两线制压力变送器设计
基于直流载波的高精度两线制变送器设计
基于直流载波的高精度两线制变送器设计作者:王军舰阳威来源:《科教导刊·电子版》2017年第15期摘要本文介绍了基于直流载波的高精度两线制变送器。
先介绍了工业上普遍使用的变送器的接线方法及优缺点,然后提出本设计的方案并对硬件设计进行了详细阐述。
本变送器传感器选择范围宽、成本低、精度高、传输数据稳定、误码率小。
关键词直流载波高精度两线制中图分类号:TH811 文献标识码:A1概述工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度、流量等,通常需要转换成电信号再传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟信号,或用RS485传送数字信号。
电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。
最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器,如图1 a)接法。
当然,电流输出可以与电源共用一根线(共用VCC或者GND),可节省一根线,称之为三线制变送器,如图1 b)接法。
在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。
两者之间距离可能数十至数百米。
省去2根导线意味着成本降低,因此在应用中两线制传感器必然是首选。
通常做法如图1 C)接法,变送器和传感器从4~20mA中取电,将其工作电流控制在4mA以下,此处难点在于变送器和传感器工作电流必须限制在4mA以下,很多场合受此限制,传感器精度不高或难以实现。
采用RS485传送数字信号,可以很好的将传感器信号较小误差传送到控制室,因其工作原理决定,必须另外增加2根电源线,如图2接法,不能实现两线制传输信号。
2方案设计有没有一种办法既实现高精度又实现低成本二线制传输呢?答案是肯定的,本文作者设计一种基于直流载波的高精度两线制变送器。
其工作原理如图3所示,变送器将传感器信号统一为数字信号然后调制到直流电源线上,在接收端,再将调制信号解调还原出原始数字信号,在功耗允许条件下多个变送器可以级联,进一步节省成本。
压力变送器接线图
压力变送器接线图1 二线制压力变送器接线图实物---------------------------------------------------------------------------------------------2 二线制压力变送器接线图---------------------------------------------------------------------------------------------3 三线制压力变送器接线图----------------------------------------------------------------------------------------------卸下变送器接线端的旋盖,可以看到如图所示的接线端子。
-----------------------------------------------------------------------------------------------4 四线制压力变送器接线图若选配了现场显示表头,则接线端子在现场显示器的后端,接线时请先将现场显示器卸下(注意要小心,以免将显示器的连线拉断)即可露出如图 1 所示的接线端子。
其中为现场显示表头。
-----------------------------------------------------------------------------------------------------5 调零和调满的使用压力变送器的安装位置会对变送器的零点输出产生影响,可在变送器安装结束后,对零点输出进行调整,在没有标准压力源的情况下禁止调节满程电位器,否则会严重影响变送器的精度。
---------------------------------------------------------------------------------------------出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
两线制压力变送器的接线方法
两线制压力变送器的接线方法
压力变送器的接线十分重要,正确的接线方式能准确测量被测介质压力。
压力变送器的接线主要取决于设置的测量方法,以及量程模块。
一般压力变送器是经常使用屏蔽双绞线电缆连接模拟量信号电缆,不仅能减少施工现场嘈杂环境的干扰,还能减少测量介质带来的误差。
为阻止模拟量两端的电位差产生干扰模拟信号,模拟量两端其中一端必须接地,才能防止这种情况的发生!
压力变送器输出的信号是二线制4-20MA标准电流,接线方式是:电源+==供电+;信号+==反馈+,供电-==反馈-,如果不远传只需接24V电压+,-,如果需要远传需要组成回路,比如24V+接压力表+,压力表-接4~20mA+,4~20mA-接24V-就可以了。
图解压力变送器两线制、三线制、四线制接线方式
图解压力变送器两线制、三线制、四线制接线方式两线制、三线制、四线制压力变送器接线方式首先,我们先看一下它们的定义两线制:两根线及传输电源又传输信号,也就是传感器输出的负载和电源是串联在一起的,电源是从外部引入的,和负载串联在一起来驱动负载。
三线制:三线制传感器就是电源正端和信号输出的正端分离,但它们共用一个COM端。
四线制:电源两根线,信号两根线。
电源和信号是分开工作的。
几线制的称谓,是在两线制变送器诞生后才有的。
这是电子放大器在仪表中广泛应用的结果,放大的本质就是一种能量转换过程,这就离不开供电。
因此先出现的是四线制的变送器;即两根线负责电源的供应,另外两根线负责输出被转换放大的信号(如电压、电流、等)。
但目前,很多变送器采用二线制。
下面,我们就来具体看看不同线制变送器的差异有哪些?不同线制变送器的差异一、两线制要实现两线制变送器,必须要同时满足以下条件:1. V≤Emin-ImaxRLmax变送器的输出端电压V等于规定的低电源电压减去电流在负载电阻和传输导线电阻上的压降。
2. I≤Imin变送器的正常工作电流I必须小于或等于变送器的输出电流。
3. P<Imin(Emin-IminRLmax)变送器的小消耗功率P不能超过上式,通常<90mW。
式中:Emin=低电源电压,对多数仪表而言Emin=24(1-5%)=22.8V,5%为24V电源允许的负向变化量;Imax=20mA;Imin=4mA;RLmax=250Ω+传输导线电阻。
如果压力变送器在设计上满足了上述的三个条件,就可实现两线制传输。
所谓两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线,这两根电线既是电源线又是信号线。
两线制变送器由于信号起点电流为4mA DC,为变送器提供了静态工作电流,同时仪表电气零点为4mA DC,不与机械零点重合,这种“活零点”有利于识别断电和断线等故障。
而且两线制还便于使用安全栅,利于安全防爆。
基于HART 6的智能压力变送器设计
基于InRT6的智能压力变送器设计王骏,等基于HART6的智能压力变送器设计DesignofSmartPressureTransmitterBasedonHART6互磕叶踌活(上海工业自动化仪表研究所,上海200233)摘要:作为一种现场总线,HART协议及相关设备被广泛地应用在工业过程控制系统中。
HART协议自身也在不断发展,特别是第6版规范的提出,推动了HART的系统整合应用。
针对压力类仪表,采用自主的软件状态机模型技术,设计了满足HART6规范要求的智能压力变送器,并实现对压力族命令的支持。
关键词:HART智能压力变送器状态机模型设备族命令温度族中图分类号:吼16+.1文献标志码:AAbst髓ct:Asonetypeofthefieldbu鸵s-HARTpr呻∞olanditsrel舢edde“c∞havebeenwidely岫edinindm砸alproc嘲conh_olsygle眦.HARTProtocolisdevel叩她continuously-唧eciauyHART6Edition’8r;ele∞吨pm啪teBirIte眦dapplic鲥。
哪.AimiIIgatnlep啷sm“8t兀lmems-imeUigentp陀蟠u陀tr】蛐8血ttermeetingHART6specificalionisdesignedbyadopting舱堆developed80fha陀s组temachinemodeltechnology;粕dthepre鹤u弛devicef抽坶co咖柚dsa咒suppo毗d.Key啪rds:HARTSmanpre蛐啪tm璐nlinerStatemachi鹏modelDe“cehIIIilycommndsTem”mt眦hIIIilyO引言姒RT(highwayaddressabler;e啪te咖sducer)规范,作为一种现场总线,因为与现有控制系统具有良好的兼容性,同时叠加了数字通信方式,因此,成为了应用最广泛的现场总线协议标准之一…。
压力变送器规范和标准,
8)变送器外壳应是耐用金属,NEMA4X的结构,并带便于拆卸的密封盖,穿过外壳的电气连接头应不小于φ13mm,不使用的接头应使用不锈钢堵头进行密封的堵塞。标牌应使用不锈钢材料,标牌上使用的计量单位应为国际制单位,标牌上变送器编号应包括设计位号,清晰易见。每只仪表应有铭牌,另配一块带KKS编号的佩挂式标牌。变送器的外涂层不易剥落。
7
Foxboro差压变送器
IDP10-T22D21F-M1L1
台
1
0~250kPa,工作压力7.2MPa,带1/2NPT管接头
8
Foxboro差压变送器
IDP10S-T22D21ZZ-M1L1
台
1
-0.1~0.16MPa,带1/2NPT管接头
9
Foxboro压力变送器
IGP10-T22E1F-M1L1
2
Foxboro差压变送器
IDP10-T22C21F-M1L1
台
1
差压:0~160kPa;静压:17MPa;0~52t/h;带1/2NPT管接头
3
Foxboro差压变送器
IDP10-T22C21F-M1L1Y
台
1
差压:0~100kPa;静压:40MPa;0~2100t/h;带1/2NPT管接头
4
Foxboro差压变送器
IDP10-T22C21F-M1L1
台
1
0~60kPa,工作压力4.2MPa,带1/2NPT管接头
5
Foxboro压力变送器
IGP10-T22F1F-M1L1
台
2
0~31MPa,带1/2NPT管接头
6
压力变送器的组成和测量原理图
压力变送器的组成和测量原理图作为一个转换为电信号的测量仪表,图1-2-1是压力变送器有一个基本的工作框图:压力传感器检测到压力后,输出一个电信号,这个信号可以是电压,也可以是频率或脉冲。
信号处理电路会把这个信号放大或者整形,若是智能变送器会把这个信号转换为数字量,进行非线性及温度的补偿,然后再转换为模拟量,送给变送输出部分,变成4~20mA电流信号。
若是非智能变送器,则直接把模拟的电信号送变送输出。
一般的变送器均为2线制仪表,即供电和测量信号的输出使用相同的2根导线。
图1-2-1压力变送器基本工作框图2.3压力传感器压力传感器的作用是将压力的物理信号转换为电信号。
通常使用的压力传感器主要有3类。
2.3.1陶瓷电容传感器以三氧化二铝陶瓷构成,当传感器感受压力后,两导电极板间距离发生变化,引起电容量发生变化。
通过振荡电路可以将这个电容变化转换为电压信号,就可以测量出电容量也就是压力大小。
陶瓷电容压力传感器的特点是热稳定性好,抗过载能力可达量程的百倍以上,没有液体传递压力,无任何填充液,不会产生工艺污染,因此在食品、医药等行业有着广泛的应用,加之是干式陶瓷膜片,也没有安装位置影响。
有的陶瓷压力传感器带有专用调理电路,可直接输出0.5~4.5V的电压信号。
虽然压力传感器的量程范围不同,但是输出信号的幅值都相同。
即0.5V对应传感器测量的最小压力,4.5V对应最大压力,其余中间各点与测量压力成线性关系。
例如,-0.1~1MPa的压力传感器,在压力为0时的理论输出为0.86V。
2.3.2金属电容差压传感器图1-2-2金属电容差压传感器罗斯蒙特公司使用金属电容传感器制成了1151差压变送器,现在国内很多厂家的差压变送器都是参考1151制造的。
金属电容差压传感器的原理是:被测介质的两种压力通入高、低两压力室,作用在敏感元件的两侧隔离膜片上,通过隔离片和元件内的填充的硅油传送到测量膜片两侧。
由测量膜片与两侧绝缘片上的电极各组成一个电容器。
压力变送器规范和标准,
压力变送器规范和标准,1)变送器应为智能型,带HART协议,带就地液晶显示器。
变送器应具有固态电子线路,并为智能化二线制设计,使其供电和信号传输可在同一对线上完成。
2) 变送器的标定量程应使正常工作压力、差压在标定量程刻度的约2/3处,不得选择正常工作压力、差压在变送器最小量程范围内。
最大工作压力的150%的过压、差压而不会影响其性能。
测量负压的变送器应能承受全真空而不会导致损坏。
卖方在技术协议中应提出所配变送器的耐过压、耐差压能力的参数。
3)变送器应易于调零和调整量程,零点迁移:正迁移能达到全量程的100%,负迁移能达到全量程的100%。
应提供整体试验接口,以便于连接电气试验设备。
变送器应提供4~20 mADC信号输出的试验端子,并叠加HART协议,单通讯信号在任何时候都不会影响工艺测量参数和控制系统。
4) 变送器应输出一个与被测变量成比例的电气信号,此信号对0~100%的标定量程应为4~20mADC,同时输出信号上应叠加基于HART协议的数字信号, 与手持便携式组态器双向通迅。
变送器应能在负载阻抗达到560Ω时正常运行。
5)变送器应能通过手持便携式组态终端进行远程编程,变送器上应带有进行零位和量程的调整装置。
便携式终端可不借助于其他手段(如在回路中串入250欧姆电阻),而直接进入变送器进行编辑。
6) 变送器与被测介质接触的浸湿部分的材料应与被测介质相适应,以防止腐蚀或剥落,卖方负责设备选型,如果因卖方选型不当而导致变送器与介质接触部分发生腐蚀等不良情况,卖方应在质保期内免费更换。
7) 变送器接线和端子应按所采用的UL和ANSI标准,所有的端子应有固定标志,以便于识别。
8)变送器外壳应是耐用金属,NEMA4X的结构,并带便于拆卸的密封盖,穿过外壳的电气连接头应不小于φ13mm,不使用的接头应使用不锈钢堵头进行密封的堵塞。
标牌应使用不锈钢材料,标牌上使用的计量单位应为国际制单位,标牌上变送器编号应包括设计位号,清晰易见。
两线制4-20mA变送器的电路设计
两线制4/20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
采用电流信号的原因是不容易受干扰。
并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。
上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。
下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。
常取2mA作为断线报警值。
电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。
最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。
当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。
其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。
变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。
显示仪表只需要串在电路中即可。
这种变送器只需外接2根线,因而被称为两线制变送器。
工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。
这使得两线制传感器的设计成为可能。
在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。
两者之间距离可能数十至数百米。
按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。
2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。
如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。
因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。
为什么一般的变送器信号是4到20毫安
压力桥、称重传感器输出信号微弱,都属于mV级信号。这一类小信号一般都要求用差动放大器对其进行第一级放大。一般选用低失调、低温飘的差动放大器。另外在两线制应用中,低功耗也是必需的。AD623是常用的低功耗精密差动放大器,常用在差分输出前级的放大。 AD623失调最大200uV,温飘1uV/度,在一般压力变送应用保证了精度足够。 R0将0.4V叠加在AD623的REF脚(5脚)上,在压力=0情况下通过调整R0使输出4mA,再调整RG输出20.00mA,完成校准。 电路设计时需注意,压力桥传感器相当于一个千欧级的电阻,耗电一般比较大。适当降低压力桥的激励电压可以减小耗电电流。但是输出幅度也随之下降,需要提高AD623的增益。图6给出的传感器采用恒压供电,实际应用中大部分半导体压力传感器需要恒流供电才能获得较好的温度特性,可以用一个运放构成恒流源为其提供激励。 5.稳定性和安全性的考虑 工业环境下环境恶劣且对可靠性要求高,因此两线制变送器的设计上需要考虑一定的保护和增强稳定性措施。
2.两线制变送器的结构与原理
两线制变送器的原理是利用了4~20mA信号为自身提供电能。如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。这是两线制变送器的设计根本原则之一。 从整体结构上来看,两线制变送器由三大部分组成:传感器、调理电路、两线制V/I变换器构成。传感器将温度、压力等物理量转化为电参量,调理电路将传感器输出的微弱或非线性的电信号进行放大、调理、转化为线性的电压输出。两线制V/I变换电路根据信号调理电路的输出控制总体耗电电流;同时从环路上获得电压并稳压,供调理电路和传感器使用。 除了V/I变换电路之外,电路中每个部分都有其自身的耗电电流,两线制变送器的核心设计思想是将所有的电流都包括在V/I变换的反馈环路内。如图,采样电阻Rs串联在电路的低端,所有的电流都将通过Rs流回到电源负极。从Rs上取到的反馈信号,包含了所有电路的耗电。在两线制变送器中,所有的电路总功耗不能大于3.5mA,因此电路的低功耗成为主要的设计难点。下面将逐一分析各个部分电路的原理与设计要点。
压力变送器
内容简介
本模块介绍“压力” 等基本概念、电容式
压力表、两线制压力表、智能压力表、总线制
压力表,还介绍了陶瓷式压力传感器。
今天是:2018年10月25日星期四
模块四、压力检测(下)
知识链接、压力的基本概念 进入
目录
项目一、电容式压力变送器
项目二、两线制压力变送器 拓展阅读、陶瓷式压力传感器 現在時間是:03:10
进入 进入
项目二
两线制压力变送器
回目录
【项目教学目标】 ☞ 知识目标 1)熟悉压力变送器的分类和组成。 2)熟悉压力变送器的HART通信。 3)熟悉现场总线型变送器的原理。 ☞ 技能目标 1)掌握两线制压力变送器的接线。 2)掌握智能变送器的零点迁移方法。 現在時間是:03:10
任务一、两线制压Biblioteka 变送器的应用p1p2
压力变送器分类
①按工作原理,可分为电容式、压阻式、谐振式、 等(谐振式压力变送器可不经过信号处理电路,直接输 出数字脉冲信号等); ②按接线方式,可分为两线制、三线制(一根正电 源线。两根信号线,其中一根GND)、四线制(两根 正负电源线,两根信号线,其中一根GND)等; ③按输出方式,可分为电压输出、电流输出、数字 信号输出等; ④按压力测量范围,可分为一般压力变送器 (0.001~35MPa)和微压力变送器(0~1.5kPa),负 压变送器(0~-100kPa)等; ⑤按准确度,可分为高准确度变送器(0.1%或 0.075%级)和通用变送器(0.5%级)。
两线制电流输出型压力变送器的特性曲线
【填写压力变送器输出电流与压力的对照表训练】
输出 <3.75 电流 I/mA 差压 /kPa
二线制变送器工作原理
二线制变送器工作原理二线制变送器是一种工业测量仪表,它能够将各种物理量(如温度、压力、流量、液位等)转换成标准的4-20mA电流信号输出,以便于远程监控和控制。
其工作原理主要包括以下几个步骤:1. **测量传感器**:变送器内部含有一个测量传感器,用于检测被测物理量的变化。
例如,温度传感器会检测温度的变化,压力传感器会检测压力的变化。
2. **信号调理**:传感器输出的原始信号通常很微弱,并且可能是非线性的。
变送器中的信号调理电路会对这些信号进行放大、线性化处理,使之成为可以被后续电路处理的标准信号。
3. **模数转换**(对于数字式变送器):如果变送器是数字式的,那么经过调理的模拟信号会被转换成数字信号,以便于数字处理和传输。
4. **V/I转换**:调理后的信号(模拟或数字)会被送入V/I转换器。
V/I转换器的作用是将电压或数字信号转换为4-20mA的电流信号。
这个电流信号范围是工业标准,其中4mA代表测量量的最小值,20mA代表最大值,中间值则对应于测量量的线性变化。
5. **电源供应**:二线制变送器的独特之处在于它使用同一对导线既传输电源又传输信号。
变送器内部会从这对导线中提取所需的工作电压(通常是24V DC),并为传感器和电路提供能量。
由于变送器的功耗设计得非常低,即使在输出最小值电流4mA时,也能保证变送器正常工作。
6. **输出信号传输**:经过V/I转换后的电流信号通过两线制的电缆传输到控制系统或显示仪表。
由于电流信号不受线路电阻的影响,因此可以在较长的距离上保持信号的稳定性和准确性。
7. **用户接口**:变送器通常还会配备用户接口,允许用户进行校准、设置和诊断。
二线制变送器因其简单的接线方式、稳定的传输性能和易于集成到现有工业控制系统中,而广泛应用于各种工业自动化场合。
基于HART协议的智能压力变送器的设计与实现
2010年 第2期仪表技术与传感器I nstrument Technique and Sens or 2010 No 12 收稿日期:2009-08-20 收修改稿日期:2009-09-03基于HART 协议的智能压力变送器的设计与实现孔祥伟,周杏鹏(东南大学自动化学院,江苏南京 210096) 摘要:在传统压力变送器的基础上,研制了一种基于HART 协议的两线制智能压力变送器。
该压力变送器以低功耗16位嵌入式微处理器MSP430F435为核心,使用硅压阻式压力传感器。
传感器输出微小电压信号经放大调理后送入微处理器内部12位A /D 的测量,HART 协议通信模块由A5191HRT 型HART 调制解调器与AD421电流环数模转换器构成。
整个设计选用低功耗外围扩展器件,最大限度地降低整机功耗。
关键词:HART 协议;压力变送器;智能化;MSP430F435中图分类号:TP216 文献标识码:B 文章编号:1002-1841(2009)00-0015-03D esi gn and I m plem en t a ti on of I n telli gen t PressureTran s m itter Ba sed on HART ProtocolK ONG Xiang 2wei,ZHOU Xing 2peng(School of Auto ma ti on,Southea st Un i versity,Nan ji n g 210096,Ch i n a)Abstract:On the basis of the traditi onal p ressure trans m itter,a t w o 2wire intelligent trans m itter which was based on the HART p r ot ocol and t ook MSP430F435as the central contr oller was designed .The tiny voltage signal out putted by the silicon 2p iezoresistive transducer was a mp lified and then measured by the MSP430F435internal 122bit A /D converter .HART communicati on module was composed of A5191HRT and AD421.Low 2power external devices were chosen t o m ini m ize the power consu mp ti on of the whole sys 2te m.Key words:HART p r ot ocol;p ressure trans m itter;intelligent;M SP430F4350 引言传统的压力变送器仅提供模拟信号4~20mA 电流环输出。
两线制4-20mA变送器的电路设计
两线制4/20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
采用电流信号的原因是不容易受干扰。
并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。
上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。
下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。
常取2mA作为断线报警值。
电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。
最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。
当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。
其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。
变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。
显示仪表只需要串在电路中即可。
这种变送器只需外接2根线,因而被称为两线制变送器。
工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。
这使得两线制传感器的设计成为可能。
在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。
两者之间距离可能数十至数百米。
按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。
2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。
如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。
因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。
两线制V-I变换器设计
两线制V/I变换器设计V/IV/I 变换器变换器是一种可以用电压信号控制输出电流的电路。
两线制两线制V/I变换器与一般V/I变换电路不同点在:电压信号不是直接控制输出电流,而是控制整个电路自身耗电电流。
同时,还要从电流环路上提取稳定的电压为调理电路和传感器供电。
附图是两线制V/I变换电路的基本原理图:图中OP1、Q1、R1、R2、Rs构成了V/I变换器。
分析负反馈过程:若A点因为某种原因高于0V,则运放OP1输出升高,Re两端电压升高,通过Re的电流变大。
相当于整体耗电变大,通过采样电阻Rs的电流也变大,B点电压变低(负更多)。
结果是通过R2将A点电压拉下来。
反之,若A点因某种原因低于0V,也会被负反馈抬高回0V。
总之,负反馈的结果是运放OP1虚短,A点电压=0V。
下面分析Vo对总耗电的控制原理:假设调理电路输出电压为Vo,则流过R1的电流 I1=Vo/R1 运放输入端不可能吸收电流,则I1全部流过R2,那么B点电压 VB= -I1*R2 = -Vo*R2/R1 取R1=R2时,有VB=-Vo 电源负和整个便送器电路之间只有Rs、R2两个电阻,因此所有的电流都流过Rs和R2。
R2上端是虚地(0V),Rs上端是GND。
因此R2、Rs两端电压完全一样,都等于VB 。
相当于Rs与 R2并联作为电流采样电阻。
因此电路总电流: Is=Vo/(Rs//R2) 如果取R2>>Rs,Is=Vo/Rs 因此,图3中取Rs=100欧,当调理电路输出0.4~2V的时候,总耗电电流4~20mA. 若不能满足R2>>Rs也没关系,Rs与 R2并联(Rs//R2)是个固定值,Is与Vo仍然是线性关系,误差比例系数在校准时可以消除。
除了电路正确以外,该电路正常工作还需要2个条件:首先要自身耗电尽量小,省下的电流还要供给调理电路以及变送器。
其次要求运放能够单电源工作,即在没有负电源情况下,输入端仍能够接受0V输入,并能正常工作。
变送器原理
变送器原理两线制V/I变换器IC:DH4-20工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
采用电流信号的原因是不容易受干扰。
并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。
上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。
下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。
常取2mA作为断线报警值。
电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。
最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。
当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。
其实大家可能注意到,4-20mA电流本身就可以为变送器供电,如图1C所示。
变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA 之间根据传感器输出而变化。
显示仪表只需要串在电路中即可。
这种变送器只需外接2根线,因而被称为两线制变送器。
工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。
这使得两线制传感器的设计成为可能。
在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。
两者之间距离可能数十至数百米。
按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。
输出为标准信号的传感器。
这个术语有时与传感器通用。
变送器种类很多,总体来说就是由变送器发出一种信号来给二次仪表使二次仪表显示测量数据。
将物理测量信号或普通电信号转换为标准电信号输出或能够以通讯协议方式输出的设备。
4到20mA变送器的电路设计
基于两线制的4/20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
采用电流信号的原因是不容易受干扰。
并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。
上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。
下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。
常取2mA作为断线报警值。
电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。
最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。
当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。
其实大家可能注意到,4-20mA电流本身就可以为变送器供电,如图1C所示。
变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。
显示仪表只需要串在电路中即可。
这种变送器只需外接2根线,因而被称为两线制变送器。
工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。
这使得两线制传感器的设计成为可能。
在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。
两者之间距离可能数十至数百米。
按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。
两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。
如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。
因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。
4051使用心得转)
4051使用心得(转)1、使用单电源时,CD4051的VEE可以和GND相连。
2、强烈建议A,B,C三路片选端要加上拉电阻。
3、CD4051的公共输出端不要加滤波电容(并联到地),否则不同通道转换后的电压经电容冲放电后会引起极大的误差。
4、禁止输出端(INH)为高电平时,所有输出切断,所以在应用时此端接地。
作音频信号切换时,最好在输入输出端串入隔直电容。
以前也用过4051,也有很多人在论坛上问4051相关的内容,最关注的就是Vee 的接法:接地还是接-5V还是其他?关于这个问题,一些人说了一些不负责任的话,这也难怪,现在搞设计都是抄来抄去,看到别人怎么用就怎么用,至于为什么从来就很少理会!问题1:Vee的作用到底是什么?答:很简单就是允许模拟通道可以正常通过的信号是Vee-Vdd之间,其他信号不能保证,所以后面的问题也就不算问题了。
问题2:Vee可以接gnd吗?当然可以,只要你的信号传送在0-Vdd,绝对可以。
在这个问题的回答上有很多不负责人的回答。
Vee不但可以接地,也可以接一个正电压,只要你的信号范围在之间就可以。
问题3:别人把Vee接到-5V有什么作用?信号范围可能在-5V-Vdd(通常是5V)之间。
或者为了获得更小的导通电阻(说明:Vdd-Vee越大,模拟通道的导通电阻越小,注意,不是无限大,不要超过18V(mos管的极限参数);除非必须,不要选择过低的Vee,功耗也会增大的,有利就有弊,权衡一下吧!)好了,就这些了!为什么一般的变送器信号是4~20mA?工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
采用电流信号的原因是不容易受干扰。
并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。
两线制压力变送器设计(4-20mA原理)x.doc
两线制压力变送器设计2008-01-24 14:27分类:字号:小开篇: 认识两线制传感器工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
采用电流信号的原因是不容易受干扰。
并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。
上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。
下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。
常取2mA作为断线报警值。
电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。
最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。
当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。
其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。
变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。
显示仪表只需要串在电路中即可。
这种变送器只需外接2根线,因而被称为两线制变送器。
工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。
这使得两线制传感器的设计成为可能。
在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。
两者之间距离可能数十至数百米。
按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。
2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。
如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。
因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两线制压力变送器设计
一开篇:认识两线制传感器
工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
采用电流信号的原因是不容易受干扰。
并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。
上限取20mA是因为防爆的要求:20mA 的电流通断引起的火花能量不足以引燃瓦斯。
下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。
常取2mA作为断线报警值。
电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。
最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。
当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。
其实大家可能注意到,4-20mA电流本身就可以为变送器供电,如图1C所示。
变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。
显示仪表只需要串在电路中即可。
这种变送器只需外接2根线,因而被称为两线制变送器。
工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA 供电。
这使得两线制传感器的设计成为可能。
在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。
两者之间距离可能数十至数百米。
按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。
图1
二两线制变送器的结构与原理
两线制变送器的原理是利用了4~20mA信号为自身提供电能。
如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。
因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。
这是两线制变送器的设计根本原则之一。
从整体结构上来看,两线制变送器由三大部分组成:传感器、调理电路、两线制V/I 变换器构成。
传感器将温度、压力等物理量转化为电参量,调理电路将传感器输出的微弱或非线性的电信号进行放大、调理、转化为线性的电压输出。
两线制V/I变换电路根据信号调理电路的输出控制总体耗电电流;同时从环路上获得电压并稳压,供调理电路和传感器使用。
除了V/I变换电路之外,电路中每个部分都有其自身的耗电电流,两线制变送器的核心设计思想是将所有的电流都包括在V/I变换的反馈环路内。
如图,采样电阻Rs串联在电路的低端,所有的电流都将通过Rs流回到电源负极。
从Rs上取到的反馈信号,包含了所有电路的耗电。
在两线制变送器中,所有的电路总功耗不能大于3.5mA,因此电路的低功耗成为主要的设计难点。
下面将逐一分析各个部分电路的原理与设计要点。
图2
三两线制V/I变换器
V/I 变换器是一种可以用电压信号控制输出电流的电路。
两线制V/I变换器与一般V/I 变换电路不同点在:电压信号不是直接控制输出电流,而是控制整个电路自身耗电电流。
同时,还要从电流环路上提取稳定的电压为调理电路和传感器供电。
附图是两线制V/I变换电路的基本原理图:
图3
图3中OP1、Q1、R1、R2、Rs构成了V/I变换器。
分析负反馈过程:若A点因为某种原因高于0V,则运放OP1输出升高,Re两端电压升高,通过Re的电流变大。
相当于整体耗电变大,通过采样电阻Rs的电流也变大,B点电压变低(负更多)。
结果是通过R2将A点电压拉下来。
反之,若A点因某种原因低于0V,也会被负反馈抬高回0V。
总之,负反馈的结果是运放OP1虚短,A点电压=0V。
下面分析Vo对总耗电的控制原理:
假设调理电路输出电压为Vo,则流过R1的电流
I1=Vo/R1
运放输入端不可能吸收电流,则I1全部流过R2,那么B点电压
VB= -I1*R2 = -Vo*R2/R1
取R1=R2时,有VB=-Vo
电源负和整个便送器电路之间只有Rs、R2两个电阻,因此所有的电流都流过Rs和R2。
R2上端是虚地(0V),Rs上端是GND。
因此R2、Rs两端电压完全一样,都等于VB 。
相当于Rs与 R2并联作为电流采样电阻。
因此电路总电流:
Is=Vo/(Rs//R2)
如果取R2>>Rs,Is=Vo/Rs
因此,图3中取Rs=100欧,当调理电路输出0.4~2V的时候,总耗电电流4~20mA.
若不能满足R2>>Rs也没关系,Rs与 R2并联(Rs//R2)是个固定值,Is与Vo仍然是线性关系,误差比例系数在校准时可以消除。
除了电路正确以外,该电路正常工作还需要2个条件:首先要自身耗电尽量小,省下的电流还要供给调理电路以及变送器。
其次要求运放能够单电源工作,即在没有负电源情况下,输入端仍能够接受0V输入,并能正常工作。
LM358/324是最常见也是价格最低的单电源运放,耗电400uA/每运放,基本可以接受。
单电源供电时,输入端从-0.3V~Vcc-1.5V范围内都能正常工作。
如果换成OP07等精密放大器,因为输入不允许低至0V,在该电路中反而无法工作。
R5和U1构成基准源,产生2.5V稳定的基准电压。
LM385是低成本的微功耗基准,20uA 以上即可工作,手册上给出的曲线在100uA附近最平坦,所以通过R5控制电流100uA左右。
OP2构成一个同向放大器,将基准放大,向调理电路及传感器供电。
因为宽输入电压、低功耗的稳压器稀少,成本高;将基准放大作为稳压电源是一个廉价的方案。
该部分电路也可以选择现成的集成电路。
比如XTR115/116/105等,精度和稳定性比自制的好,自身功耗也更低(意味着能留更多电流给调理电路,调理部分更容易设计)。
但成本比上述方案高10倍以上.
四两线制压力变送器设计
压力桥、称重传感器输出信号微弱,都属于mV级信号。
这一类小信号一般都要求用差动放大器对其进行第一级放大。
一般选用低失调、低温飘的差动放大器。
另外在两线制应用中,低功耗也是必需的。
AD623是常用的低功耗精密差动放大器,常用在差分输出前级的放大。
AD623失调最大200uV,温飘1uV/度,在一般压力变送应用保证了精度足够。
R0将0.4V叠加在AD623的REF脚(5脚)上,在压力=0情况下通过调整R0使输出4mA,再调整RG输出20.00mA,完成校准。
电路设计时需注意,压力桥传感器相当于一个千欧级的电阻,耗电一般比较大。
适当降低压力桥的激励电压可以减小耗电电流。
但是输出幅度也随之下降,需要提高AD623的增益。
图6给出的传感器采用恒压供电,实际应用中大部分半导体压力传感器需要恒流供电才能获得较好的温度特性,可以用一个运放构成恒流源为其提供激励。
图4
五稳定性和安全性的考虑
工业环境下环境恶劣且对可靠性要求高,因此两线制变送器的设计上需要考虑一定的保护和增强稳定性措施。
1.电源保护。
电源接反、超压、浪涌是工业上常见的电源问题。
电源接反是设备安装接线时最容易发生的错误,输入口串一只二极管即可防止接反电源时损坏电路。
如果输入端加一个全桥整流器,那么即使电源接反仍能正常工作。
为防止雷击、静电放电、浪涌等能量损坏变送器,变送器入口处可以加装一只TVS
管来吸收瞬间过压的能量。
一般TVS电压值取比运放极限电压略低,才能起到保护作用。
如果可能遭受雷击,TVS可能吸收容量不够,压敏电阻也是必需的,但是压敏电阻本身漏电会带来一定误差。
2.过流保护。
设备运行过程中可能有传感器断线、短路等错误情况发生。
或者输入量本身很有可能超量程,变送器必须保证任何情况下输出不会无限制上升,否则有可能损坏变送器本身、电源、或者远方显示仪表。
图5中Rb和Z1构成了过流保护电路。
无论什么原因导致OP1输出大于6.2V(1N4735是6.2V稳压管),都会被Z1钳位,Q1的基极不可能高于6.2V。
因此Re上电压不可能高于6.2-0.6=5.6V,因此总电流不会大于Ue/Re = 5.6V/200=28mA。
3.宽电压适应能力。
一般两线制变送器都能适应大范围的电压变化而不影响精度。
这样可以适用各类电源,同时能够适应大的负载电阻。
对电源最敏感的部分是基准源,同时基准源也是决定精度的主要元件。
图3中基准通过R5限流,当电源电压变化时,R5上电流也随之改变,对基准稳定性影响很大。
图5中利用恒流源LM334为基准供电,电压大范围变化时,电流基本不变,保证了基准的稳定性。
4.退藕电容
一般的电路设计中,每个集成电路的电源端都会有退藕电容。
在两线制变送器上电时,这些电容的充电会在瞬间导致大电流,有可能会损坏远方仪表。
因此每个退藕电容一般不超过10nF,总退藕电容不宜超过50nF。
入口处一个10nF电容是必需的,保证长线感性负载下,电路不震荡。
图5。