中考数学锐角三角函数(大题培优 易错 难题)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学锐角三角函数(大题培优易错难题)

一、锐角三角函数

1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.

(1)求∠BPQ的度数;

(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,

【答案】(1)∠BPQ=30°;

(2)该电线杆PQ的高度约为9m.

【解析】

试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;

(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.

试题解析:延长PQ交直线AB于点E,

(1)∠BPQ=90°-60°=30°;

(2)设PE=x米.

在直角△APE中,∠A=45°,

则AE=PE=x米;

∵∠PBE=60°

∴∠BPE=30°

在直角△BPE中,33

米,

∵AB=AE-BE=6米,

则3

解得:3

则BE=(33+3)米.

在直角△BEQ中,QE=

3

3

BE=

3

3

(33+3)=(3+3)米.

∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).

答:电线杆PQ的高度约9米.

考点:解直角三角形的应用-仰角俯角问题.

2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.

(1)求证:直线CP是⊙O的切线.

(2)若BC=2,sin∠BCP=,求点B到AC的距离.

(3)在第(2)的条件下,求△ACP的周长.

【答案】(1)证明见解析(2)4(3)20

【解析】

试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;

(2)利用锐角三角函数,即勾股定理即可.

试题解析:(1)∵∠ABC=∠ACB,

∴AB=AC,

∵AC为⊙O的直径,

∴∠ANC=90°,

∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,

∵∠CAB=2∠BCP,

∴∠BCP=∠CAN,

∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,

∵点D在⊙O上,

∴直线CP是⊙O的切线;

(2)如图,作BF⊥AC

∵AB=AC,∠ANC=90°,

∴CN=CB=,

∵∠BCP=∠CAN,sin∠BCP=,

∴sin∠CAN=,

∴AC=5,

∴AB=AC=5,

设AF=x,则CF=5﹣x,

在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,

在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,

∴25﹣x2=2O﹣(5﹣x)2,

∴x=3,

∴BF2=25﹣32=16,

∴BF=4,

即点B到AC的距离为4.

考点:切线的判定

3.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O

于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.

(1)求证:△PAC∽△PDF;

(2)若AB=5,,求PD的长;

(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)

【答案】(1)证明见解析;(2);(3).

【解析】

试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.

(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得

,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,

由(1)△PAC∽△PDF得,即可求得PD的长.

(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得

,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.

试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,

又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.

∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.

又∵∠PAC=∠PDC,∴△PAC∽△PDF.

(2)连接BP,设,∵∠ACB=90°,AB=5,

∴.∴.

∵△ACE∽△ABC,∴,即. ∴.

∵AB⊥CD,∴.

如图,连接BP,

∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.

∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.

由(1)△PAC∽△PDF得,即.

∴PD的长为.

(3)如图,连接BP,BD,AD,

∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.

∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.

∵,∴.

∵△AGP∽△DGB,∴.

∵△AGD∽△PGB,∴.

∴,即.

∵,∴.

∴与之间的函数关系式为.

考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.

4.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.

(1)AE的长为 cm;

(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;

(3)求点D′到BC的距离.

相关文档
最新文档