双闭环设计

合集下载

双闭环直流调速系统设计

双闭环直流调速系统设计

一、课程设计目的在《电机与拖动》、《电力电子技术》、《伺服系统》和《电力拖动自动控制系统》课程知识的基础上,完成课程的综合性设计。

通过课程设计环节的训练,包括设计方案的论证、参数计算、系统仿真和设计报告的撰写,掌握系统综合应用项目的设计流程和方法,加深对完整项目开发的的理解和掌握,培养应用系统的设计能力,初步积累双闭环直流调速系统的设计方法,以及分析问题和解决问题的能力,并进一步拓宽专业知识面,培养实践应用技能和创新意识。

电力系统综合课程课程设计是电气工程及其自动化专业的一门专业课程,它是一次综合性的理论与实践相结合的训练,也是本专业的一次基本技能训练,其主要目的是:1、理论联系实际,掌握根据实际工艺要求设计电力拖动自动控制系统的基本方法。

2、对一种典型的双闭环调速自动控制系统进行综合性分析设计,掌握各部件和整个系统的设计调试步骤、方法及操作实际系统的方法。

加强基本技能训练。

3、掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力。

4、培养分析问题、解决问题的独立工作能力,学会实验数据的分析与处理能力及编写设计说明书和技术总结报告的能力。

为下学期毕业设计作准备。

5、通过设计熟练地查阅有关资料和手册。

二、课程设计内容与要求1、本课程设计的对象直流伺服电机:学生自行查找电机型号直流测速机:学生根据设计任务选择2、本课程设计的内容要求设计一个直流双闭环调速系统。

其主要内容为:1、测定综合实验中所用控制对象的参数(在实验室完成)。

2、根据给定指标设计电流调节器和转速调节器,并选择调节器参数和具体实现电路。

3、按设计结果组成系统,以满足给定指标。

4、研究参数变化对系统性能的影响。

5、在时间允许的情况下进行调试。

3、本课程设计的设计要求a.调速范围D=5~10,静差率S≤5%。

b.空载启动时电流超调σi≤5%,转速超调σn≤10%(在额定转速时)。

c.动态速降小于10%。

d.振荡次数小于2次。

比例阀双闭环设计

比例阀双闭环设计

比例阀双闭环设计比例阀是一种调节阀,广泛应用于工业控制系统中。

双闭环设计是指在比例阀控制系统中同时采用位置闭环和流量闭环控制。

位置闭环控制是通过对比实际位置和设定位置的差异,控制比例阀的阀芯移动,从而实现对流量的调节。

位置闭环控制主要通过传感器来获取实际位置,并与设定位置进行比较,得出误差。

然后通过控制电机或液压执行器移动阀芯,使误差减小至接近于零。

位置闭环控制主要关注的是流量的精确控制,可以提供较小的流量调节范围和较高的精度。

流量闭环控制是通过对比实际流量和设定流量的差异,控制比例阀的开度,从而实现对流量的调节。

流量闭环控制主要依靠流量传感器来获取实际流量,并与设定流量进行比较,得出误差。

然后通过控制比例阀的开度,使误差减小至接近于零。

流量闭环控制主要关注的是流量的稳定控制,可以提供较大的流量调节范围和较低的误差。

在比例阀双闭环设计中,位置闭环控制和流量闭环控制相互协调,共同实现对流量的精确和稳定控制。

位置闭环控制主要负责追踪设定位置,确保位置误差较小;流量闭环控制主要负责实现设定流量,确保流量误差较小。

双闭环设计能够充分利用位置闭环控制和流量闭环控制的优点,实现更精确、更稳定的流量控制。

双闭环设计需要合理选择位置传感器和流量传感器,确保传感器的测量范围和精度满足控制要求。

另外,还需要合理设计阀芯的移动机构和比例阀的开度控制机构,确保能够实现准确的位置和开度调节。

双闭环设计还需要合理配置控制器和算法,确保能够快速、准确地响应设定位置和设定流量的变化。

总之,比例阀双闭环设计能够充分利用位置闭环控制和流量闭环控制的优点,实现更精确、更稳定的流量控制。

通过合理选择传感器、设计阀芯移动机构和比例阀的开度控制机构,以及配置合适的控制器和算法,可以实现对比例阀的精确控制,提高工业控制系统的稳定性和可靠性。

双闭环直流电机调速系统设计

双闭环直流电机调速系统设计

双闭环直流电机调速系统设计嘿,大家好!今天咱们聊聊一个挺酷的话题:双闭环直流电机调速系统。

虽然听起来有点像外星人的科技,但是其实它就是咱们日常生活中的一些电机背后的“聪明脑袋”。

没错,电动工具、电动汽车,甚至是你家那台洗衣机,都可能用到这种技术。

别担心,我会用简单易懂的语言,把这个“高大上”的话题聊得通俗易懂,让你像喝水一样轻松明白。

1. 什么是双闭环系统?首先,咱们得搞清楚什么是双闭环系统。

你可以把它想象成一辆高科技的赛车。

车上有两个智能系统,一个负责控制车速,另一个负责检查车速是不是正好。

第一个环节,叫做“速度闭环”,就像是车里的加速器,它根据你给的油门信号来调整速度。

第二个环节,叫做“电流闭环”,就是车上的仪表盘,它会实时监控实际速度和预定速度的差异,确保车速始终如你所愿。

两个环节相互配合,就像是赛车手的左右手,协作得天衣无缝。

1.1 速度闭环的作用速度闭环系统,简单来说,就是确保电机转得刚刚好。

你可以把它想成是你的车速表,告诉你车速到底快不快。

当你设定了目标速度后,速度闭环就会一直“盯着”电机的实际速度,看是不是达到了你想要的。

要是电机转得快了或者慢了,速度闭环会发出“警报”,让电机调整到正确的速度。

就像你开车的时候,如果超速了,车上的警报器就会提醒你:“嘿,慢点!”1.2 电流闭环的作用而电流闭环呢,就是确保电机在运行时不会超负荷。

你可以把它想象成你的车载电脑,时刻监控电机的“健康状态”。

如果电机的电流过大,就像是车上的发动机超负荷一样,电流闭环会自动调整电流,防止电机“过劳”工作,保障电机的长寿命和稳定性。

这就像车上的“健康检查”,时刻关注电机的“身体状况”,让它保持在最佳状态。

2. 如何设计双闭环系统?说到设计双闭环系统,那可不是简单的“煮熟的鸭子嘴里跑”,而是要细心雕琢的“工艺品”。

设计时,你需要考虑到很多细节,就像调配一杯完美的鸡尾酒一样,必须把每个成分都搭配得恰到好处。

2.1 控制器的选择首先,你得挑选一个靠谱的控制器。

双闭环直流调速系统ACR设计

双闭环直流调速系统ACR设计

双闭环直流调速系统ACR设计双闭环直流调速系统(ACR)是一种使用两个反馈环来控制直流电机转速的系统。

其中一个环,被称为速度环(内环),用来控制电机的速度;另一个环,被称为电流环(外环),用来控制电机的电流。

ACR系统能够提供更精确的转速控制,同时能够保护电机免受过流和过载的损坏。

ACR系统的设计首先需要确定控制器的参数。

其中,内环控制器的参数包括比例增益(Kp)和积分时间(Ti);外环控制器的参数包括比例增益(Kp)和积分时间(Ti)。

这些参数需要根据实际系统的需求来选择,可以通过试验和调整来获得最佳参数。

在内环控制器中,比例增益决定了速度误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与速度误差的乘积。

积分时间决定了对速度误差的积分时间长度,即速度误差累计值。

在外环控制器中,比例增益决定了电流误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与电流误差的乘积。

积分时间决定了对电流误差的积分时间长度,即电流误差累计值。

ACR系统的设计还需要确定速度传感器和电流传感器的类型和位置。

速度传感器用于测量电机的转速,可以选择编码器、霍尔传感器等;电流传感器用于测量电机的电流,可以选择霍尔传感器、感应电流传感器等。

这些传感器需要合理安装在电机上,以确保准确测量电机的转速和电流。

在系统工作时,ACR系统通过测量电机的转速和电流,并与设定值进行比较,计算得到速度误差和电流误差。

然后,内环控制器根据速度误差来产生控制信号,控制电机的速度接近设定值;外环控制器根据电流误差来产生控制信号,控制电机的电流接近设定值。

这些控制信号通过功率放大器输出到电机,实现对电机速度和电流的控制。

ACR系统的设计需要考虑诸多因素,如电机的负载特性、速度和电流的响应时间、系统的稳定性等。

通过合理选择控制器的参数和传感器的类型和位置,采取适当的控制策略,可以实现高精度、高效率的直流电机调速系统。

系统方案框图双闭环

系统方案框图双闭环

系统方案框图双闭环简介系统方案框图双闭环是一种系统控制方法,通过两个闭环结构协同工作来实现对系统的控制。

其中,一个闭环用于测量和反馈系统状态,另一个闭环用于生成控制信号并对系统进行控制。

这种双闭环结构能够显著提高系统的稳定性、鲁棒性和适应性。

基本原理系统方案框图双闭环的基本原理是将系统的控制过程分为两个环节,分别是测量和反馈环节以及控制环节。

在测量和反馈环节中,通过传感器对系统的状态进行测量,并将测量结果反馈给控制器。

控制器会根据反馈的系统状态进行分析和处理,以确定控制信号的生成方式和调节规律。

生成的控制信号将输入到控制环节。

在控制环节中,控制信号对系统进行控制。

这个环节可以是单一的控制器,也可以是由多个控制器组成的复杂控制系统。

控制信号通过执行器传递给系统,对系统的行为产生影响。

两个闭环结构通过反馈信号进行信息交互,实现了对系统状态的感知、分析和调节。

这种双闭环结构能够使系统快速响应外部变化,并保持系统状态的稳定性和平衡性。

设计步骤设计一个系统方案框图双闭环包含以下步骤:步骤1:确定系统的闭环结构根据系统的特点和要求,确定系统的闭环结构,包括测量和反馈环节以及控制环节。

可以采用串级闭环、并级闭环或者混合闭环等形式。

步骤2:选择合适的传感器和执行器根据系统的性质和需求,选择合适的传感器和执行器。

传感器用于对系统状态进行测量,执行器用于控制系统。

步骤3:设计测量和反馈环节根据系统的状态信息和反馈要求,设计测量和反馈环节。

确定传感器的安装位置和测量方式,设计反馈机制和信号处理算法。

步骤4:设计控制环节根据系统的控制要求和闭环结构,设计控制环节。

确定控制器的类型和参数,设计控制算法和调节规律。

步骤5:实施系统方案框图双闭环根据设计结果,实施系统方案框图双闭环。

包括传感器和执行器的安装、控制器的编程和调试等。

优点与应用系统方案框图双闭环具有以下优点:1.提高系统的稳定性:通过不断感知和调节系统状态,降低系统的不稳定性和波动性,提高系统的稳定性和可靠性。

双闭环机器人运动控制系统(课程设计)

双闭环机器人运动控制系统(课程设计)

双闭环机器人运动控制系统(课程设计)1. 引言本文档旨在设计一个双闭环机器人运动控制系统。

该系统基于双闭环反馈控制理论,在实现机器人精确控制的同时,提高系统的稳定性和鲁棒性。

2. 系统结构该双闭环机器人运动控制系统由三个主要部分组成:传感器子系统、控制器子系统和执行器子系统。

2.1 传感器子系统传感器子系统负责感知机器人当前的位置和速度。

常用的传感器包括编码器、陀螺仪和加速度计。

编码器用于测量关节位置,陀螺仪用于测量机器人的倾斜角度,加速度计用于测量机器人的线加速度。

2.2 控制器子系统控制器子系统根据传感器子系统的反馈信号,计算控制信号并发送给执行器子系统。

控制器常用的算法包括PID控制器和模型预测控制器。

PID控制器根据当前误差、误差积分和误差变化率计算控制信号,模型预测控制器基于机器人的动力学模型进行优化控制。

2.3 执行器子系统执行器子系统根据控制器子系统发送的控制信号,驱动机器人的运动。

常用的执行器包括电机和液压缸。

电机通过控制电流或电压实现位置和速度的控制,液压缸通过调节液压流量控制位置和速度。

3. 系统工作流程该双闭环机器人运动控制系统的工作流程如下:1. 传感器子系统感知机器人的位置和速度,将反馈信号发送给控制器子系统。

2. 控制器子系统根据传感器子系统的反馈信号计算控制信号,将控制信号发送给执行器子系统。

3. 执行器子系统根据控制器子系统的控制信号驱动机器人的运动。

4. 重复步骤1-3,实现机器人的精确控制。

4. 总结双闭环机器人运动控制系统是一种基于双闭环反馈控制理论的控制系统,可实现机器人的精确控制。

该系统由传感器子系统、控制器子系统和执行器子系统组成,通过传感器子系统感知机器人的位置和速度,控制器子系统计算控制信号并发送给执行器子系统,执行器子系统驱动机器人的运动。

通过该系统的设计和实现,可以提高机器人系统的稳定性和鲁棒性。

参考文献[1] 张三, 李四. (2010). 机器人运动控制理论与应用. 机械工业出版社.[2] 王五, 赵六. (2015). 机器人控制系统设计与应用. 电子工业出版社.。

双闭环不可逆直流调速系统设计

双闭环不可逆直流调速系统设计

双闭环不可逆直流调速系统设计双闭环不可逆直流调速系统是一种常见的电机调速方案,在工业控制中被广泛应用。

该调速系统包含了两个闭环控制回路,分别是转速内环和电流外环。

转速内环负责控制电机的转速,电流外环负责控制电机的电流,通过合理设计控制器来提高电机的调速性能。

以下是双闭环不可逆直流调速系统的设计步骤:1.系统建模:首先根据电机的物理特性及参数,建立电机的数学模型。

常见的模型有电枢电机模型和电磁转矩模型。

根据实际需求,选择合适的模型进行建模。

2.转速内环设计:转速内环的目标是控制电机的转速,在不受外界负载扰动影响的情况下保持设定转速。

常见的转速内环控制器有PID控制器和模糊控制器。

通过调整控制器的参数,可以实现快速响应、较小的超调量和稳态误差。

3.电流外环设计:电流外环的目标是控制电机的电流,在既定转速下,保持电机的稳定工作。

电流外环通常采用PID控制器,通过调整控制器的参数,可以实现电机电流的精确控制和动态响应。

4.控制器参数整定:为了使控制系统能够良好地工作,需要对控制器的参数进行整定。

通常采用试探法或者现场试验法来确定控制器的参数,通过调整参数,使得系统具有良好的控制性能。

5.稳定性分析:在设计完成后,需要对系统进行稳定性分析,以确保系统的稳定性。

常用的方法有根轨迹法、频率响应法等。

通过稳定性分析,可以发现系统的不稳定因素,并采取相应的措施进行调整。

6.仿真和实验验证:对于设计完成的双闭环不可逆直流调速系统,可以通过仿真和实验验证来评估其性能。

利用现代控制工具和仿真软件,可以进行虚拟实验,通过调整控制器参数,不断优化系统性能。

实验验证则是在实际环境下进行,通过实际数据的采集和分析,评估系统的稳定性和鲁棒性。

在双闭环不可逆直流调速系统设计的过程中,需要综合考虑转速和电流的控制要求,并兼顾系统的稳定性和动态性能。

通过合理的设计和参数整定,可以实现电机的精确控制,并满足不同的实际应用需求。

直流电机双闭环系统的最佳工程设计

直流电机双闭环系统的最佳工程设计

运动控制课程设计双闭环系统的最佳工程设计专业:电气工程及其自动化学生姓名:袁同浩指导教师:江可万完成时间:2020年5月25日摘要....................................................................... - 0 - 第一章设计任务............................. - 2 -1.1 系统性能指标.......................... - 2 -1.2 设计内容........................... - 2 -1.3 应完成的技术文件......................... - 2 -第二章设计说明............................. - 4 -2.1 综述.............................. - 4 -2.1.1 电机学......................... - 4 -2.1.2 电力电子技术...................... - 4 -2.1.3 微电子技术........................ - 4 -2.1.4 控制理论....................... - 5 -2.2 整流主电路........................... - 5 -2.3 整流触发电路.......................... - 7 -2.3.1 脉冲形成于放大环节.................... - 7 -2.3.2 锯齿波的形成和脉冲移相环节................. - 7 -2.3.3 同步环节....................... - 8 -2.4 转速电流双闭环控制系统..................... - 9 -2.4.1 稳态工作原理...................... - 9 -2.4.2 动态工作原理...................... - 10 -第三章各参数计算........................... - 12 -3.1 整流装置的计算........................ - 12 -3.1.1 变压器二次侧相电压的计算................ - 12 -3.1.2 变压器及晶闸管容量计算.................. - 12 -3.1.3 平波电抗器的电感量的计算................ - 13 -3.1.4 晶闸管保护电路的计算.................. - 13 -3.2 控制电路参数的计算....................... - 14 -3.2.1 电动机额定参数及晶闸管变流器参数............. - 14 -3.2.2 调节器参数的计算.................... - 14 -3.3 系统设计........................... - 15 -3.3.1 电流环的设计...................... - 15 -3.3.2 转速环的设计...................... - 17 -参考资料............................... - 20 -附录................................. - 21 -摘要转速、电流反馈控制的直流调速系统是静、动态特性优良、应用范围最广的调速系统。

双闭环直流调速系统设计

双闭环直流调速系统设计

双闭环直流调速系统设计1.电机数学模型的建立首先要建立电机的数学模型,这是设计双闭环直流调速系统的基础。

根据电机的参数和运动方程,可以得到电机的数学模型,一般为一组耦合的非线性微分方程。

2.速度内环设计速度内环负责实现期望速度的跟踪控制。

常用的设计方法是采用比例-积分(PID)控制器。

PID控制器的输出是速度的修正量,通过与期望速度相减得到速度误差,然后根据PID算法计算控制器输出。

PID控制器的参数调节是一个关键问题,可以通过试探法、经验法或优化算法等方法进行调节,以实现最佳的速度跟踪性能。

3.电流外环设计电流外环的作用是保证电机的电流输出与速度内环控制输出的一致性。

一般采用PI调节器进行设计。

PI调节器的参数通过试探法、经验法或优化算法等方法进行调节,以实现电流输出的稳定性。

4.稳定性分析与系统稳定控制设计好速度内环和电流外环后,需要对系统的稳定性进行分析。

稳定性分析可以通过线性化方法、根轨迹法、频率响应法等方法进行。

分析得到系统的自然频率、阻尼比等参数后,可以根据稳定性准则进行系统稳定控制。

常用的控制方法包括模型预测控制、广义预测控制、滑模控制等。

5.鲁棒性设计在双闭环直流调速系统设计中,鲁棒性是一个重要的指标。

通过引入鲁棒性设计方法,可以提高系统对参数扰动和外部干扰的抑制能力。

常用的鲁棒性设计方法包括H∞控制、μ合成控制等。

以上是双闭环直流调速系统设计的一般步骤,具体的设计过程可能因实际应用和控制要求的不同而有所差异。

设计双闭环直流调速系统需要深入了解电机的特性和系统的控制需求,综合运用控制理论和工程方法,通过模拟仿真和实验验证来不断调整和优化控制参数,以实现系统的高性能调速控制。

双闭环直流调速系统的设计与仿真实验报告

双闭环直流调速系统的设计与仿真实验报告

双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。

速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。

电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。

二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。

根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。

同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。

三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。

电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。

四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。

首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。

然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。

五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。

当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。

同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。

此外,通过调整控制参数,可以改善系统的响应速度和稳定性。

六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。

本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。

仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。

双闭环直流可逆调速系统设计

双闭环直流可逆调速系统设计

双闭环直流可逆调速系统设计
一、实现双闭环直流可逆调速系统的基本原理
双闭环直流可逆调速系统是一种复杂的控制系统,通过控制电机转速
调整和调节,可以实现直流可逆调速系统的功能。

它的工作原理是:当电
机的转速发生变化时,运用程序控制器调整反馈信号。

在反馈信号中,检
测电机转速,并将其作为参考,经过放大器检测调节,将放大器调节的参
数输入给程序控制器,然后根据给定的转速和调节参数,程序控制器根据
相关的算法,调节步进电机的每一步的转速,实现当电机转速发生变化时,程序控制器控制电机转速。

二、双闭环直流可逆调速系统的组成
1.输入信号源:输入信号源主要有可逆调节信号和程序控制参数信号,两者同时作用,确定电机控制的转速范围和精度要求,从而保证可逆调速
系统的精度。

2.程序控制器:程序控制器是可逆调速系统的核心,它根据输入的控
制信号,控制反馈电路,实时获取电机的转速参数,根据算法,按照程序
控制的调节参数调节步进电机,实现调节目标速度。

转速电流双闭环直流调速系统设计

转速电流双闭环直流调速系统设计

转速电流双闭环直流调速系统设计一、引言直流调速系统是控制直流电机转速的一种常用方法。

在实际应用中,为了提高系统性能,通常采用双闭环控制结构,即转速环和电流环。

转速环用于控制电机转速,电流环用于控制电机电流。

本文将对转速、电流双闭环直流调速系统进行详细设计。

二、转速环设计转速环的主要功能是通过控制电机的转矩来实现对转速的精确控制。

转速环设计步骤如下:1.系统建模:根据电机的特性曲线和转矩方程,建立电机数学模型。

通常采用转速-电压模型,即Tm=Kt*Ua-Kv*w。

2.设计转速环控制器:选择适当的控制器类型和参数,比如PID控制器。

根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。

确定控制器增益Kp、Ki和Kd。

3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。

4.实际系统调试:将设计好的转速环控制器实施到实际系统中,进行调试和优化。

根据实际情况对控制器参数进行微调。

三、电流环设计电流环的主要功能是控制电机的电流,以确保电机输出的转矩能够满足转速环的要求。

电流环设计步骤如下:1.系统建模:根据电机的特性曲线和电流方程,建立电机数学模型。

通常采用电流-电压模型,即Ia=(Ua-R*Ia-Ke*w)/L。

2.设计电流环控制器:选择适当的控制器类型和参数,比如PID控制器。

根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。

确定控制器增益Kp、Ki和Kd。

3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。

4.实际系统调试:将设计好的电流环控制器实施到实际系统中,进行调试和优化。

根据实际情况对控制器参数进行微调。

四、双闭环控制系统设计在转速环和电流环都设计好的基础上,将两个闭环控制器连接起来,形成双闭环控制系统。

具体步骤如下:1.控制系统结构设计:将电流环置于转速环的前端,形成串级控制结构。

2.系统建模:将转速环和电流环的数学模型进行串联,建立双闭环控制系统的数学模型。

晶闸管双闭环直流调速系统设计

晶闸管双闭环直流调速系统设计

晶闸管双闭环直流调速系统设计引言:直流调速系统广泛应用于电机控制领域,其中晶闸管双闭环直流调速系统具有较好的性能和可靠性。

本文将介绍晶闸管双闭环直流调速系统的设计原理和步骤,并分析其性能和可行性。

一、系统设计原理:晶闸管双闭环直流调速系统由速度环和电流环组成。

其中速度环通过测量电机转速与期望速度之间的误差并反馈控制,通过调整电机的输入电压来改变电机的转速。

电流环通过测量电机输出电流与期望电流之间的误差并反馈控制,通过调整晶闸管的导通角来改变电机的输出电流。

速度环和电流环通过PID控制器进行控制,实现闭环控制。

二、系统设计步骤:1.确定系统参数:包括电机参数、电压参数、电流参数和速度参数等。

根据实际情况选择合适的参数值。

2.设计速度环:首先选择合适的速度传感器进行速度测量,如光电编码器或霍尔元件。

然后根据测量值与期望速度之间的误差计算PID控制器的输出值,进一步控制电机的输入电压。

3.设计电流环:选择合适的电流传感器进行电流测量,如电流互感器或霍尔元件。

根据测量值与期望电流之间的误差计算PID控制器的输出值,进一步控制晶闸管的导通角。

4.设计反馈回路:将测量到的速度和电流信号经过滤波器进行滤波处理,减小干扰。

然后将滤波后的信号输入到PID控制器,计算控制器的输出值。

最后将控制器的输出值经过扩大器进行放大,最终作为输入信号驱动电机。

5.系统仿真和优化:使用MATLAB等仿真软件进行系统仿真,分析系统的性能和稳定性。

根据仿真结果,调整控制参数和系统结构,优化系统性能。

三、系统性能和可行性分析:晶闸管双闭环直流调速系统具有较好的稳态和动态性能。

速度环能够实现对电机速度的精确控制,适应不同负载的要求。

电流环能够实现对电机输出电流的精确控制,保证电机的安全运行。

经过优化设计的系统具有较快的响应速度、较小的超调量和较好的稳定性。

总结:本文介绍了晶闸管双闭环直流调速系统的设计原理和步骤,并分析了其性能和可行性。

双闭环直流电机调速系统设计

双闭环直流电机调速系统设计

双闭环直流电机调速系统设计在今天的科技世界里,电机就像是家里的“万能小助手”,无处不在。

你想想,电风扇、洗衣机、甚至小汽车,都少不了它们的身影。

而双闭环直流电机调速系统就是这个小助手的“智囊团”,让它在各种环境中游刃有余,真是个神奇的存在。

今天,我们就来聊聊这个系统是怎么工作的,听起来是不是有点高大上?别担心,咱们用通俗易懂的语言来探讨,让你在闲聊中也能装装逼!1. 什么是双闭环控制?1.1 直流电机的基本知识直流电机,这东西其实就是通过直流电来转动的电机,简单说,就是通过电流来产生磁场,让电机的轴子转动起来。

想象一下,你在玩一辆遥控小车,控制它的速度和方向,其实和电机的工作原理类似。

电流大了,小车跑得快;电流小了,小车就慢了。

是不是很简单?不过,要把这个电机调得又快又稳,就得靠我们的双闭环系统了。

1.2 双闭环系统的工作原理双闭环控制,顾名思义,分为两个环,一个是速度环,一个是电流环。

速度环就像是你的眼睛,时刻盯着电机的转速,确保它不会跑偏。

而电流环就像是你的手,及时调整电机所需的电流,让它在需要的时候有充足的动力。

就好比你骑自行车,风一吹,你得用力蹬脚踏,让车子稳稳前行,这就是速度和电流的配合。

两者相辅相成,形成了一个良性的循环,确保电机在各种负载下都能稳定工作。

2. 设计双闭环系统的重要性2.1 提高系统性能你想啊,电机如果没有双闭环控制,开得快的时候,可能转速就飙到天上,没法控制;慢的时候,又感觉力不从心。

这就像你打球,想要扣篮却被卡在了框下,真是让人心急火燎!而有了双闭环系统,电机就能在不同的环境中保持稳定的转速,性能大大提升。

无论是重载还是轻载,电机都能游刃有余,根本不在话下。

2.2 降低能耗再来谈谈能耗的问题。

我们都知道,能源危机可是个大麻烦。

双闭环系统能够通过实时监测和调节,确保电机在最优状态下运行,从而降低能耗。

想象一下,省电就像是在家里随便找零花钱,谁不乐意呢?通过科学合理的控制,电机就能用更少的电,做更多的事,真是一举两得!3. 实际应用案例3.1 工业自动化说到双闭环系统的实际应用,那可真是多得数不过来。

直流双闭环调速系统设计与仿真

直流双闭环调速系统设计与仿真

直流双闭环调速系统设计与仿真一、直流双闭环调速系统的基本原理电流环用于控制电机的电流,通过测量电机的电流反馈信号与给定的电流信号进行比较,得到误差信号,然后经过PID控制器计算控制信号,最后通过逆变器输出给电机控制电流。

二、直流双闭环调速系统的设计1.确定系统参数:包括电机的转矩常数,转矩惯量,电感,电阻等参数。

2.设计速度环控制器:根据转速信号和转速误差信号,设计速度环控制器的传递函数。

可以选择PID控制器,也可以选择其他类型的控制器。

3.设计电流环控制器:根据电流信号和电流误差信号,设计电流环控制器的传递函数。

同样可以选择PID控制器或其他类型的控制器。

4.进行系统仿真:将设计好的速度环和电流环控制器加入电机模型,进行系统仿真。

通过调整控制器参数,观察系统的响应特性,可以优化系统性能。

5.调整控制参数:根据仿真结果,调整控制器的参数,使系统响应更加快速、稳定。

三、直流双闭环调速系统的仿真1.定义系统模型:建立直流电机的状态方程,包括速度环和电流环的动态方程。

2.设定系统初始条件和输入信号:设置电机的初始状态和给定的转速信号以及电流信号。

3.选择控制器类型和参数:根据设计要求,选择控制器类型和参数。

可以选择PID控制器,并根据调试经验选择合适的参数。

4.搭建控制系统模型:将速度环和电流环的控制器模型和电机模型连接在一起,构建闭环控制系统模型。

5.进行系统仿真:利用MATLAB或其他仿真软件进行系统仿真,根据给定的转速信号和电流信号,观察系统的响应特性。

四、直流双闭环调速系统的优化1.参数调整:根据仿真结果,调整控制器的参数,使系统的性能得到优化。

可以通过试探法或自适应调节方法进行参数调整。

2.饱和处理:考虑到电机的饱和特性,可以在控制器中添加饱和处理模块,以提高系统的稳定性和抗干扰能力。

3.鲁棒性设计:考虑到系统参数的不确定性,可以采用鲁棒控制方法,提高系统的鲁棒性能。

4.死区补偿:在电机控制中常常会出现死区现象,可以在控制器中添加死区补偿模块,以减小死区对系统性能的影响。

双闭环控制系统设计

双闭环控制系统设计

运动控制课程设计双闭环系统的最佳工程设计目录1. 课程设计任务书 (1)1.1系统性能指标 (1)1.2设计内容 (1)1.3应完成的技术文件 (1)2.课程设计设计说明书 (2)2.1综述 (2)2.2整流电路 (2)2.3触发电路的选择和同步 (3)2.4双闭环控制电路的工作原理 (4)3. 设计计算书 (6)3.1整流装置的计算 (6)3.1.1变压器副方电压 (6)3.1.2变压器和晶闸管的容量 (6)3.1.3平波电抗器的电感量 (7)3.1.4晶闸管保护电路 (8)3.2 控制电路的计算 (9)3.2.1已知参数 (9)3.2.3预选参数 (10)3.2.5最佳典型II型速度环的计算 (12)3.3系统性能指标的分析计算 (13)3.3.1静态指标的计算 (13)3.3.2动态跟随指标的计算 (14)3.3.3动态抗扰动指标的计算 (14)参考资料 (16)4.附图和附表 (17)4.1动态结构图和相应的动态结构参数图 (17)4.2典Ⅰ典Ⅱ的开环对数幅频特性图 (17)4.3系统参数表 (18)4.4元件明细表 (22)4.5系统原理图 (23)1. 课程设计任务书1.1系统性能指标1)条速范围D>102)静差率s<5%3)电流超调量<5%4)空载起动到额定转速的超调量<10%,调整时间<1s5)当负载变化20%的额定值,电网波动10%额定值时,最大动态速降<10%,动态恢复时间<0.3s1.2设计内容1)设计系统原理图2)计算调节器参数及其它参数3)编写课程设计说明书1.3应完成的技术文件1)设计说明书2)设计计算书3)系统原理图4)电气元件明细表2.课程设计设计说明书2.1综述随着现代工业的发展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。

相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。

双闭环控制则很好的弥补了他的这一缺陷。

pwm直流双闭环调速系统设计

pwm直流双闭环调速系统设计

PWM直流双闭环调速系统设计引言PWM(Pulse Width Modulation)直流双闭环调速系统是一种常用于电动机调速的控制系统。

在许多应用中,需要对电动机的速度进行精确控制,以满足不同的工作需求。

PWM直流双闭环调速系统通过不断调整电动机输入电压的占空比,使电动机保持稳定的转速,具有快速响应、良好的稳定性和较大的负载适应能力等优点。

本文将介绍PWM直流双闭环调速系统的设计原理、硬件电路和控制算法,并提供代码示例和性能分析。

设计原理闭环控制系统PWM直流双闭环调速系统由两个闭环控制回路组成:速度闭环和电流闭环。

速度闭环通过反馈电动机的实际转速来调整电动机输入电压,以使其达到期望转速。

电流闭环通过反馈电动机的实际电流来调整PWM信号的占空比,以使电动机输出的扭矩与负载要求相匹配。

速度闭环控制速度闭环控制由速度传感器、比例积分控制器和电动机驱动器组成。

速度传感器通常采用编码器或霍尔传感器来测量电动机转速,并将其转换为电压信号。

比例积分控制器根据速度误差和积分误差来计算控制器输出,并将其输入给电动机驱动器。

电流闭环控制电流闭环控制由电流传感器、比例积分控制器和PWM模块组成。

电流传感器用于测量电动机的电流,并将其转换为电压信号。

比例积分控制器计算电流误差和积分误差,并生成控制器输出,将其输入给PWM模块。

硬件电路设计PWM直流双闭环调速系统的硬件电路设计包括电源模块、电流传感器、速度传感器、比例积分控制器、PWM模块和电动机驱动器等。

电源模块电源模块用于提供系统所需的直流电压。

它可以采用稳压稳流电路来稳定输出电压和电流。

电流传感器电流传感器用于测量电动机的电流。

常用的电流传感器包括霍尔传感器和电阻传感器。

它将电动机的电流转换为电压信号,并输入给比例积分控制器。

速度传感器速度传感器用于测量电动机的转速。

常用的速度传感器有编码器、霍尔传感器和光电传感器等。

比例积分控制器比例积分控制器是PWM直流双闭环调速系统的核心控制模块。

双闭环系统课程设计

双闭环系统课程设计

1 双闭环系统的设计1.1 设计内容第一,双闭环直流电动机控制系统设计。

分析系统工作原理,进行系统总体设计。

分析设计出控制系统框图,控制系统动态结构图,控制系统稳态结构图,双闭环直流电动机控制系统原理图设计。

根据系统框图和任务分解结果,进行典型环节和模块电路的设计。

设计转速电流环电路,触发电路驱动控制电路的选型设计(模拟触发电路、集成触发电路、数字触发器电路均可),控制主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等),检测及给定电路。

第二,控制系统各单元参数测试和计算。

测出各环节的放大倍数及时间常数,在确定调速范围D=10时比较开环、单环和双环时的动态响应。

第三,PID控制算法的确定。

以仿真结果或实验结果为根本依据,结合理论,确定合理的PID控制策略和控制参数。

第五,MATLAB仿真验证。

利用MATLAB下的SIMULINK软件进行系统仿真,同时将结果在示波器上显示出来,以验证设计的正确性。

第六,设计要求:为某生产机械设计一个调速范围宽、起制动性能好(可选做)的直流双闭环系统。

已知系统中直流电动机主要数据如下:(1)一台直流电机,直流电机额定数据:PN=60KW,UN=220V,IN=308A,nN=1000r/min,电枢回路总电阻R=0.18Ω。

电磁时间常数Tl=0.012s,机电时间常数Tm=0.12s,电动机系数Ce=0.196V·min/r。

(2)主要技术指标:调速范围0~1000r/min,电流过载倍数λ=1.1,系统静特性良好,无静差。

(3)动态性能指标:空载起动到额定转速超调量δn<10%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)ts≤1s。

1.2 系统主电路设计直流调速系统常用的直流电源有三种:旋转变流机组;静止式可控整流器;直流斩波器或脉宽调制变换器。

机组供电的直流调速系统在20世纪60年代以前曾广泛地使用着,但该系统需要旋转变流机组,至少包含两台与调速电动机容量相当的旋转电机还图1-1V—M系统原理图要仪态励磁发电机,因此设备多,体积大,费用高,效率低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双闭环直流电机调速系统设计目录一、设计任务与要求 (2)1、设计题目及技术指标 (2)1.1 设计题目 (2)1.2 技术指标 (3)2、系统总方案设计 (3)2.1 逻辑无环流工作原理 (3)2.2 系统设计分析 (4)二、各个器件参数的设计 (5)1、参数计算 (5)1.1、变压器参数计算 (5)1.2 平波电抗器参数计算 (5)1.3可控晶闸管参数计算 (6)2、双闭环调速系统 (6)2.1、输出限幅 (6)2.2、双闭环直流调速系统设计 (7)2.3、电流调节器的设计 (10)2.4转速调节器的设计 (11)总结体会 (13)参考文献 (14)摘要转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。

根据晶闸管的特性,通过调节控制角α大小来调节电压。

基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。

在设计中调速系统的主电路采用了三相全控桥整流电路来供电。

本文首先确定整个设计的方案和框图。

然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。

接着驱动电路的设计包括触发电路和脉冲变压器的设计。

最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。

为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。

从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。

这就形成了转速、电流双闭环调速系统。

先确定其结构形式和设计各元部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算,最后画出了调速控制电路电气原理图。

关键词: 双闭环; 转速调节器;电流调节器一、设计任务与要求1、 设计题目及技术指标1.1 设计题目为某生产机械设计一个调速范围宽、起制动性能好的直流调速系统,且拟定该系统为晶闸管-电动机系统。

已知系统中直流电动机主要数据如下: 额定功率kW P N 60=;额定电压VUN220=;额定电流AI N 220=;额定转速min/1000r n N = ;电枢电阻Ω=05.0a R ;转动惯量 2280mN GD∙=电枢回路总电阻Ω=5.0R电网供电电压为三相380V ;电网电压波动为+5% -- -10%;速度检测采用测速电机;控制系统电源电压为V 15± 测速发电机的选择因为电动机的额定转速为1000,所以采用ZYS-100A 型测速发电机1.2 技术指标要求连续调速,可逆运行,回馈制动,过载倍数5.1=λ 要求调速比15≥D ,电流脉动%10≤i S ,静差率%1≤S 要求以转速、电流双闭环形式作为系统控制方案 要求系统为逻辑无环流可逆调速系统 主回路采用电枢可逆,磁场单独供电2、系统总方案设计2.1 逻辑无环流工作原理逻辑无环流可逆直流调速系统原理框图如图1所示。

其主电路采用反并连接电路。

因为无环流,所以不需要设置限环流电抗器,控制电路仍是典型的转速、电流双闭环系统,只是电流环是分设的。

1ACR 、2ACR 分别控制的是正组VF 、反组VR 的整流桥。

正组VF 、反组VR 工作时有整流和逆变两种状态。

当给定信号U*n 为正时,转速调节器ASR 输出Ui*为负值,逻辑切换装置DLC 给正组桥VF 发出触发脉冲,使其处于整流状态,电动机正想转动,当给定信号U*n 为0或负值,转速调节器ASR 输出Ui*为正值。

由于电机电枢电流不为零,逻辑切换电路DLC 仍然向正组桥VF 提供脉冲,但却使VF 处于逆变状态,电流和转速变小。

当电枢电流为0时,反组桥VR 处于整流状态,此时电机处于制动状态,快速停车或反向运行。

逻辑控制的无环流可逆调速系统原理图2.2 系统设计分析双闭环直流调速系统一般采用PI调节器,以获得良好的静、动态性能,其电路原理如图1所示。

图1 双闭环直流调速系统原理图为了分析双闭环调速系统的静特性,必须先绘出它的稳态结构框图,如图2所示。

因为设计要求系统在负载和电网电压的扰动下稳态无静差,所以电流、转速调节器均使用PI调节器。

图2 双闭环调速系统稳态结构框图应用工程方法来设计转速、电流双闭环调速系统的两个调节器。

按照设计多环控制系统先内环后外环的一般原则,从内环开始,逐步向外扩展。

在双闭环系统中,应该首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。

二、各个器件参数的设计1、参数计算1.1、变压器参数计算由于整流输出电压d u 的波形在一周期内脉动6次的波形相同,因此在计算时只需对一个脉冲进行计算。

由此得整流输出平均电压αcos 34.22U U d = ( 60≤α)显然d d u U ≈=440V ,如果忽略晶闸管和电抗器的压降,则可以求得变压器副边输出电压2/334.24402⨯=U =217.1V 取2U =220V (通常取导通角α为30)副边输出有效电压为==22U 311.1V副边输出有效电流220816.0816.02⨯==d I I =179.5A 考虑电机过载系数为5.1=λ那么输出电流应可以达到270A变压器容量为⨯==732.1322I U S N 311⨯270=145.43KVA考虑到晶闸管和电抗器的压降,变压器本身的漏磁,并根据变压器应留有一定裕量的原则。

应选择参数为额定容量为200KVA ,副边输出额定电流为250A 的变压器1.2 平波电抗器参数计算在V-M 系统中,脉动电流会增加电机的发热,同时也产生脉动转矩,对生产机械不利,为了避免或减轻这种影响,须设置平波电抗器。

平波电抗器的电感量一般按低速轻载时保证电流连续的条件来选择。

通常首先给定最小电流in m I (以A 为单位通常取电动机额定电流的5%-10%),再利用它计算所需的总电感量(以mH 为单位),减去电枢电感,即得平波电抗器应有的电感值。

对于三相桥式整流电路总电感量为:L=0.693min2dI U =0.693⨯%7220310⨯=20.13mH电枢电感m L 的计算公式为)(2103mH I Pn U K L NN N D m ⨯=P —电动机磁极对数,D K —计算系数,对一般无补偿电机:D K =8~12 那么电枢电感22010002210310103⨯⨯⨯⨯⨯=m L =3.52mH (取P=2,D K =10)由于变压器的漏电感很小,可以忽略不计,那么平波电抗器电感值取为L=20.13-3.52=16.61mH ,取其电感值为17mH,根据电感量大小取其电阻为0.3Ω 1.3可控晶闸管参数计算通常取晶闸管的断态重复峰值电压DRM U 和反向重复峰值电压RRM U 中较小的标值作为该器件的额定电压。

选用时,额定电压要留有一定裕量,一般取额定电压为正常工作电压时晶闸管所承受峰值电压的2-3倍。

本设计中峰值电压==26U U TM 759.3V故晶闸管电压定额T U 为:=⨯-=TM T U U )32(1518V-2277.9V 取其电压定额为2000V晶闸管的电流定额主要由其通态平均电流T I 来标称,规定为晶闸管在环境为C40和规定的冷却状态下,稳定结温不超过额定结温是允许流过的最大工频正弦半波电流的平均值。

因此在使用时同样应按照实际波形的电流与通态平均电流所造成的发热效应相等,即有效值相等的原则来选取晶闸管的电流定额,并留有一定裕量。

一般取其通态平均电流为此原则所得计算结果的1.5-2倍。

可按下式计算:)(AV T I =(1.5~2)fb K M A X I , 式中计算系数fbK=fK/1.57bK 由整流电路型式而定,fK为波形系数,b K为共阴极或共阳极电路的支路数。

当00α=时,三相全控桥电路fb K=0.368故计算的晶闸管额定电流为MAXfbAV T I KI )25.1()(-==(1.5~2)×0.368×(220×1.5)=182.16~242.88A ,取200A 。

2、双闭环调速系统2.1、输出限幅采用PI 调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。

但是如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足要求。

为了随心所欲的控制电流和转速的动态过程,可以采用转速、电流双闭环调速系统.转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。

系统中引入转速和电流负反馈,两者之间实现嵌套连接。

转速调节器是双闭环控制直流调速系统的主导调节器,它可以实现稳态无静差。

电流调节器作为内环的调节器能够加快动态过程。

双闭环系统结构框图给定*U=-15--15V,转速调节器与电流调节器的输出限幅均为±10Vn2.2、双闭环直流调速系统设计图3.1 双闭环直流调速系统电路原理图在双闭环直流调速系统中,转速和电流调节器的结构选择与参数设计须从动态校正的需要来解决。

如果采用单闭环中的伯德图设计串联校正装置的方法设计双闭环调速系统这样每次都需要先求出该闭环的原始系统开环对数频率特性,在根据性能指标确定校正后系统的预期特性,经过反复调试才能确定调节器的特性,从而选定其结构并计算参数但是这样计算会比较麻烦。

所以本设计采用工程设计方法:先确定调节器的结构,以确保系统稳定,同时满足所需的稳定精度。

再选择调节器的参数,以满足动态性能指标的要求。

这样做,就把稳,准,快和抗干扰之间相互交叉的矛盾问题分成两步来解决,第一步先解决主要矛盾,即动态稳定性和稳定精度,然后再进一步满足其他动态性能指标。

按照“先内环后外环”的一般系统设计原则,从内环开始,逐步向外扩展。

在这里,首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器如图3.2所示为双闭环直流调速系统动态结构框图。

图3.2 双闭环直流调速系统动态结构框图在双闭环调速系统在稳态工作中,当转速和电流两个调节器都不饱和时,各变量之间有下列关系:*n n U U n n αα=== *i i d d LU U I I ββ===在稳态工作点上,转速n 是由给定电压U n *决定的,ASR 的输出量U i *是有负载电流I dL 决定的,而控制电压U c 的大小则同时取决于n 和I d 。

这些关系反映了PI 调节器不同于P 调节器的特点。

P 调节器的输出量总是正比于其输入量,而PI 调节器则不然,其输出量在动态过程中决定于输入量的积分,达到稳态时,输入为零,输出的稳态值与输入无关,而是由它后面环节的需要决定的。

相关文档
最新文档