参考系坐标系及转换汇总
大地测量常用坐标系及其转换
常用坐标系及其转换
1、常用坐标系
大地坐标系:以地球椭球面为参考面的地球椭球面坐标系(LBH)。
(参心、地心)
空间直角坐标系(XYZ)
站心(局部)直角坐标系(UNE)极坐标系
直角坐标系原点位于测站点
U轴与测站点法线重合,指向天顶
N轴垂直于U轴,指向(北)
E轴形成左手系(东)
站心极坐标系用极距、方位角和高度角表示
常用坐标系及其转换
1、常用坐标系
高斯直角坐标系(xyH)
高斯投影的条件是:
满足正形投影条件(柯西黎曼方程)
中央子午线投影后为直线
中央子午线投影后长度不变(其它线变长)
2、坐标系转换
XYZ LBH(同一参考系下换算)
XYZ NEU(同一参考系下换算,已知站心的大地或空间直角坐标) 不同参考系下坐标系转换(用XYZ转换公式,B 模型和M
模型,七参数-平移量旋转量各3,一个尺度因子;
四参数一般是针对平面坐标的转换-2个平移,一个旋转,一个尺度) LBH xyH(球面化为平面,注意中央子午线选取和分带,H为大地高)
2、坐标系转换
不同坐标系之间常用BURSA 模型,七参数)
2、坐标系转换
局部小范围内,对高斯平面坐标可用四参数模型
四、我国的大地坐标系
(一)、1954年北京坐标系
(二)、1980年国家大地坐标系
(三)、2000中国大地坐标系CGCS2000
(四)、新1954年北京坐标系
(五)、1978地心坐标系
(六)、1988地心坐标系。
常用坐标系之间的关系与转换
7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5上式表明了 2种基本坐标系之间的关系。
加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
几种参考坐标系及其转换
地理坐标系转动
¾ 载体的运动将引起地理坐标 系相对地球坐标系转动。如 果考察地理坐标系相对惯性 坐标系的转动角速度,应当 考虑两种因素:一是地理坐 标系随载体运动时相对地球 坐标系的转动角速度;二是 地球坐标系相对惯性参照系 的转动角速度。
惯性坐标系/地球坐标系/地理坐 标系
载体坐标系
构成右手直角坐标系。
㈡ 惯性导航基础知识
¾惯性空间与惯性参照系 ¾惯性导航中常用的坐标系统 ¾直角坐标系间的角度关系与方向余
空间坐标系之间的角度关系可用一矩阵来表示,即方 向余弦矩阵。
方向余弦矩阵
欧拉角定义
根据欧拉角求取方向佘弦 矩阵
惯性坐标系
¾ 惯性坐标系是描述惯性空间的一种坐标系,在惯性坐标系中, 牛顿定律所描述的力与运动之间的关系是完全成立的。要建立 惯性坐标系,必须找到相对惯性空间静止或匀速运动的参照 物,也就是说该参照物不受力的作用或所受合力为零。然而根 据万有引力原理可知,这样的物体是不存在的。通常我们只能建 立近似的惯性坐标系,近似的程度根据问题的需要而定。惯性 导航系统中我们常用的惯性坐标系是太阳中心惯性坐标系,若 载体仅在地球附近运动,如舰船惯性导航系统,也可用地球中心惯 性坐标系,此时要同时忽略太阳的引力和地球中心的平移加速 度。
地球坐标系坐标系
地球坐标系 oxe ye ze 如图所 示。其原点取在地心;ze 轴沿极 轴(地轴)方向, xe 轴在赤道平 面与本初子午面的交线上,ye 轴 也在赤道平面内并与 xe 、ze 轴构
成右手直角坐标系。
在导航定位中,运载体相对地球 的位置通常不用它在地球坐标系中的
直角坐标来表示,而是用经度 λ 、纬 度ϕ 和高度(或深度) h 来表示,即
经纬度坐标系。
坐标系之间的换算
• §1 三维坐标系间的变换 • §2 二维坐标系间的变换 • §3 一维坐标系间的变换
§1 三维坐标系间的变换
地球坐标系统 表示方式
笛卡儿坐标
曲线坐标
平面直角坐标
坐标系 中心
地心
参心
站心
参 考 面
总地球椭球 参考椭球
地心大地 坐标系 参心大地 坐标系
大地体
天文 坐标系
投影平面
T
B B1 B2 Bn
X 0 Y0 Z 0 Y dK X Y Z
则误差方程 法方程
ˆL VX BY X ˆ BT PL 0 BT PBY X
Z
0 X
Y X i 0 X Yi Z i 0 Z i Yi
有
dB dX 1 1 da d L A d Y A C d dH dZ X X da A1 Y A1 Y A1C d Z Z T X 0 0 X A1 Y0 A1 Y dK A1 Z i Z Y Z 0 i Zi 0 Xi Yi X X X da X i Y A 1 Y A 1 Y A 1C d 0 Z Z Z
顾及
0 QX i Z X Yi Z i 0 Z i Yi
Zi 0 Xi
Yi X X i Y 0 Z
测量学中的坐标系和他们之间相互转换
二、研究对象二地球表面地物的形状和空间位置,空间位置要用坐标表示,所以研究坐标系及其相互之间的转换非常重要。
下面是相关坐标系分类及相互转换: 1、天球坐标系首先了解什么是天球:以地球质心为中心以无穷大为半径的假想球体。
天球 天球坐标系天球坐标系在描述人造卫星等相对地球运动的物体是很方便,他是以地球质心为中心原点的,分为球面坐标系和直角坐标系。
球面:原点O 到空间点P 距离r 为第一参数,OP 与OZ 夹角θ为第二参数,面OPZ 和面OZX 夹角α为第三参数。
直角:用右手定则定义,通常X 轴指向赤道与初始子午线的交点。
相互转换:⎪⎪⎩⎪⎪⎨⎧+==++=)/arctan()/arctan(22222Y X Z X Y Z Y X r βα 2、大地坐标系大地坐标在描述地面点的位置是非常有用, 是通过一个辅助面(参考椭球)定义的, 分为大地坐标系和直角坐标系。
H 为大地高,一般GPS 测量用,大地坐标系大地坐标系:大地纬度B 为空间点P 的椭球法面与面OXY 夹角,大地经度L 为ZOX 与ZOP 夹角,大地高程H 为P 点沿法线到椭球面距离直角坐标系:椭球几何中心与直角坐标系原点重合,短半轴与Z 轴重合,其他符合右手定则。
相互转换:黄赤交角23°27′X YZ oP春分点黄道 天球赤道 起始子午面L B PH[]⎪⎩⎪⎨⎧+=+=-=+-=L B H N X L B H N Y B e a N B H e N Z cos cos )(sin cos )(e ,2sin 21/ sin )21(为第一扁率卯酉全曲率半径,其中3、惯性坐标系(CIS )与协议天球坐标系① 惯性坐标系(CIS ):在空间不动或做匀速直线运动的坐标系.② 协议天球坐标系:以某一约定时刻t0作为参考历元,把该时刻对应的瞬时自转轴经岁差和章动改正后作为Z 轴,以对应的春分点为X 轴的指向点,以XOZ 的垂直方向为Y 轴方向建立的天球坐标系。
常用坐标系之间的关系与转换
7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系 大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;上式表明了 2种基本坐标系之间的关系。
BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
常用坐标系介绍及变换PPT课件
目录
• 常用坐标系介绍 • 坐标变换基础 • 坐标变换的应用 • 坐标变换的数学表达 • 坐标变换的物理意义 • 坐标变换的计算机实现
01
常用坐标系介绍
笛卡尔坐标系
01
02
03
直角坐标系
以原点为中心,x轴、y轴、 z轴分别代表三个相互垂 直的坐标轴,用于描述平 面和空间中的点。
二维坐标变换
总结词
二维坐标变换是指平面内的坐标变化, 包括平移、旋转、缩放等操作。
详细描述
二维坐标变换涉及平面内的点,可以 通过平移、旋转或缩放等操作进行坐 标变化。这种变换在平面几何、图形 处理等领域应用广泛,可以通过矩阵 运算实现快速变换。
三维坐标变换
总结词
三维坐标变换是指空间中的坐标变化,包括平移、旋转、缩放等操作。
详细描述
三维坐标变换涉及空间中的点,可以通过平移、旋转或缩放等操作进行坐标变化。这种变换在三维建模、动画制 作、机器人控制等领域应用广泛,需要使用三维矩阵运算进行实现。
03
坐标变换的应用
图形变换
图形变换是指通过数学方法将一个二维或三维图形在坐标系 中进行平移、旋转、缩放等操作,以达到改变图形位置、大是一种数值计算方法,通过将物体离散化为有限个单元,可 以分析物体的受力情况和形变程度。有限元分析在工程领域中有着广泛 的应用,可以提高设计效率和精度。
06
坐标变换的计算机实现
OpenGL中的坐标变换
投影变换
将三维场景投影到二维屏 幕上,包括正交投影和透 视投影。
视图变换
将场景中的坐标系与观察 者的坐标系进行关联,实 现视景体裁剪。
旋转变换不改变图形的大小和形状, 只改变其方向。
常用坐标系介绍及变换
➢ GPS定位采用坐标系: 在GPS定位测量中,采在空用间的两位类置和坐方标向应系保持,不变,
或仅作匀速直线运动。
即天球坐标系与地球坐标系,两坐标系的坐 标原点均在地球的质心,而坐标轴指向不 同。天球坐标系是一种惯性坐标系,其坐标 原点及各坐标轴指向在空间保持不变,用于 描述卫星运行位置和状态。地球坐标系随同 地球自转,可看作固定在地球上的坐标系, 用于描述地面观测站的位置。
长半轴: (m) 扁率: 1:298.3
BJ54可归结为: a.属参心大地坐标系; b.采用克拉索夫斯基椭球的两个几何参数; c. 大地原点在原苏联的普尔科沃; d.采用多点定位法进行椭球定位; e.高程基准为 1956年青岛验潮站求出的黄海平
均海水面。
f.高程异常以原苏联 1955年大地水准面重新平 差结果为起算数据。按我国天文水准路线推算而得 。
➢ 为什么选用空间直角坐标系? 任一点的空 间位置可由该点在三个坐标
面的投影(X,Y,Z)唯一地确定,通过坐 标平移、旋转和尺度转换,可以将一个点的 位置方便的从一个坐标系转换至另一个坐标 系。与某一空间直角坐标系所相应的大地坐 标系(B,L,H),只是坐标表现形式不 同,实质上是完全等价的,两者之间可相互 转化。
几何定义:
ZWGS84
原点—在地球质心
BIH定义的
Z轴—指向 BIH 1984.0 零子午圈
定义的协议地球 (1984.0)
P
N
CTP
赤道
平面
(CTP)方向。
X轴—指向BIH 1984.0
O
的零子午面和CTP 赤道的交点。 Y轴—与Z、X轴构成右
手坐标系。
E
YWGS8
4
XWGS84
大地测量常用坐标系及其转换
常用坐标系及其转换
1、常用坐标系
大地坐标系:以地球椭球面为参考面的地球椭球面坐标系(LBH)。
(参心、地心)
空间直角坐标系(XYZ)
站心(局部)直角坐标系(UNE)极坐标系
直角坐标系原点位于测站点
U轴与测站点法线重合,指向天顶
N轴垂直于U轴,指向(北)
E轴形成左手系(东)
站心极坐标系用极距、方位角和高度角表示
常用坐标系及其转换
1、常用坐标系
高斯直角坐标系(xyH)
高斯投影的条件是:
满足正形投影条件(柯西黎曼方程)
中央子午线投影后为直线
中央子午线投影后长度不变(其它线变长)
2、坐标系转换
XYZ LBH(同一参考系下换算)
XYZ NEU(同一参考系下换算,已知站心的大地或空间直角坐标) 不同参考系下坐标系转换(用XYZ转换公式,B 模型和M
模型,七参数-平移量旋转量各3,一个尺度因子;
四参数一般是针对平面坐标的转换-2个平移,一个旋转,一个尺度) LBH xyH(球面化为平面,注意中央子午线选取和分带,H为大地高)
2、坐标系转换
不同坐标系之间常用BURSA 模型,七参数)
2、坐标系转换
局部小范围内,对高斯平面坐标可用四参数模型
四、我国的大地坐标系
(一)、1954年北京坐标系
(二)、1980年国家大地坐标系
(三)、2000中国大地坐标系CGCS2000
(四)、新1954年北京坐标系
(五)、1978地心坐标系
(六)、1988地心坐标系。
常用坐标系之间的关系与转换
7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系 大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;上式表明了 2种基本坐标系之间的关系。
BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
坐标系种类及坐标转换
坐标系种类及坐标转换坐标系是一种用于描述和定位空间中点的系统。
它将一个点与一组数值或坐标相关联,以便可以在平面或空间中准确地表示该点。
不同的坐标系适用于不同的应用和领域,因此掌握坐标系及其之间的转换对于地理、几何、物理等学科非常重要。
常见的坐标系有:直角坐标系、极坐标系、球坐标系、大地坐标系等。
直角坐标系是最为常见和常用的坐标系之一、它由两条垂直的坐标轴组成,分别称为x轴和y轴。
每个点在这个坐标系中可以用一个有序对(x,y)表示,其中x是点到y轴的有向距离(也称为横坐标),y是点到x轴的有向距离(也称为纵坐标)。
直角坐标系可用于描述平面几何问题,如图形的位置、长度、面积等。
直角坐标系与极坐标系之间可以进行坐标转换。
极坐标系用一个点到极点的距离和该向量与极轴的夹角来表示一个点。
极坐标系可以用于描述径向对称问题,如圆形、螺旋线和角度测量等。
通过将直角坐标系中的点(x,y)转换为极坐标系,可以使用极径(r)和极角(θ)来描述这个点。
其中,r表示点到原点的距离,θ表示点与正x轴之间的夹角。
转换公式为:r=√(x^2+y^2)θ = arctan(y / x)由于球体的表面是不规则的,所以球面上的点描述需要使用球坐标系。
球坐标系由一个点到球心的距离、该点与正z轴之间的夹角和该向量的方位角来表示。
球坐标系通常在物理学、灵活性建模、导航等领域中使用。
球坐标系的转换公式为:ρ=√(x^2+y^2+z^2)θ = arccos(z / ρ)φ = arctan(y / x)大地坐标系是一种用于地理测量和导航的坐标系。
它将地球视为椭球体,由纬度、经度和高度来表示地球上的点。
纬度是地球表面点与赤道之间的夹角,而经度是该点与本初子午线的夹角。
经度和纬度以度数表示。
大地坐标系的转换公式可以由大地测量学理论推导得出。
除了上述常见的坐标系外,还有一些特殊的坐标系,如本经纬度坐标系、笛卡尔坐标系、极策坐标系等,它们在特定的领域或问题中有着特殊的应用。
坐标系之间的换算
PART 02
直角坐标系与极坐标系换 算
直角坐标系表示方法
01
平面内任意一点M的位置可以用 有序数对(x,y)来表示,其中x 为横坐标,y为纵坐标。
02
在三维空间中,任意一点P的位置 可以用有序数组(x,y,z)来表示 ,其中x,y,z分别为点P在三个坐标 平面上的投影到原点的距离。
极坐标系表示方法
高维空间中的坐标变换
坐标变换矩阵
在高维空间中,可以通过定义一个坐标 变换矩阵来实现不同坐标系之间的转换 。该矩阵描述了原坐标系与目标坐标系 之间的线性变换关系。
VS
降维处理
对于高维空间中的数据,有时需要进行降 维处理以便于可视化和分析。常见的降维 方法包括主成分分析(PCA)、线性判别 分析(LDA)等。这些方法可以将高维数 据投影到低维空间中,同时保留数据的主 要特征。
仿射变换法
通过仿射变换原理,将原坐标系 中的点映射到目标坐标系中,实 现坐标系的转换。这种方法适用 于形状不同但相对位置关系保持
不变的坐标系。
投影变换法
利用投影变换原理,将原坐标系 中的点投影到目标坐标系中,实 现坐标系的转换。这种方法适用 于需要从三维空间到二维平面进
行投影的坐标系。
当前存在问题和挑战Fra bibliotekXXREPORTING
2023 WORK SUMMARY
坐标系之间的换算
汇报人:XX
XX
目录
• 坐标系基本概念与分类 • 直角坐标系与极坐标系换算 • 圆柱坐标系与球坐标系换算 • 不同维度间坐标系换算 • 实际应用案例分析 • 总结与展望
PART 01
坐标系基本概念与分类
坐标系定义及作用
坐标系定义
挑战。
坐标系的转换知识详述
坐标系的转换知识详述2021-08-15 10:31·铁柱迈克尔坐标系简介坐标参考系统分为天球坐标系和地球坐标系。
GPS、北斗等卫星运转是在天球坐标系中表示的,而定位接收机的定位是在地球坐标系中表示的。
地球坐标系是随地球自转而运动的,用来表示地面物体的位置是比较方便的。
本文的坐标转换讲的是地球坐标系之间的转换。
地球坐标系包括地心坐标系和参心坐标系,坐标形式包括大地坐标、空间直角坐标、投影坐标,不同的地球坐标系之间的转换包括椭球转换和平面转换。
WGS-84坐标系WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。
WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。
WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。
WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义的协议地球极方向,X轴指向BIH1984.0的启始子午面和赤道的交点,Y轴与X轴和Z轴构成右手系。
采用椭球参数为: a = 6378137m f = 1/298.257223563。
1954年北京坐标系1954年北京坐标系是我国目前广泛采用的大地测量坐标系,是一种参心坐标系统。
该坐标系源自于原苏联采用过的1942年普尔科夫坐标系。
该坐标系采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:a = 6378245m f = 1/298.3。
我国地形图上的平面坐标位置都是以这个数据为基准推算的。
1980年西安坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980国家大地坐标系,也是一种参心坐标系。
1980国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据。
常用坐标系及其间的转换
坐标原点 o1 为火箭的质心。o1x1 为箭体外壳对称轴,指向箭的头部。o1 y1 在火箭的 主对称面内,该平面在发射瞬时与发射坐标系 xoy 平面重合, y1 轴垂直 x1 轴。 z1 轴重 直于主对称面,顺着发射方向看去, z1 轴指向右方。 o1 − x1 y1z1 为右手直角坐标系。
该坐标系在空间的位置反映了火箭在空中的姿态。
2. 地心坐标系 OE − X EYE ZE 坐标系原点在地心 OE ,OE X E 在赤道平面内指向某时刻 t0 的起始子午线(通常取 格林威治天文台所在子午线), OE ZE 轴垂直于赤道平面指向北极。 OE − X EYE ZE 组成 右手直角坐标系。由于坐标 OE X E 与所指向的子午线随地球一起转动,因此这个坐标系
利用该坐标来建立火箭在惯性空间的运动方程。
5. 平移坐标系 oT − xT yT zT
该坐标系原点根据需要可选择在发射坐标系原点 o ,或是火箭的质心 o1 , oT 始终
与 o 或 o1 重合,但其坐标轴与发射惯性坐标系各轴始终保持平行。
该坐标系用来进行惯性器件的对准和调平。
6. 箭体坐标系 o1 − x1 y1z1 (弹体坐标系)
角ψ 称为偏航角,为轴 ox1 与射击平面的夹角, ox1 在射击平面的左方,ψ 角取正
值;
角 γ 称为滚动角,为火箭绕 x1 轴旋转的角度,当旋转角速度矢量与 x1 轴方向一致, 则该角 γ 取为正值。
4. 发射坐标系与速度坐标系间的欧拉角及方向余弦阵 两个坐标系的转动至平行的顺序及欧拉角如图 1.5 所示,图中将两个坐标系原点重
⎡ ⎢ ⎢
x0 y0
⎤ ⎥ ⎥
=
GE
⎡ ⎢ ⎢
xE0 yE0
⎤ ⎥ ⎥
测量中的常用坐标系及坐标转换概述
测量中的常用坐标系及坐标转换概述1.引言在测量与空间信息处理中,坐标系是非常重要的概念。
通过坐标系,可以将现实世界中的点、线、面等空间要素进行数学建模和描述。
常用的坐标系包括笛卡尔坐标系、极坐标系、球坐标系等。
坐标系之间的转换是测量与空间信息处理中常用的操作。
2.笛卡尔坐标系笛卡尔坐标系是最常见的坐标系,由三个互相垂直的坐标轴构成。
在二维情况下,有两个坐标轴分别表示横坐标和纵坐标;在三维情况下,有三个坐标轴分别表示横坐标、纵坐标和高度坐标。
笛卡尔坐标系广泛应用于地理信息系统、测绘工程、建筑设计等领域。
3.极坐标系极坐标系由极径和极角两个坐标轴构成。
极径表示点到坐标原点的距离,极角表示点在平面上相对于一个基准线的角度。
极坐标系常用于极坐标测量仪器中,如激光扫描仪,雷达等。
极坐标系优点之一是可以简化角度变化的描述,适用于自然界中的很多环境和场景。
4.球坐标系球坐标系由球半径、极角和方位角三个坐标轴构成。
球半径表示点到坐标原点的距离,极角表示点距离球心的水平角度,方位角表示点在水平面上相对于一个基准线的角度。
球坐标系常用于天文学、地理学等领域,描述地球表面上各个点的位置。
5.坐标转换在实际测量中,经常需要在不同的坐标系之间进行转换,以实现测量数据的互通。
常见的坐标转换包括坐标系之间的旋转、平移和缩放等操作。
下面以笛卡尔坐标系和极坐标系为例,介绍一下坐标转换的基本原理。
-笛卡尔坐标系到极坐标系的转换:假设有一个点在笛卡尔坐标系中的坐标为(x,y),则可以通过以下公式将其转换为极坐标系中的坐标(r,θ):r=√(x²+y²)θ = arctan(y/x)-极坐标系到笛卡尔坐标系的转换:假设有一个点在极坐标系中的坐标为(r,θ),则可以通过以下公式将其转换为笛卡尔坐标系中的坐标(x,y):x = r * cos(θ)y = r * sin(θ)在实际测量中,常常需要进行坐标系之间的转换,比如将地理坐标转换为笛卡尔坐标,或者将局部坐标系转换为全球坐标系等。
常用坐标系介绍及变换
常用坐标系介绍及变换1.直角坐标系直角坐标系是最常见的坐标系之一、它由两条垂直的坐标轴组成,通常被标记为x轴和y轴。
每个点都可以用一个有序的数对(x,y)来表示,其中x是点在x轴上的位置,y是点在y轴上的位置。
直角坐标系广泛应用于几何学、物理学、工程学等领域。
2.极坐标系极坐标系是另一种常见的坐标系。
它使用一个有序的数对(r,θ)来表示一个点,其中r是点到极点的距离,θ是点与极轴的夹角。
极坐标系适用于描述圆形和对称图形,例如极坐标系可以更方便地表示一个点相对于圆心的位置。
3.三维直角坐标系三维直角坐标系是在直角坐标系的基础上增加了一条垂直于x轴和y轴的z轴。
每个点可以用一个有序的数对(x,y,z)来表示。
三维直角坐标系广泛应用于空间几何、工程学、计算机图形学等领域。
4.柱坐标系柱坐标系是一种类似于极坐标系的坐标系,但它增加了一个z坐标轴,也被称为高度坐标轴。
一个点可以用一个有序的数对(r,θ,h)来表示,其中r是点到z轴的距离,θ是点到x轴的夹角,h是点在z轴上的位置。
5.球坐标系球坐标系是一种三维坐标系,它使用一个有序的数对(r,θ,φ)来表示一个点,其中r是点到原点的距离,θ是点到x轴的夹角,φ是点到z轴的夹角。
球坐标系适用于描述球体和球对称图形。
在不同坐标系之间进行坐标变换是很常见的操作。
常见的坐标变换包括:1.直角坐标系与极坐标系的变换:直角坐标系到极坐标系的变换可以通过以下公式实现:r=√(x^2+y^2)θ = arctan(y / x)极坐标系到直角坐标系的变换可以通过以下公式实现:x = r * cos(θ)y = r * sin(θ)2.直角坐标系与三维直角坐标系的变换:直角坐标系到三维直角坐标系的变换可以通过以下公式实现:x=x'y=y'z=z'三维直角坐标系到直角坐标系的变换可以通过以下公式实现:x'=xy'=yz'=z3.极坐标系与柱坐标系的变换:极坐标系到柱坐标系的变换可以通过以下公式实现:r'=rθ'=θh'=z柱坐标系到极坐标系的变换可以通过以下公式实现:r=r'θ=θ'z=h'以上是一些常见的坐标系介绍及变换。
坐标系之间的换算
坐标系中的物体位置,或者将世界坐标系中的物体位置转换为图像坐标
系中的像素位置。
05
坐标系转换的注意事项
单位统一的重要性
单位统一是进行坐标系转换的前提,不同坐标系中使用的长 度单位、角度单位等必须一致,否则会导致转换结果出现误 差。
在进行坐标系转换时,需要特别注意单位是否统一,例如从 地理坐标系转换到直角坐标系时,经纬度需要转换为米为单 位的具体坐标值。
球面坐标与圆柱坐标的转换
球面坐标系中的点可以通过转换为圆柱坐标系中的点进行表示,反之亦然。转 换公式为:$r = r, phi = phi, z = r sin phi$。
圆柱坐标系
• 圆柱坐标与直角坐标的转换:圆柱坐标系中的点可以通过转换为直角坐标系中的点进行表示,反之亦然。转换公式为:$x = r \cos \theta, y = r \sin \theta, z = z$。
坐标系的重要性
坐标系是几何学和工程学中不可或缺的基础概念,用于描述物体在空间中的位置 和运动。
坐标系之间的换算对于解决实际问题、进行科学研究和工程设计具有重要意义, 特别是在航天、航空、航海、大地测量等领域。
02
常见的坐标系
笛卡尔坐标系
直角坐标系
以直角坐标轴为基准,通过原点 将平面分割成四个象限,每个象 限内的点可以用实数表示。
极坐标系中的点可以通过转换为球面坐标系中的点进行表示,反之亦然。转换公式为:$r = rho, phi = theta, theta = phi$。
球面坐标系
球面坐标与直角坐标的转换
球面坐标系中的点可以通过转换为直角坐标系中的点进行表示,反之亦然。转 换公式为:$x = r sin phi cos theta, y = r sin phi sin theta, z = r cos phi$。
让我们一起来认识坐标系与坐标变换
让我们一起来认识坐标系与坐标变换一、坐标系的概念与作用在数学和物理学中,坐标系是一种描述点的位置的系统,它由坐标轴和原点组成。
我们可以利用坐标系来精确地确定一个点的位置,从而进行各种数学计算和几何分析。
1.1 笛卡尔坐标系最常见的坐标系是笛卡尔坐标系,也称为直角坐标系。
它由垂直于彼此的两条直线构成,形成了一个二维平面。
这两条直线分别称为x 轴和y轴,它们的交点被定义为坐标系的原点(0, 0)。
1.2 极坐标系除了笛卡尔坐标系,还有一种常用的坐标系叫做极坐标系。
它通过一个点到原点的距离和与x轴的夹角来描述一个点的位置。
极坐标系常用于描述圆形和柱状对象的位置。
1.3 坐标系的作用坐标系在数学和物理学中有着广泛的应用。
它们可以帮助我们准确地定位和描述各种事物,从微观粒子到宇宙中的天体,都需要利用坐标系来进行研究和分析。
二、坐标变换的基本原理坐标变换是指将一个坐标系中的点的位置转换到另一个坐标系中的过程。
在实际应用中,我们经常需要将一个物体在一个坐标系中的位置描述转换为另一个坐标系中的位置描述,以实现不同坐标系之间的相互转换和计算。
2.1 平移变换平移变换是指将一个点沿着x轴和y轴的方向移动一定的距离,在新的坐标系中给出其新的位置。
一般来说,平移变换可以通过在原始坐标上加上一个平移向量来实现。
2.2 旋转变换旋转变换是指将一个点绕着指定的中心点旋转一定角度,在新的坐标系中给出其新的位置。
旋转变换可以通过一组数学公式和矩阵运算来实现。
2.3 缩放变换缩放变换是指将一个点的位置在x轴和y轴方向上按比例放大或缩小,在新的坐标系中给出其新的位置。
缩放变换可以通过乘以一个缩放因子的方式进行。
三、实际应用案例3.1 地图坐标系在地图应用中,我们经常需要将地球上的一个点的经纬度转换为平面坐标系中的x轴和y轴坐标,以便在地图上显示。
这涉及到大地坐标系和平面直角坐标系之间的坐标变换。
3.2 机器人定位在机器人技术中,机器人的定位是一个重要的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据《中华人民共和国测绘法》,经国务院批准,我国自2008年7月1日起,启用2000国家大地坐标系。公告如下:
国家大地坐标系是全球地心坐标系在我国的具体体现,其原点为包括海①2000.
洋和大气的整个地球的质心。
②2000国家大地坐标系与现行国家大地坐标系转换、衔接的过渡期为8年至10年。现有各类测绘成果,在过渡期内可沿用现行国家大地坐标系;2008年7月1日后新生产的各类测绘成果应采用2000国家大地坐标系。
2)站心地平直角坐标系
以P1为原点,以P1点的法线为z轴(指向天顶为正),以子午线方向为x轴系。站心地平直角坐标垂直向东为正建立的坐标系叫z,x轴与y向北为正,
站心地平直角坐标系与站心赤道直角坐标系的转换关系如下:
5 WGS-84坐标系和我国的大地坐标系
WGS-84(1984年)是美国国防部研制确定的大地坐标系。
00的经差自西向东分成606个带。6带自首子午线开始,按000的经差自西向东分成120个带。33带自1.5开始,按轴向东为正。y轴向北为正,X.
5横轴墨卡托(UTM)投影
①属于横轴等角割椭圆柱投影;
②中央子午线投影长度比不等于1而是等于0.9996,两条割线上没有变形;
③该投影在南纬80至北纬84范围内使用;
1天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。天球直角坐标系
天球坐标系
天球球面坐标系
坐标系
地球直角坐标系
地球坐标系
地球大地坐标系
常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。
在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。
1天球空间直角坐标系的定义
几何定义:
原点—在地球质心
Z轴—指向BIH 1984.0定义的协议地球(CTP)方向。
X轴—指向BIH 1984.0的零子午面和CTP赤道的交点。
Y轴—与Z、X轴构成右手坐标系。
WGS-84大地水准面高N等于由GPS定位测定的点的大地高H减该点的正高H。正N值可以利用地球重力场模型系数计算得出;也可以用特殊的数学方法精确计算局部大地水准面高N。一旦N确定,可利用H=H-N计算GPS各点的的正高H。正正GPS高程测量是利用全球定位系统(GPS)测量技术直接测定地面点的大地高。
④全球分60个带,从西经180连续向东编号。
6地方独立坐标系
以当地子午线作为中央子午线进行高斯投影求得平面坐标。这些网都有自己的原
点,自己的定向。.
3坐标系统之间的转换
在GPS测量中,经常要进行坐标变换和基准变换。坐标变换:在不同的坐标表示形式间进行变换。基准变换:在不同的参考基准间进行变换。基准:为描述空间位置的点、线、面。在大地测量中基准是指用以描述地球形状的参考椭球的参数。
协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬时春分点的方向,经过瞬时的岁差和章动改正后,分别作为X轴和Z轴的指向,。协议天球坐标系由此建立的坐标系称为
3地球坐标系
地球直角坐标系和地球大地坐标系的转换.
其中:过椭球面上一点的法线,可作无限个法截面,其中一个与该点子午面相垂′即为过直的法截面同椭球面相截形成的闭合的圈称为卯酉圈。在下图中,PEE P的卯酉圈。点
③国家测绘局负责启用2000国家大地坐标系工作的统一领导,制定2000国家大地坐标系转换实施方案,为各地方、各部门现有测绘成果坐标系转换提供技术支持和服务;
4高斯平面直角坐标系
高斯投影为正形投影,即等角投影;除赤道外的其余纬线,投影后为凸向赤道的曲线,并以赤道为对称轴;经线与纬线投影后仍然保持正交。
2 1980年国家大地坐标系
(1)大地原点陕西省径阳县永乐镇;
(2)参心坐标系,椭球短轴Z轴平行于地球质心指向地极原点方向,大地起始子午面平行于格林尼治平均天文台子午面;X轴在大地起始子午面内与Z轴垂直指向经度0方向;Y轴与Z、X轴成右手坐标系;
(3)多点定位;
(4)大地高程以1956年青岛验潮站求出的黄海平均水面为基准
地球质心O为坐标原点,Z轴指向天球北极,X轴指向春分点,Y轴垂直于XOZ平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,Y,Z)来描述。
春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交点).
2天球球面坐标系的定义
地球质心O为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天球经度(赤经)测量基准——基准子午面,赤道为天球纬度测量基准而建立球面坐标。空间点的位置在天球坐标系下的表述为(r,α,δ)。
正高:它是地面点到大地水准面的距离。.
2国家大地坐标系(参心坐标系)
1 1954年北京坐标系
a.属参心大地坐标系;
b.采用克拉索夫斯基椭球的两个几何参数;
c.大地原点在原苏联的普尔科沃;
d.采用多点定位法进行椭球定位;
e.高程基准为1956年青岛验潮站求出的黄海平均海水面。
f.高程异常以原苏联1955年大地水准面重新平差结果为起算数据。按我国天文水准路线推算而得。
22bae a椭圆的第一偏心率是指曲率的倒数;曲率半径.
协议地球坐标系(CTS):1960年国际大测量与地球物理联合会决定以1900.0~1905.0五年地球自转轴瞬时位置的平均值作为地球的固定级称为国际协定原点CIO。平地球坐标系的Z轴指向国际协定原点CIO
41)站心赤道直角坐标系
P1是测站点,O为球心。以O为原点建立球心空间直角坐标系O-XYZ。以P1为原点建立与相应坐标轴平行的坐标系叫站心赤道直角坐标系P1-。 ZYX显然,同坐标系有简单的平移关系:
表示:2-1天球空间直角坐标系与天球球面坐标系的关系可用图
岁差和章动的影响
岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这
使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。
章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。
极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。前者导致岁差和章动,后者导致极移。