面直径都是4厘米,则圆锥的体积是()立方厘米。

A. πB. πC. 16πD. 64π2.把一个圆锥的底面半径扩大到原来的3倍,高不变,它的体积扩大到原来()倍。

A. 3 B. 9 C. 273.把一个圆柱铸成一个圆锥体,它的()不变。

A. 体积B. 表面积C. 侧面积4.将一张长18.84cm,宽12.56cm的长方形纸板卷成一个圆柱,这个圆柱的底面半径不可能是()cm。

(接口处忽略不计)A. 4B. 3C. 25.一根圆柱形木料长 1.5m,把它截成3个大小完全一样的小圆柱,表面积增加了37.68dm2,这根木料的横截面积是()dm2。

A. 12.56B. 9.42C. 6.286.正方体、圆柱和圆锥的底面积相等,高也相等,下面说法正确的是()。

A. 圆柱的体积比正方体的体积小一些B. 圆锥的体积是正方体体积的C. 圆柱的体积与圆锥的体积相等D. 正方体的体积比圆柱的体积小一些7.一根长2米的圆柱形钢材,如果把它截成4个小圆柱,这4个小圆柱的表面积和比原来增加56.52cm2。

这根圆柱形钢材的体积是()cm3。

A. 1884B. 3140C. 125.6D. 157 8.下面()图形旋转就会形成圆锥。

A. B. C.9.如图所示,把一个底面积是24平方分米,高是8分米的圆柱木料,削成两个完全一样的圆锥体,并且每个圆锥的底面积与圆柱的底面积相等。

则削去部分的体积是()A. 32立方分米B. 64立方分米C. 96立方分米D. 128立方分米10.一个圆锥的体积是12立方厘米,它的底面积是3平方厘米,高是()。

A. 厘米B. 厘米C. 4厘米D. 12厘米11.将圆柱的侧面展开,将得不到()A. 平行四边形B. 长方形C. 梯形D. 正方形12.一个底面积是20cm2的圆柱,斜着截去了一段后,剩下的图形如下图。

圆柱和圆锥单元试卷含答案

圆柱和圆锥单元试卷含答案

六年级(下)数学素质测试卷(圆柱和圆锥)一、填空:(24分)1.圆柱的上、下两个面叫做_________,他们是_________的两个圆,两个底面之间的距离叫做高.2.圆锥的底面是一个_________,从圆锥的顶点到底面_________的距离是圆锥的高.3.等底等高的圆柱和圆锥,它们的体积一共是48立方分米,那么圆锥体积是_________立方分米.4.3.2立方米=_________立方分米;500毫升=_________升.5.一个圆锥体的底面半径是3分米,高是10分米,它的体积是_________立方分米.6.一个圆柱体,底面半径是2厘米,高是6厘米,它的侧面积是_________平方厘米.7.圆锥体底面直径是6厘米,高3厘米,体积是_________立方厘米.8.一个无盖的圆柱形铁水桶,高是0.3米,底面直径是0.2米,做10个这样的水桶至少要用铁皮平方米.9.(2分)如果一个圆柱体的侧面展开是个正方形,则这个圆柱的底面周长和高_________.10.(2分)一个圆柱和一个圆锥等底等高,它们的体积和是24立方分米,那么圆柱的体积是____立方分米.11.(2分)把一段圆钢切削成一个最大的圆锥,切削掉的部分是6千克,这个圆锥的重量是_________千克.12.(2分)一个圆柱形木料长16分米,半径是3分米,把它锯成两段后,表面积增加了_________分米.二、判断题:(10分)13.底面积相等,体积也相等的圆柱和圆锥,圆锥的高是圆柱的3倍._________.14.长方体、正方体、圆柱和圆锥的体积都可以用“底面积×高”计算._________.15.圆锥的体积是圆柱体积的._________.16.(长方形一边为轴,旋转一周形成的图形是一个圆柱._________.X k B 1 . c o m17.)圆锥的底面半径扩大为原来的3倍,它的体积就扩大为原来体积的9倍._________.三、选择(10分)18.求圆柱形水桶能装水多少升,是求它的();做一节圆柱形通风管要多少铁皮,是求它的()A.侧面积B.表面积C.体积D.容积19.一个圆柱的高是7.5分米,底面半径是10厘米,它的体积是()立方厘米.A.2355 B.23550 C.2.355 D.0.235520.一个圆柱体铁块可以浇铸成()个与它等底等高的圆锥形铁块.A.1B.2C.3D.421.圆锥的体积是120立方厘米,高是10厘米,底面积是()平方厘米.A.12 B.36 C.4D.822.把一圆柱形木料锯成两段,增加的底面有()个。

苏教版六年级下册数学圆柱和圆锥测试卷及答案分析

苏教版六年级下册数学圆柱和圆锥测试卷及答案分析

苏教版六年级下册数学圆柱和圆锥测试卷及答案分析有关圆柱圆锥各种公式:2圆:周长:C=πd C=2πr 面积:S= πr长方体:表面积:S=2(ab+ah+bh) 体积:V=abh V=sh3 正方体:表面积:S=6a 体积:V=a2 圆柱:侧面积:S=Ch=2πrh=πdh 表面积=S+2S=2πrh+2πr侧底2体积:V=sh=πrh2圆锥:体积:V=1/3sh=1/3πrh (注意:1/3不能忘记) 圆柱的上下两个面叫底面,是完全相同的圆。

围成圆柱的曲面叫圆柱的侧面,侧面展开是一个长方形。

长方形的长=圆柱的底面周长,宽=圆柱的高。

圆柱两个底面的距离叫圆柱的高,有无数条。

圆锥的底面是一个圆。

圆锥的侧面是一个曲面。

从圆锥的顶点到底面圆心的距离是圆锥的高,只有一条。

π=3.143.14X2=6.28 3.14X3=9.42 3.14X4=12.56 3.14X5=15.703.14X6=18.84 3.14X7=21.98 3.14X8=25.12 3.14X9=28.26下面这些题目,最好要全动手做一遍,不能只是看看的,做了才知道会不会。

计算过程中涉及多位小数,一定要背熟与3.14的计算,还要耐心细心地算,才不会错哟。

仔细一点,你一定能做对的~苏教版六年级数学下册第二单元圆柱和圆锥测试卷班级___________ 姓名___________ 成绩___________ 一、填空题。

1. 4080立方分米=( )立方米( )立方分米10立方米80立方分米=( )立方米0.8升=( )立方厘米 5.8平方分米=( )平方厘米2. 一个圆柱的底面半径是3厘米,高是5厘米,它的底面积是( ),侧面积是( ),表面积是( ),体积是( )。

3. 一个圆柱的侧面积是25.12平方厘米,高是4厘米,它的底面直径是( )。

4. 一个圆锥的体积是7.2立方分米,底面积是9平方分米,圆锥的高应是( )分米。

5. 有一个圆锥和一个圆柱等底等高,如果圆锥的体积是18立方厘米,圆柱的体积是( );如果圆柱的体积是18立方厘米,圆锥的体积是( );如果圆柱的体积比圆锥多18立方厘米,那么圆锥的体积是( ),圆柱的体积是( )。

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型一、圆柱与圆锥1.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米= 0.05米沙堆的底面半径:25.12+ (2x3.14)=25.12+6.28=4 (米)1沙堆的体积:x3.14x42x1.8 = 3.14x16x0.6 = 3.14x9.6 = 30.144 (立方米)所铺沙子的长度:30.144+ (8x0.05)=30.144+0.4 = 75.36 (米).答:能铺75.36米。

【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的1底面半径,用公式:C+2n=r,要求沙堆的体积,用公式:V= nr2h,最后用沙堆的体积+ (公路的宽x铺沙的厚度)=铺沙的长度,据此列式解答.2.工地上有一个圆锥形的沙堆,高是1.5 米,底面半径是6 米,每立方米的沙约重1.7 吨。

这堆沙约重多少吨?(得数保留整吨数)【答案】解:3.14x62x1.5x x1.7=3.14x18x1.7=56.52x1.7,96 (吨)答:这堆沙约重96吨。

1【解析】【分析】圆锥的体积=底面积x高x ,先计算圆锥的体积,再乘每立方米沙的重量即可求出总重量。

3.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。

这条装饰圈宽5cm,装饰圈的面积是多少cm2?【答案】解:3.14x6x5 = 94.2 (cm2)答:装饰圈的面积是94.2cm2。

【解析】【分析】解:装饰圈的面积就是高5cm的圆柱的侧面积,用底面周长乘5即可求出装饰圈的面积。

4.一个圆柱体容器的底面直径是16 厘米,容器中盛有10 厘米深的水,现在把一个圆锥形铁块浸没到水中,水面上升了3厘米,圆锥形铁块的体积是多少立方厘米?【答案】解:3.14x (16“)2x3= 3.14x64x3= 200.96x3= 602.88 (立方厘米)答:圆锥形铁块体积是602.88立方厘米。

人教版六年级下学期数学第三单元《圆柱和圆锥》专项练习(含答案)

人教版六年级下学期数学第三单元《圆柱和圆锥》专项练习(含答案)

第三单元《圆柱和圆锥》典型题型专项一、填空题1.把一根长3m的圆柱形木料,截成5段圆柱形木料,表面积增加了280dm,那么这根圆木的底面积是( )2dm。

2.一个圆柱,若沿着一条底面直径纵切后,可以得到一个边长是8厘米的正方形的截面,这个圆柱的表面积是( )平方厘米。

3.一个底面积为x平方厘米、高为h厘米的圆柱切成若干个小圆柱。

每切1次,表面积都增加( )平方厘米,切5次表面积增加( )平方厘米。

4.一个圆柱的高减少2厘米,它的表面积就减少50.24平方厘米,这个圆柱的底面直径是( )厘米。

5.一块长31.4cm、宽10cm、高2cm的长方体钢材,熔铸成一个底面积为15.7cm²的圆柱体钢锭,这块钢锭的高为( )dm。

6.一个装满水的圆柱形容器的底面积为24平方分米,高为6分米,容器中水的体积是________升;如果将这些水倒入一个底面长为9分米、宽为4分米,高为8分米的长方体容器中,水深为________分米.(容器的厚度忽略不计)7.一个圆柱形量杯的总高度是12cm,里面盛有200mL的水。

现将一个小石块放进这个量杯中,水面上升到250ml刻度处,刚好上升了0.5cm。

若此时向杯中注入水,最多还可以注入( )毫升的水。

8.把一个高为5厘米的圆柱沿着底面直径往下切,表面积增加40平方厘米,这个圆柱的表面积是( )平方厘米。

二、解答题9.一个圆柱形水池,底面直径为10m,高为5m,要在它的四周和底面抹上水泥。

(1)抹水泥部分的面积是多少平方米?(2)如果抹水泥的人工费是每平方米12元,抹完整个水池一共需要人工费多少钱?10.王师傅加工20段底面半径为6cm,长为5dm的圆柱形铁皮通风管,至少要用多少平方分米的铁皮?11.一个圆柱形水池底面半径为4m,深为5m,如果在这个水池的内侧面和底部抹上一层水泥,那么抹水泥的面积有多少平方米?12.做一个没有盖的圆柱形水桶,底面直径20厘米,高27厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)13.有一个工具箱下半部分为正方体,上半部分为圆柱体一半(下图),如果把工具箱的表面涂上油漆(包括底面),求涂油漆部分的面积。

六年级圆柱圆锥试卷【含答案】

六年级圆柱圆锥试卷【含答案】

六年级圆柱圆锥试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 圆柱的底面是:A. 正方形B. 长方形C. 圆形D. 三角形2. 圆锥的体积计算公式是:A. 1/3πr²hB. πr²hC. 1/2πr²hD. 2πr²h3. 圆柱的侧面积计算公式是:A. πr²B. 2πr²C. 2πrhD. πrh4. 圆锥的底面是:A. 正方形B. 长方形C. 圆形D. 三角形5. 圆柱和圆锥的共同特点是:A. 都有两个底面B. 都是直的C. 都是曲面D. 都有一个底面二、判断题(每题1分,共5分)1. 圆柱的底面一定是圆形的。

()2. 圆锥的侧面展开是一个扇形。

()3. 圆柱的体积计算公式是πr²h。

()4. 圆锥的底面可以是方形。

()5. 圆柱和圆锥都是三维图形。

()三、填空题(每题1分,共5分)1. 圆柱的体积计算公式是______。

2. 圆锥的底面是______。

3. 圆柱的侧面积计算公式是______。

4. 圆锥的侧面展开是一个______。

5. 圆柱和圆锥都是______图形。

四、简答题(每题2分,共10分)1. 简述圆柱的特点。

2. 简述圆锥的特点。

3. 如何计算圆柱的体积?4. 如何计算圆锥的体积?5. 圆柱和圆锥有什么共同点和不同点?五、应用题(每题2分,共10分)1. 一个圆柱的底面半径是3cm,高是5cm,求其体积。

2. 一个圆锥的底面半径是4cm,高是6cm,求其体积。

3. 一个圆柱的底面半径是2cm,高是10cm,求其侧面积。

4. 一个圆锥的底面半径是3cm,高是8cm,求其侧面积。

5. 比较一个圆柱和一个圆锥,底面半径都是2cm,圆柱的高是5cm,圆锥的高是10cm,哪个体积更大?六、分析题(每题5分,共10分)1. 分析圆柱和圆锥在生活中的应用。

2. 分析圆柱和圆锥的相似之处和不同之处。

七、实践操作题(每题5分,共10分)1. 制作一个圆柱模型,并计算其体积。

六年级下册数学试题 第三章《圆柱和圆锥》 人教版 含答案

六年级下册数学试题  第三章《圆柱和圆锥》  人教版 含答案

第三章《圆柱和圆锥》一.选择题1.(2020•灯塔市)将圆柱体的侧面展开,将得不到()A.长方形B.正方形C.平行四边形D.梯形2.(2019春•沙雅县期末)把一个圆柱体削成一个与它等底的圆锥体,高将()A.扩大3倍B.缩小3倍C.无法判断3.(2019•长沙模拟)圆柱底面半径扩大2倍,高也扩大2倍,这个圆柱的体积就扩大()A.2倍B.4倍C.8倍D.16倍4.(2019•亳州模拟)一个圆锥与一个圆柱的体积和高都相等,那么圆柱与圆锥()A.底面半径的比是1:3 B.底面直径的比是3:1C.底面周长的比是3:1 D.底面积的比是1:35.(2020•渭滨区)圆柱体的侧面展开,不可能得到()A.长方形B.正方形C.梯形D.平行四边形6.(2019春•武侯区期中)一个圆柱体杯中盛满15升水,把一个与它等底等高的铁圆锥倒放入水中,杯中还有()水.A.5升B.7.5升C.10升7.(2019•株洲模拟)从圆柱的正面看,看到的轮廓是一个正方形,说明圆柱的()相等.A.底半径和高B.底面直径和高C.底周长和高二.填空题8.(2020•许昌)如图,瓶底的面积和锥形杯口的面积相等,将瓶子中的液体倒入锥形杯子中,能倒满杯.9.(2020•顺义区)一个圆锥体的体积是12立方分米,底面积是3平方分米,高是分米.10.(2019•郴州模拟)一个圆柱形容器和圆锥形容器的底面积相等.将圆锥容器装满水后倒入圆柱形容器,刚好倒满.如果圆柱的高是12厘米,圆锥的高是厘米.11.(2019春•东海县月考)一个圆锥的体积是96立方分米,底面积是8平方分米,它的高是分米.12.(2019春•枣庄期中)等底等高的圆柱和圆锥的体积相差18立方米,这个圆柱的体积是立方米,圆锥的体积是立方米.三.判断题13.(2020•保定)圆柱的侧面展开图一定是长方形或正方形..(判断对错)14.(2020•路北区)圆锥的体积等于圆柱体积的..(判断对错)15.(2019春•沛县月考)一个圆锥的底面积扩大5倍,高不变,体积也扩大5倍..(判断对错)16.(2019春•镇康县校级月考)圆锥的高有无数条..(判断对错)四.计算题17.(2019•郑州模拟)求如图的表面积和体积.单位(dm)18.(2015春•武功县校级期中)计算下面图形的体积,并求出圆柱的表面积.五.应用题19.(2018春•单县期末)一根圆柱形钢材,截下2米,量得它的横截面面积是12平方厘米,如果每立方厘米的钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数)20.(2018•萧山区模拟)把一个底面直径12厘米的圆锥形金属铸件浸没在棱长1.5分米的正方体容器中,水面比原来升高1.2厘米,求这个圆锥的体积.21.孔师傅用一块长方形铁皮做一个铁皮筒,如下图进行裁剪,这个铁皮筒用铁皮多少平方分米?22.(2012•成都)一个侧面贴有商标纸的罐头盒,底面半径是8厘米,高是10厘米,商标纸的面积是多少平方厘米?(接头处不计)六.解答题23.(2015春•德江县期中)求圆柱的表面积和体积.(单位:cm)24.(2015秋•惠民县校级月考)(1)计算下面圆柱的表面积和体积.(单位:厘米)(2)计算下面圆锥体的体积.(单位:厘米)25.(2018•兴化市)一个长方体钢锭长5分米,宽4分米,高3.14分米,将它熔铸加工成底面半径是2分米的圆柱形部件,圆柱的高是多少分米?26.(2019•长沙模拟)有一个高为6.28分米的圆柱体机件,它的侧面展开正好是一个正方形,求这个机件的体积.27.(2019春•江宁区月考)一个圆锥的底面周长是15.7厘米,高是3厘米.从圆锥的顶点沿着高将它切成两半后,表面积之和比原圆锥的表面积增加了多少平方厘米?28.(2018春•保定期末)红星广场有一个圆锥形玻璃罩,底面周长31.4米,高15米,这个玻璃罩的容积是多少立方米?(玻璃厚度忽略不计)29.(2017春•陕西期末)一个圆柱,如果高减少2厘米,表面积就减少25.12平方厘米,体积减少.这个圆柱原来的体积是多少立方厘米?参考答案与试题解析一.选择题1.【分析】根据对圆柱的认识和圆柱的侧面展开图及实际操作进行选择即可.【解答】解:围成圆柱的侧面的是一个圆筒,沿高线剪开,会得到长方形或正方形,沿斜直线剪开会得到平行四边形.但是无论怎么直线剪开,都不会得到梯形.故选:D.【点评】此题考查圆柱的侧面展开图,要明确:沿高线剪开,圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高.2.【分析】根据圆柱的体积公式:V=Sh,以及圆锥的体积公式:V=Sh可知,把一个圆柱体削成一个与它等底的圆锥体,高的长度不能确定,据此选择.【解答】解:把一个圆柱体削成一个与它等底的圆锥体,高将无法确定.故选:C.【点评】本题主要考查圆柱和圆锥的体积,关键利用圆柱和圆锥的体积公式做题.3.【分析】根据圆柱的底面积=πr2和圆柱的体积=底面积×高,利用积的变化规律即可解答.【解答】解:圆柱的底面积=πr2,所以底面半径扩大2倍,则它的底面积就扩大2×2=4倍,圆柱的体积=底面积×高,底面积扩大4倍,高同时扩大2倍,则它的体积就扩大4×2=8倍,所以圆柱底面半径扩大2倍,高也扩大2倍,这个圆柱的体积就扩大8倍.故选:C.【点评】此题考查了积的变化规律在圆柱的体积公式中的灵活应用.4.【分析】根据圆柱的体积:V=S圆柱h,圆锥的体积:V=s圆锥h,可分别表示出圆柱的底面积和圆锥的底面积,然后再用圆柱的底面积比圆锥的底面积,最后进行化简比即可.【解答】解:圆柱的体积:V=S圆柱h,圆锥的体积:V=s圆锥h,S圆柱:s圆锥,=:,=1:3.答:一个圆锥与一个圆柱的体积和高都相等,那么圆柱与圆锥底面积比是1:3.故选:D.【点评】此题主要考查的是圆柱、圆锥体积公式的灵活应用.5.【分析】根据圆柱的特征,圆柱的侧面是一个曲面,侧面沿高展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,特殊情况当圆柱的底面周长和高相等时,侧面沿高展开是一个正方形,如果沿斜线展开,得到的是一个平行四边形.侧面无论怎样展开绝对不是梯形.由此做出选择.【解答】解:圆柱的侧面沿高展开是长方形或正方形,如果沿斜线展开得到的图形是一个平行四边形,侧面无论怎样展开绝对不是梯形;故选:C.【点评】此题主要考查圆柱的特征和侧面展开图的形状,圆柱的侧面沿高展开是长方形或正方形,如果沿斜线展开得到的图形是一个平行四边形.6.【分析】由条件“一个与它等底等高的铁圆锥”可知,圆锥的体积是圆柱体积的,也就是15升的;把铁圆锥倒放入水中后,铁圆锥会排出与它等体积的水,所以杯中剩下的水的体积就是圆柱体积的(1﹣),也就是15升的(1﹣),可用乘法列式求得.【解答】解:15×(1﹣)=15×=10(升);答:杯中还有10升水.故选:C.【点评】此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥只有在等底等高的条件下才有3倍或的关系.7.【分析】从圆柱的正面看,看到的是一个长方形,长为圆柱的底面直径,宽为圆柱的高;当看到的轮廓是一个正方形,说明圆柱的圆柱的底面直径和高相等.据此解答.【解答】解:从圆柱的正面看,看到的轮廓是一个正方形,说明圆柱的圆柱的底面直径和高相等.故选:B.【点评】解答此题应明确:从圆柱的正面看,看到的是一个长方形,长为圆柱的底面直径,宽为圆柱的高.二.填空题8.【分析】根据题意知道瓶底的面积和锥形杯口的面积相等,设瓶底的面积为S,瓶子内水的高度为2h,则锥形杯子的高度为h,先根据圆柱的体积公式求出圆柱形瓶内水的体积,再算出圆锥形杯子的体积,进而得出答案.【解答】解:圆柱形瓶内水的体积:S×2h=2Sh,圆锥形杯子的体积:×S×h=Sh,倒满杯子的个数:2Sh÷Sh=6(杯);答:能倒满6杯.故答案为:6.【点评】此题虽然没有给出具体的数,但可以用字母表示未知数,找出各个量之间的关系,再利用相应的公式解决问题.9.【分析】根据圆锥的体积公式,代入体积和底面积,求出解即可.【解答】解:由题意知,V锥=Sh,得:h=3V锥÷S,=3×12÷3,=12(分米);故答案为:12分米.【点评】此题考查了已知圆锥的体积和底面积求高.10.【分析】因为“将圆锥容器装满水后倒入圆柱形容器,刚好倒满.”,说明圆锥和圆柱的容积相等;设底面积是S平方厘米,先表示出圆柱的容积,再根据圆锥的体积公式求出圆锥的高即可.【解答】解:设底面积都是S平方厘米,则圆柱的容积:12S立方厘米;圆锥的高:12S×3÷S=36(厘米).故答案为:36.【点评】此题是运用圆锥、圆柱的关系来求体积,当圆锥和圆柱等底等体积时,它们的高有3倍或的关系.11.【分析】根据圆锥的体积公式:v=sh,那么h=v÷s,把数据代入公式解答即可.【解答】解:96÷÷8=96×3÷8=36(分米),答:它的高是36分米.故答案为:12.【点评】此题主要考查圆锥体积公式的灵活运用,关键是熟记公式.12.【分析】根据“等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍”,也就是说,圆锥的体积是1份,圆柱的体积是3份,那么它们的体积就相差2份;已知它们的体积相差18立方米,用18除以2就是圆锥的体积,再用圆锥的体积乘3就是圆柱的体积.【解答】解:18÷(3﹣1)=9(立方米);9×3=27(立方米);答:这个圆柱的体积是27立方米,圆锥的体积是9立方米.故答案为:27,9.【点评】此题是考查体积的计算,可利用“等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍”来解答.三.判断题13.【分析】根据圆柱体的特征,它的上下底面是完全相同的两个圆,侧面是曲面,沿高展开得到长方形,这个长方形的长等于圆柱体的底面周长,宽等于圆柱体的高;圆柱体的底面周长和高相等,侧面沿高展开就是正方形;如果不沿高,而是从上底到下底斜着展开得到的是平行四边形;由此解答.【解答】解:圆柱体的侧面沿高展开得到的图形是长方形或正方形,如果不沿高,而是从上底到下底斜着展开得到的是平行四边形;因此,圆柱的侧面展开图一定是长方形或正方形.此说法错误.故答案为:×.【点评】此题主要考查圆柱体的特征和侧展开图的形状,侧面沿高展开得到的是长方形或正方形,如果不是沿高展开得到的就不是长方形或正方形;由此解决问题.14.【分析】因为圆柱和圆锥只有在“等底等高”的条件下,圆锥的体积才是圆柱体积的,所以原题说法是错误的.【解答】解:圆锥的体积是与它等底等高的圆柱体积的,原题没有“等底等高”的条件是不成立的;故答案为:×.【点评】此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥只有在等底等高的条件下才有3倍或的关系.15.【分析】圆锥的体积=×底面积×高,是一个不变的值,若高不变,也就是×高的值不变,底面积扩大5倍,依据积与因数的变化规律:一个因数不变,另一个因数扩大5倍,那么积也扩大5倍即可解答.【解答】解:依据分析可得:一个圆锥的底面积扩大5倍,高不变,体积也扩大5倍,所以原题说法正确.故答案为:√.【点评】本题解答的依据是:圆锥体积的计算方法以及积与因数的变化规律.16.【分析】紧扣圆锥的特征:从圆锥的顶点到底面圆心的距离是圆锥的高;可知:圆锥只有一条高;据此判断即可.【解答】解:由圆锥高的含义可知:圆锥的高有无数条,说法错误;故答案为:×.【点评】此题考查了圆锥的特征,应注意基础知识的积累.四.计算题17.【分析】根据图示可知,这个组合图形的表面积就是外面正方体的表面积加上里面圆柱的侧面积,利用正方体和圆柱表面积公式进行计算即可;组合图形的体积等于正方体体积减去圆柱的体积,利用公式把数代入计算即可.【解答】解:10×10×6+3.14×4×6=600+75.36=675.36(平方分米)10×10×10﹣3.14×(4÷2)2×6=1000﹣75.36=924.64(立方分米)答:这个图形的表面积为675.36平方分米,体积为924.64立方分米.【点评】本题主要考查组合图形的体积和表面积的计算,关键把不规则图形转化为规则图形,再计算.18.【分析】(1)圆柱的体积=底面积×高,用字母表示:V=π(d÷2)2h.圆柱的表面积=侧面积+2个底面积=πdh+2πr2,圆柱的底面直径和高已知,代入公式即可求解.(2)圆锥的体积=×底面积×高=π(d÷2)2h,圆锥的底面直径径和高已知,代入数据即可解答.【解答】解:(1)3.14×(16÷2)2×18=200.96×18=3617.28(立方厘米)3.14×16×18+3.14×(16÷2)2×2=904.32+401.92=1306.24(平方厘米)答:圆柱的体积是3617.28立方厘米,表面积是1306.24平方厘米.(2)×3.14×92×21=3.14×81×7=1780.38(立方厘米)答:圆锥的体积是1780.38立方厘米.【点评】此题考查了圆柱的体积表面积公式和圆锥的体积公式的计算应用,熟记公式即可解答.五.应用题19.【分析】先利用圆柱的体积公式V=Sh求出它的体积,再求出这段钢材重多少千克即可.【解答】解:2米=200厘米,12×200×7.8=2400×7.8=18720(克);18720克≈19千克;答:截下的这段钢材重19千克.【点评】此题是考查圆柱的体积计算,在利用体积公式V=Sh求体积的过程中注意统一单位.20.【分析】由题意得圆锥铸件的体积等于上升的水的体积,上升的水的体积等于高为1.2厘米的长方体的体积,根据长方体体积=长×宽×高计算即可.【解答】解:15×15×1.2=225×1.2=270(立方厘米)答:这个圆锥铸件的体积是270立方厘米.【点评】解决本题的关键是明确圆锥铸件的体积等于上升的水的体积,直径是12厘米是无关条件.21.【分析】沿着圆柱的高剪开,圆柱的侧面展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,由图形可知:圆柱的底面直径是(6÷2)分米,圆柱的高是6分米,根据圆柱的侧面积公式:圆柱的侧面积=底面周长×高,把数据代入进行解答.【解答】解:3.14×(6÷2)×6=9.42×6=56.52(平方分米)答:这个铁皮筒用铁皮56.52平方分米.【点评】此题主要考查圆柱的侧面积公式的灵活运用.22.【分析】根据题意,商标纸的面积就是这个圆柱形罐头盒的侧面积,根据圆柱的侧面积=底面周长×高进行计算即可得到答案.【解答】解:3.14×8×2×10=502.4(平方厘米),答:商标纸的面积有502.4平方厘米.【点评】此题主要考查的是圆柱的侧面积公式的灵活应用.六.解答题23.【分析】圆柱的体积=底面积×高,圆柱的表面积=侧面积+底面积×2,将所给数据分别代入相应的公式,即可求出圆柱的表面积和体积.【解答】解:圆柱的体积:3.14×(6÷2)2×5=3.14×9×5=3.14×45=141.3(立方厘米);圆柱的表面积:3.14×6×5+3.14×(6÷2)2×2=3.14×30+3.14×9×2=94.2+3.14×18=94.2+56.52=150.72(平方厘米).【点评】此题主要考查圆柱的表面积和体积的计算方法.24.【分析】(1)圆柱的表面积等于侧面积+2个底面积,由此根据侧面积公式S=ch=πdh与圆的面积公式S=πr2列式解答即可;根据圆柱的体积公式V=sh=πr2h,代入数据列式解答即可.(2)根据圆锥的体积公式V=sh=πr2h,代入数据列式解答即可.【解答】解:(1)3.14×6×6+3.14×(6÷2)2×2,=18.84×6+3.14×9×2,=113.04+56.52,=169.56(平方厘米),3.14×(6÷2)2×6,=3.14×9×6,=169.56(立方厘米);(2)×3.14×22×6,=×3.14×24,=3.14×8,答:圆柱的表面积是169.56平方厘米,体积是169.56立方厘米;圆锥体的体积是25.12立方厘米.【点评】本题主要考查了圆柱的表面积与体积及圆锥的体积的计算方法.25.【分析】根据题意,长方体的体积等于熔铸成的圆柱的体积,可利用长方体的体积公式公式确定长方体的体积,然后再除以圆柱的底面积即可得到圆柱的高.【解答】解:5×4×3.14÷(3.14×22)=5×4×3.14÷3.14÷4=5(分米)答:圆柱的高是5分米.【点评】此题主要考查的是:长方体的体积公式V=长×宽×高,圆柱的体积V=底面积×高.26.【分析】根据“一个圆柱体的侧面展开得到一个边长6.28分米的正方形,”知道圆柱的底面周长是6.28分米,高是6.28分米,由此根据圆柱的体积公式,即可算出机件的体积.【解答】解:3.14×(6.28÷3.14÷2)2×6.28,=3.14×1×6.28,=19.7192(立方分米);答:机件的体积是19.7192立方分米;【点评】解答此题的关键是,能根据圆柱的侧面展开图与圆柱的关系,找出对应量,再根据圆柱的体积公式,列式解答即可.27.【分析】从圆锥的顶点沿着高把他切成两半后,表面积比原来圆锥的表面积增加了2个以圆锥的底面直径为底,以圆锥的高为高的三角形的面积,由此利用圆锥的底面周长15.7厘米求出它的底面直径即可解决问题.【解答】解:圆锥的底面直径为:15.7÷3.14=5(厘米);则切割后表面积增加了:5×3÷2×2=15(平方厘米);答:表面积之和比原来圆锥表面积增加15平方厘米.【点评】抓住圆锥的切割特点,得出增加部分的面积是2个以底面直径为底,以圆锥的高为高的三角形的面积是解决此类问题的关键.28.【分析】玻璃罩的形状是圆锥形的,利用圆锥的体积计算公式求得容积,问题得解.【解答】解:×3.14×(31.4÷3.14÷2)2×15,=3.14×52×5,答:这个玻璃罩的容积是392.5立方米.【点评】此题主要考查圆锥的体积计算公式V=πr2h,运用公式计算时不要漏乘.29.【分析】根据题干,高减少2厘米,表面积就减少25.12平方厘米,减少部分就是高2厘米的圆柱的侧面积,利用侧面积公式即可求得这个圆柱的底面周长,从而求得这个圆柱的底面半径,再根据圆柱的体积公式求得减少部分的体积,根据减少部分的体积是原来圆柱体积的,利用分数除法计算即可求得这个圆柱原来的体积.【解答】解:圆柱的底面半径为:25.12÷2÷3.14÷2=2(厘米)减少部分的体积为:3.14×22×2=25.12(立方厘米)原来圆柱的体积为:25.12÷=125.6(立方厘米)答:这个圆柱原来的体积为125.6立方厘米.【点评】抓住高减少2厘米时,表面积减少25.12平方厘米,从而求得这个圆柱的底面半径是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学下册——圆柱与圆锥常考题型汇总与答案
圆柱与圆锥的表面积与体积
一、基本题型:公式直接求表面积(略)
二、横切:把一个圆柱切成几个圆柱。

表面积变化情况?
1、把一根长2m的圆柱形木料锯成三段,表面积增加了100.48cm3,这段木料的体积?
三、纵切:把一个圆柱切成几个半圆柱。

表面积变化情况?
2、一个底面直径是4cm,高是5cm的圆柱,沿着底面直径切开,表面积增加();沿着底面切开,表面积增加()。

四、叠加:几个圆柱摞在一起。

3、将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面是多少平方米?
五、整体代换法的应用:
4、一个圆锥的高和底面半径都等于一个正方体的棱长,已知正方体的体积是90立方厘米,求这个圆锥的体积?
六、圆柱体转换成长方体:
5、将一个高为8cm的圆柱沿着底面直径平均切成若干等份,在拼成一个与它等底等高的长方体后,表面积增加了80cm2 ,求原来圆柱的体积?
七、水中浸物:
6、一个圆柱水槽,底面半径是8厘米,水槽中完全浸没着一块铁,当铁块取出时,水面下降了5厘米。

这块铁的体积是多少?
八、熔铸问题:由一个物体变成另一个物体。

7、把一块高12cm,横截面半径是3cm的圆柱形钢坯铸成一块底面半径是6cm的圆锥形钢坯,这个钢坯的高是多少?
九、旋转问题:
8、一个长4cm、宽3cm的长方体,以一条边为轴旋转一周,得到一个(),体积最大是();直角边分别为4cm与3cm的直角三角形,以一条直角边为轴旋转一周,得到一个(),体积最大是()。

十、扩大问题:
9、一个圆柱的底面直径扩大2倍,高不变,它的底面积扩大(),侧面积扩大(),体积扩大()。

十一、圆柱圆锥比例问题:
10、一个圆锥与圆柱的体积比是3:2,底面积比是2:3,求圆柱与圆锥的高之比?
其他问题:压路机问题
11、一台压路机的滚筒宽5m,直径为1.8m,如果它滚动了20周压路的面积是多少平方米?
12、一台压路机的滚筒长1.2m,底面直径为0.8m的圆柱,如果它分钟转5圈,那么它每分钟前进多少米?每分钟压过的面积是多少米?
圆锥公式的理解与易错题汇总
一、公式的理解
1、
2、一个圆锥的体积是50.24,底面半径是2cm,求圆锥的高()。

3、一个圆柱的体积是60cm3,与它等底等高的圆锥的体积是();如果圆锥的底面积10cm2,圆锥的高是()。

4、一个圆柱和圆锥的体积相等,如果底面积也相等,圆柱的高是12cm,圆锥的高是()cm,如果高相等,圆锥的底面积是60cm2,圆柱的底面积是()cm2。

二、圆锥、圆柱与削去部分
5、把一个长宽都是6cm,高是8cm的长方体削成一个最大的圆柱体,体积是();如果削成一个最大的圆锥,需要再削去()。

6、一个圆锥的体积比他等底等高的圆柱体积小12.6cm3,那么圆柱的体积是(),圆锥的体积是()。

7、把一个底面半径是2的cm的圆柱削成一个与它等底等高的圆锥,圆锥的体积是削去部分的()%
8、等底等高的圆锥与圆柱,体积和是120cm3,圆柱的体积是();如果体积差是120cm3,圆锥的体积是()。

圆柱与圆锥的表面积与体积答案
1、5024cm3
2、20cm2 ,25.12cm2
3、32.97m2
4、94.2cm3
5、628cm2
6、251.2cm3
7、9cm
8、圆柱150.72cm2圆锥50.24cm2
9、4倍2倍4倍
10、27:4
11、565.2m2
12、12.56m 15.072m
圆锥公式的理解与易错题答案
1、4 12.56 25.12;5 78.5 9; 3 6 28.26
2、12cm
3、20cm3,60cm
4、36, 20
5、226.08cm3;150.72cm3
6、6.3cm318.9cm3
7、50
8、90cm3,60cm3。

相关文档
最新文档