第4章开关量输入输出的隔离技术

合集下载

《电力系统微机保护》赵建文、付周兴(习题解答)

《电力系统微机保护》赵建文、付周兴(习题解答)
第一章 微机继电保护概述
第 1 章 习题
什么是微机继电保护?电力系统对微机继电保护的要求有哪些? 答:微机继电保护装置就是,利用微型计算机来反映电力系统故障或不正常的运 行状态,并动作于断路器跳闸或发出信号的一种自动化装置。电力系统对微机继电保 护的要求与传统继电保护的要求一致,即选择性,速动性、灵敏性、可靠性。 2. 简要说明微机继电保护的特点。 答:(1)集保护、测量、监视、控制、人机接口、通信等多种功能于一体;代替 了各种常规继电器和测量仪表,节省了大量的安装空间和控制电缆。(2)维护调试方 便。(3)可靠性容易提高。(4)可以方便的扩充其他辅助功能。(5)改善和提高保 护的动作特性和性能。 3. 如何理解微机保护比常规继电保护性能好? 答:(1)逻辑判断清楚、正确。(2)可以实现模拟式继电保护无法实现的优良 保护性能。(3)调试维护方便。(4)在线运行的可靠性高。(5)能够提供更多的系 统运行的信息量。 4. 相对于传统继电保护,微机继电保护的缺点有哪些? 答:(1)对硬件和软件的可靠性要求较高,且硬件很容易过时。(2)保护的内 (4) 部动作过程不像模拟式保护那样直观。 (3)使用者较难掌握它的操作和维护过程。 要求硬件和软件有较高的可靠性。(5)由于微机保护装置中使用了大量集成芯片,以 及软硬件的不断升级,增加了用户掌握其原理的难度。 5. 简要说明微机继电保护技术的出现及发展与哪些技术有关,为什么? 答:半导体技术,电力电子技术,计算机与微型计算机技术、信息技术等。继电 保护装置发展初期,主要是电磁性、干硬性继电器构成的我继电保护装置;20 世纪 60 年代由于半导体二极管的问世,出现了整流型继电保护装置;20 世纪 70 年代,由于 半导体技术的进一步发展,出现了晶体管继电保护装置;20 世纪 80 年代中期,由于 计算机技术和微型计算机的快速发展,出现了微型继电保护装置;电力系统的飞速发 展对继电保护不断提出新的要求,电力电子技术、计算机技术和信息技术的飞速发展 尤为继电保护技术的发展不断注入新活力。 6. 微机保护的发展大体分哪几个阶段,各阶段的特点如何。 答:微机保护的发展大体经历了三个阶段: (1) 理论研究阶段,主要是采样技 术;数字虑波及各种算法的研究。(2)试验室研究阶段 主要是微机保护硬件、软件 的研究,并制成样机 (3)工业化应用阶段 20 世纪 70 年代末,80 年代初,微机保 护在电力系统中得到应用,并且发展十分迅速。 1984 年华北电力学院研制的一套微 机距离保护通过鉴定。87 年投入批量生产。以后,微机保护发展迅速,90 年华北电 力学院研制的 WXB—11 投入运行。现在微机保护已得到广泛应用。

2023年大学_计算机控制技术第二版(温希东著)课后答案下载

2023年大学_计算机控制技术第二版(温希东著)课后答案下载

2023年计算机控制技术第二版(温希东著)课后答案下载2023年计算机控制技术第二版(温希东著)课后答案下载本书全面系统地介绍了计算机控制系统的基本组成和在工业控制中的应用技术,并结合实际深入浅出地介绍了几种典型的控制系统和控制技术。

主要内容包括:计算机控制系统概述、开关量输入/输出通道与人机接口、顺序控制与数字控制、模拟量输入/输出通道、PID调节器的数字化实现、计算机控制系统的抗干扰技术及工业控制微型计算机。

为了帮助读者掌握各部分内容,书中每章后面都附有习题。

本书可作为高职高专院校应用电子技术、自动化、机电一体化、电气工程等专业的计算机控制技术课程的教材,也可作为从事计算机控制工作的工程技术人员的参考书。

计算机控制技术第二版(温希东著):内容简介点击此处下载计算机控制技术第二版(温希东著)课后答案计算机控制技术第二版(温希东著):目录第1章计算机控制系统概述 11.1 计算机控制系统的组成 11.1.1 计算机控制系统的硬件组成 31.1.2 计算机控制系统的软件 41.2 工业控制计算机的特点 41.3 微型计算机控制系统的主要结构类型 51.3.1 计算机操作指导控制系统 51.3.2 直接数字控制系统 51.3.3 监督计算机控制系统 61.3.4 集散型控制系统 61.3.5 现场总线控制系统 71.3.6 工业过程计算机集成制造系统 81.4 微型计算机控制系统的发展 91.4.1 计算机控制系统的发展过程 91.4.2 近年来计算机控制系统在我国的发展趋势 9 习题 13第2章开关量输入/输出通道与人机接口 142.1 过程通道的分类 142.2 开关量输入/输出通道 152.2.1 开关量输入/输出通道的一般结构形式 15 2.2.2 开关量输入信号的调理 162.2.3 开关量输出驱动电路 192.2.4 开关量输入/输出通道的设计 21 2.3 人机接口——键盘 222.3.1 非编码键盘 232.3.2 编码键盘 282.4 人机接口——数字显示方法 312.4.1 发光二极管LED显示 312.4.2 LCD显示接口技术 38习题 81第3章顺序控制与数字控制 833.1 顺序控制 833.1.1 顺序控制系统的类型 833.1.2 顺序控制系统的组成 853.1.3 顺序控制系统的应用领域 853.1.4 顺序控制的应用实例 863.2 数字程序控制 883.2.1 数值插补计算方法 883.2.2 逐点比较法直线插补 893.2.3 逐点比较法圆弧插补 943.2.4 步进电机工作原理 993.2.5 步进电机控制系统原理 1013.2.6 步进电机与微型机的接口及程序设计 103 3.2.7 步进电机步数及速度的计算方法 1083.2.8 步进电机的变速控制 109习题 110[1]第4章模拟量输入/输出通道 1124.1 模拟量输入通道 1124.1.1 输入信号的处理 1124.1.2 多路开关 1134.1.3 放大器 1174.1.4 采样保持器(S/H) 1194.1.5 模/数(A/D)转换器及其应用 1204.2 模拟量输出通道 1284.2.1 DAC的工作原理 1284.2.2 多路模拟量输出通道的结构形式 1304.2.3 D/A输出方式 1314.2.4 失电保护和手动/自动无扰动切换 1324.2.5 DAC的主要技术指标 1324.2.6 典型应用例子 133习题 135第5章 PID调节器的数字化实现 1375.1 PID调节器 1385.1.1 PID调节器的优点 1385.1.2 PID调节器的作用 1385.2 数字PID控制器的设计 1415.2.1 PID控制规律的离散化 1425.2.2 PID数字控制器的实现 1435.3 数字PID控制器参数的整定 1455.3.1 采样周期的选择 1455.3.2 PID控制器参数的整定 146习题 150第6章计算机控制系统的抗干扰技术 152 6.1 干扰信号的类型及其传输形式 1526.2 抗干扰技术 1536.2.1 接地技术 1546.2.2 屏蔽技术 1556.2.3 隔离技术 1566.2.4 串模干扰的'抑制 1566.2.5 共模干扰的抑制 1576.2.6 长线传输中的抗干扰问题 157[1] 6.3 电源干扰的抑制 1586.3.1 电源干扰的基本类型 1586.3.2 电源抗干扰的基本方法 1596.4 CPU软件抗干扰技术 1616.4.1 人工复位 1626.4.2 掉电保护 1626.4.3 睡眠抗干扰 1636.4.4 指令冗余 1646.4.5 软件陷阱 1646.4.6 程序运行监视系统(WATCHDOG) 167 6.5 数字信号的软件抗干扰措施 1706.5.1 数字信号的输入方法 1706.5.2 数字信号的输出方法 1716.5.3 数字滤波 172习题 176第7章工业控制微型计算机 1777.1 工业控制计算机的特点 1777.2 总线式工控机的组成结构 1787.3 常用工控总线(STD/VME/IPC工控机) 179 7.3.1 STD总线工控机 1797.3.2 MC6800/MC68000工控机 1797.3.3 IPC总线工控机 1797.4 IPC的主要外部结构形式 1807.4.1 台式IPC 1807.4.2 盘装式IPC 1817.4.3 IPC工作站 1817.4.4 插箱式IPC 1827.4.5 嵌入式IPC 1837.5 IPC总线工控机内部典型构成形式 1847.5.1 工业控制计算机的组成 1847.5.2 工业控制计算机系统的组成 1857.6 IPC总线工业控制计算机常用板卡介绍 186 7.6.1 IPC总线工业控制计算机的概念 1867.6.2 工业控制计算机I/O接口信号板卡 187 习题 192附录 ST7920GB中文字型码表 193参考文献 198。

开关量输入输出电路

开关量输入输出电路

谢谢观看
只要通过软件使并行口的PB0输出 “0”,PB1输出“1”,便可使与非门 H1输出低电平,光敏三极管导通,继电 器KM被吸合。
在初始化和需要KM返回时,PB0=1, PB1=0
设置反相器B1及与非门H1而不将发 光二极管直接同并行口相连,一方面是因 为并行口带负载能力有限,不足以驱动发 光二极管,另一方面是因为采用与非门后 要满足两个条件才能使KM动作,增加了 抗干扰能力。
开关量输入、 输出电路
五、开关量输入及输出
基本功能:将测控对象需要的状态信号引入微机系统,并将CPU送出的数 字信号或数据进行显示、控制或调节。
(一)开关量输入电路
包括:断路器和隔离接头等输入、外部装置闭锁重合闸触点接入、装置上连接片位置输 入等回路。
对于从装置外部引入的 接点,当S1接通时,有电流 通过光电掐进的发光二极管 回路,使光敏三极管导通。 S1断开时,光敏三极管截止。 因此,三极管的导通与截止 完全反应了外部接点的状态。
五、开关量输入及输出
(二)开关量输出回路
包括自动装置的跳闸出口及信号,一般采用并行接口的输出来控制有接点继 电器。为了提高抗干扰能力,也经过一级光电隔离。
1、安装在装置面板上的接点。包括在装置调试时用的或运行中定期检查装 置用的键盘接点以及切换装置工作方式用的转换开关等。
2、从装置外部经端子排引入装置的接点。如需要由运行人员不打开装置外 盖在运行中切换的各种压板、转换开关及其他装置和操作继电器。
五、开关量输入及输出
(一)开关量输入电路
对于装在面板上的接点, 可直接接至微机的并行口, 只要在可初始化时规定图中 可 编 程 的 并 行 口 PA 0 为 输 入 端,CPU就可以通过软件查 询,随时知道外部接点S1的 状态。

开关量信号的输入输出

开关量信号的输入输出

§4.2 开关量信号的输出
一、开关量信号输出的通 道结构 4、注意: P1口可直接输出(锁存 器和地址译码电路可省 略)最多8个开关量信号。 P0口经锁存电路隔离可 接多组8个开关量输出。 当驱动小负载时,输出 驱动电路可省略。
§4.2 开关量信号的输出
二、开关量输出接口的简单设计 1、P1口开关量的输出 练习:通过P1口直接控制8个LED发光二 极管,画出硬件电路图,并写出控制发光 二极管点亮的指令。
§4.2 开关量信号的输出
一、开关量信号输出的通道 结构 3、各部分作用 锁存器:当开关量信号从 P0口输出时,锁存器起到ห้องสมุดไป่ตู้隔离数据总线的作用。常 用锁存器如74LS373、 74LS273、74LS377等 地址译码控制:锁存器的 锁存地址控制 输出驱动电路:提高输出 开关量信号的输出功率。
三、开关量输出的功率接口电路设计
2、中功率达林顿管驱动接 口电路 在驱动功率较大的继电 器和电磁开关等控制对 象,要求提供50~500 mA的电流时,可使 用MC1413 (ULN2003)、 MC1416(ULN2004) 等达林顿管集成电路。
三、开关量输出的功率接口电路设计
2、中功率达林顿管驱动接口 电路 若图中继电器需要100mA 吸合电流,则(V+—0.3) /(r+R2)=I=100,其中r 是继电器的线圈内阻,当已 知V+时,可求R2 取 MC1413的放大倍数 β=100,P1.0输出电流 =100mA/β=1mA, 1*R1+0.7+0.7+100*R2 =5, 可求R1
§4.2 开关量信号的输出
三、开关量输出的功率接口电路设计 1、小功率驱动接口:

微机保护第四章

微机保护第四章

(1)对输入采样值的抗干扰纠错
保护装置的模拟输入量之间存在着 某些可以利用的规律.例如,三相电流 和零序电流之间有:
上式提供了一个判别各采样值是否可信的方便 的依据.可以对每一次采样值都进行一次分析,只 有在满足公式的前提下才允许这一组采样值保存并 提供给CPU作进一步的处理.如果由于干扰导致输 入采样值出错,可以取消不能通过检查的采样值, 等干扰脉冲过去,数据恢复正常后再恢复工作.这 相当于晶体管保护在第一级触发器设置一个延时躲 开干扰的方法,不同点是微机保护的延时不是固定 的,更加灵活。
(2)程序运行出轨
这是指由于随机干扰破坏了程序执行的正常顺 序而造成程序执行卡死的现象.例如,当CPU正通 过地址总线送出一个地址以便从EPROM获取指令 操作码。如果由于干扰使传送地址出错,它将从一 个错误的地址取得一个错误的操作码。如果这个误 码CPU不认识,程序运行将发生中断;如果这个错 误码是可执行码,那么在执行了一系列非预期指令 后往往最终碰到一个CPU不认识的指令操作码而停 止工作。由此看出,在程序运行出轨后引起误动作 的概率是很小的,但会造成CPU停止执行继电保护 的规定任务,再发生系统故障时,保护将拒动。
这样,似乎共模干扰不会侵入微机的弱电系统 了,但实际上由于共模浪涌频率高、前沿陡的特点 使它可以顺利通过电路的各种分布电容而窜入弱电 系统。而浪涌的幅度可能很大,微弱的耦合也可能 足以造成微机工作出错.因此除了表中所示隔离措 施之外,在保护装置的结构布局方面必须十分谨 慎.例如应当将弱电系统的插件远离同外接端子有 直接联系的各插件(电压形成回路,开关量输入和 输出回路等).并且装置后底板的配线也应当使强 电和弱电严格分开.这样安排后,外接端子所引入 的共模干扰浪涌基本上不会通过分布电容影响微机 弱电系统的工作。

第四章数字量输入输出通道

第四章数字量输入输出通道

(2)输出驱动电路——继电器驱动电路
图为经光耦隔离器的继电器输出驱动电路,当CPU数据线Di 输出数字“1”即高电平时,经7406反相驱动器变为低电平, 光耦隔离器的发光二极管导通且发光,使光敏三极管导通, 继电器线圈KA得电,动合触点闭合,从而驱动大型负荷设 备。 由于继电器线圈是电感性负载,当电路突然关断时,会出 现较高的电感性浪涌电压,为了保护驱动器件,应在继电 器线圈两端并联一个阻尼二极管,为电感线圈提供一个电 流泄放回路。
(2)输出驱动电路——固态继电器驱动电路
交流电源
交流SSR输出波形如下图所示。
波形
过零型导 通时间
控制信号
SSR两端的 电压在导通
时为0。
非过零型 导通时间 立即导通
非过零型SSR,加上控制信号便导通
过关零断型时导间 相通同时,间在
过零时
(2)输出驱动电路——固态继电器驱动电路
在实际使用中,要特别注意固态继电器的过电流与 过电压保护以及浪涌电流的承受等工程问题,在选 用固态继电器的额定工作电流与额定工作电压时, 一般要远大于实际负载的电流与电压,而且输出驱 动电路中仍要考虑增加阻容吸收组件。具体电路与 参数请参考生产厂家有关手册。
Vc
Di 7406
RL



+ _
~ SSR ~

图 4-13固 态 继 电 器 输 出 驱 动 电 路
(2)输出驱动电路——固态继电器驱动电路
交流型SSR按控制触发方式不同又可分为过零型和移相型两 种,其中应用最广泛的是过零型。
过零型交流SSR是指当输入端加入控制信号后,需等待负载 电源电压过零时,SSR才为导通状态;而断开控制信号后, 也要等待交流电压过零时,SSR才为断开状态。 移相型交流SSR的断开条件同过零型交流SSR,但其导通条件 简单,只要加入控制信号,不管负载电流相位如何,立即导 通。

第四章提高微机保护可靠性的措施

第四章提高微机保护可靠性的措施
C3
A
C2 Z1
B
Z2
C
C4 Z3
4-2干扰来源和窜入微机弱电系统的途径
二、防止干扰进入微机保护装置的对策 电源零线悬空
+5V
Z1
C1 C2
C5
A
Z2
0V
C3 C4
U2 p (t)
4-2干扰来源和窜入微机弱电系统的途径
二、防止干扰进入微机保护装置的对策 减小微型机电路中其它部分同机壳之间的分布电容 印制板周围都用电源零线或+5V线封闭起来; 采用多层印制板; 注意电源线的走线及接地点的选择,且尽量加粗接地线。
4-2干扰来源和窜入微机弱电系统的途径
4、干扰对微机保护装置的影响 程序运行出轨 随机干扰因素破坏了程序执行正常顺序而造成程序执行卡 死的现象。 读取的操作码CPU不能识别。 读取的操作码是可执行码,但是一个非预期指令。 保护拒动
4-2干扰来源和窜入微机弱电系统的途径
二、防止干扰进入微机保护装置的对策 接地的处理。 屏蔽与隔离。 滤波、退耦与旁路。 供电电源。 合理地分配和布置插件。
直流 输入 脉动 直流 稳恒直 流输出
逆变器
交流
变压器
整流
开关 稳压器
滤波器
合理地分配和布置插件
4-3 抗干扰措施
第一道防线:硬件抗干扰措施。 • 各种隔离、屏蔽、合理布局和配线,以及减弱电源线传递 干扰等方法。 这些措施够不够? 第二道防线:软件抗干扰措施。
4-3 抗干扰措施
1、对输入采样值的抗干扰措施 • 利用某些模拟输入量之间存在的一些规律。 如: i (t ) + i (t ) + i (t ) = 3i (t ) a b c 0
4-1概述

单片机抗干扰技术开关量输入输出通道隔离

单片机抗干扰技术开关量输入输出通道隔离
空间电磁辐射干扰
周围空间中的电磁场对信号线 的电磁感应干扰。
接地系统干扰
由于接地不良或地线配置不当 导致的地线噪声干扰。
信号传输线干扰
信号传输线上的外部干扰信号 通过电感和电容耦合引入。
开关量输入通道隔离技术
01
光耦隔离
利用光耦器件将输入和输出电路隔 离,以减小干扰信号的影响。
变压器隔离
利用变压器原理实现输入和输出电 路的隔离,降低共模干扰。
单片机在工作过程中,其电路板 和元件会受到周围空间电磁辐射 的影响,导致信号失真和噪声干 扰。
接地系统干扰
接地系统不良或不合理,会导致 信号接地电位不均,产生电位差, 从而引入干扰信号。
开关量输出通道隔离技术
光耦隔离
光耦隔离是利用光耦合器的工作原理,将单片机开关量输出信号通过光耦隔离器进行隔离,以减小外界干扰对输出信 号的影响。
03
02
继电器隔离
通过继电器触点实现输入信号的电 气隔离,提高抗干扰能力。
运算放大器隔离
通过运算放大器将输入信号进行放 大和隔离,提高信号质量。
04
开关量输入通道隔离的实现方法
选择合适的隔离器件
根据应用需求选择适合的光耦、继电器、变 压器或运算放大器等器件。
正确连接隔离器件
按照隔离器件的连接方式,正确接入输入和 输出电路。
单片机抗干扰技术开关量输入输出 通道隔离
contents
目录
• 单片机抗干扰技术概述 • 单片机开关量输入通道隔离 • 单片机开关量输出通道隔离 • 单片机抗干扰技术的实际应用
01 单片机抗干扰技术概述

干扰的定义与影响
定义
干扰是指对系统正常信号的扰动 或破坏,导致信号失真、畸变或 阻塞。

单片机抗干扰技术(4) 开关量输入输出通道隔离

单片机抗干扰技术(4) 开关量输入输出通道隔离

极限条件
18
推荐的使用条件 二极管侧
参数 输入电流 反向电压 工作温度 符号 IF VR TOPR 符号 Ic VCEO -25 最小值 min — — 典型值 Typ 1 55 最小值 min — 典型值 Typ 16 5 85 最大值 Max 10 最大值 Max 50 单位 mA V ℃
输出侧
16
使用光电隔离器件的注意事项
要注意不要超过期间的极限参数。 以三极管输出隔离器件为例。 通过查询它的技术说明书,可以获得使用参数,主要 参数包括发光二极管侧的输入电流,反向电压等; 输出侧:C-E结电压、集电极最大电流 隔离电压 电流传输比等 例如以TLP521-1为例。 尽量在推荐条件下使用
17
使用继管。继电器输出也可
以提供电气隔离功能,但其触点在通断瞬间往往容易
产生火花而引起干扰,还是必须予以注意的,一般可
采用阻容电路予以吸收。
42
继电器式开关量输出
43
带光电隔离的继电器输出接口电路
图2.11 继电器式开关量输出
44
④ 可控硅输出
25
③输出端工作电流
光电隔离器输出端的灌电流不能超过额定值,否 则就会使元件发生损坏。 一般输出端额定电流在mA量级,不能直接驱动大 功率外部设备,因此通常从光电隔离器至外设之间还 需设置驱动电路。
26
④ 输出端暗电流
这是指光电隔离器处于截止状态时(IF=0), 流经输出端元件的电流,此值越小越好。 在设计接口电路时,应考虑由于输出端暗电 流而可能引起的误触发,并予以处理。
1. 开关量输入信号的类型
开关量输入信号有以下基本类型 (1)一位的状态信号。如阀门的闭合与开启、电机 的启动与停止、触点的接通与断开。 (2)成组的开关信号。如用于设定系统参数的拨码 开关组等。 (3) 数字脉冲信号。许多数字式传感器(如转速、 位移、流量的数字传感器)将被测物理量值转换为数 字脉冲信号,这些信号也可归结为开关量。

开关量隔离器原理

开关量隔离器原理

开关量隔离器原理开关量隔离器是一种用于电路隔离和信号转换的重要装置。

它可以将一个电路的信号隔离开来,不同电路之间的信号不会相互影响,从而保证了电路的稳定性和安全性。

本文将从以下几个方面对开关量隔离器的原理进行详细的介绍。

一、什么是开关量隔离器开关量隔离器是一种基于继电器、光电或半导体器件的隔离电路,在工业自动化中广泛应用。

它通过输入端的信号状态控制输出端的信号状态,起到隔离和转换信号的作用。

一般来说,开关量隔离器能够分为两种类型:电隔离和光隔离,其中电隔离使用的是继电器,光隔离使用的是光电耦合器或固态继电器。

二、开关量隔离器的作用开关量隔离器的作用在于隔离和转换信号。

在多电路控制系统中,为了保证各个电路的安全和稳定,需要对它们进行分离,以免电路之间相互影响。

隔离器通过实现这种分离,使每个电路都能够独立地进行控制和监测,避免了混乱和危险的产生。

此外,开关量隔离器还可以实现信号的转换,将信号转化为合适的形式,以满足其他电路的需求。

三、开关量隔离器的工作原理开关量隔离器的工作原理是将输入端的信号分离开来,并在输出端重新产生一个与输入端电压等效的信号。

在电隔离器中,继电器负责完成输入端和输出端之间的开关控制。

继电器内部包含两个线圈,通过这两个线圈可以实现输入端和输出端之间的电隔离。

在光隔离器中,光电耦合器或固态继电器被用来隔离输入和输出端之间的电路,进而保证电路的稳定性和安全性。

四、开关量隔离器的优缺点开关量隔离器的优点主要在于其能够保护电路的稳定性和安全性,避免电路之间相互干扰和故障的发生。

此外,开关量隔离器使用方便,可靠性高,使用寿命长。

相对地,其缺点在于其成本较高和性能不够优越的情况下对系统性能会产生一定的影响。

综上所述,开关量隔离器作为一种重要的隔离电路,在电气自动化领域中发挥着重要作用。

其原理和工作方式已经非常明确,对于工程实践具有非常明显的指导意义。

我们期望随着技术的不断进步,开关量隔离器能够不断改进其性能和使用范围,为自动化控制系统的稳定性和安全性贡献更多的力量。

智能变电站继电保护题库 第四章 填空题

智能变电站继电保护题库 第四章 填空题

50.有些电子式电流互感器是由线路电流提供电源,这种互感器电源的建立需要在一次 电流接通后迟延一定时间,此延时称为 唤醒时间 ,在此延时期间,电子式电流互感器的输 出为 零 。
51. 唤醒电流 是指唤醒电子式电流互感器所需的最小一次电流的方均根值。 52.电子式互感器需提供采集器状态、辅助电源/自身取电电源状态、检修测试状态等 信号输出,应具有完善的 自诊断功能 ,并能输出 自检信息 。 53.电子式电压互感器宜利用 合并单元同步时钟 实现同步采样,采样的同步误差应不 大于 ±1µs 。 54.合并单元的时钟输入可以是 电信号 或 光信号 ,时间触发在 脉冲上升沿 ,每秒 一个脉冲,合并单元应检验输入脉冲是否有误。 55.一套 ECT 内应具备 两 个保护用电流传感元件,每个传感元件由 两 路独立的采样 系统进行采集,如双 A/D 系统。
41.线路保护启动断路器失灵与重合闸等 GOOSE 信号一般采用 网络传输 方式。 42.合并单元提供给测控、录波器等设备的采样数据采用 SV 网络传输方式,SV 采样值 网络与 GOOSE 网络应 完全独立 。 43.对于 500kV 智能变电站边断路器保护,当重合闸需要检同期功能时,采用 母线电 压合并单元接入相应间隔电压合并单元 的方式接入母线电压,考虑中断路器检同期。 44.220kV 及以上电压等级的智能变电站变压器应配置 2 套含有完整主、后备保护 功能的变压器电量保护装置。非电量保护 就地 布置,采用直接 电缆跳闸方式,动作信 息通过本体智能终端上 GOOSE 网,用于测控及故障录波。 45.双重化配置保护使用的 SV 网络应遵循 相互独立 的原则,当一个网络异常或退出 时不应影响另一个网络的运行。 46.根据 Q/GDW 441—2010《智能变电站通用技术条件》,GOOSE 开入软压板除双母线和 单母线接线 启动失灵 、 失灵联跳 开入软压板设在接收端外,其余皆应设在发送端。 47.智能化保护交流额定电流数字量采样值通信规约为 IEC 60044-8 时,额定值为 01CFH 或 00E7H 。 48.智能化保护交流额定电流数字量采样值规约为 IEC 61850-9-2 时,0x01 表示 1mA 。 49.智能化保护电压量定义采样值通信规约为 GB/T 20840.8 时,额定值为 2D41H ,采 样值规约为 DL/T 860.9-2 时,0x01 表示 10mV 。

plc开关量的输入输出接线方式

plc开关量的输入输出接线方式

PLC开关量输入/输出单元的接线方式核心提示:1.输入接线方式按PLC的输入单元与用户设备接线方式的形式可分为汇点式输入接线和分隔式输入接线两种基本形式,如图1.12所示。

汇点式输入接线是指输入回路有一1.输入接线方式按PLC的输入单元与用户设备接线方式的形式可分为汇点式输入接线和分隔式输入接线两种基本形式,如图1.12所示。

汇点式输入接线是指输入回路有一个公共端(汇集端)COM,它可以是全部输入点为一组,并共用一个公共端和一个电源,如图1.12 (a)所示的直流输入单元,其直流电源由P LC内部提供。

汇点式输入接线方式也可以采用将全部输入点分为Ⅳ组,每组有一个公共端和一个单独的电源,如图1.12 (b)所示。

汇点式输入接线方式可以用于直流,也可以用于交流输入单元,交流输入单元的电源由用户提供。

分隔式输入接线方式如图1.12 (c)所示,它是将每个输入点单独用各自的电源接入输入单元,在输入端没有公共的汇点,每个输入器件是隔离的。

2.输出接线方式根据输出单元与外部用户输出设备的接线形式不同,输出接线方式可分为汇点式输出和分隔式输出两种基本形式,如图1.12 (d)所示。

可以把全部输出点汇集成一组共用一个公共端COM和一个电源;也可以将所有的输出点分成Ⅳ组,每组有一个公共端COM和一个单独的电源。

这两种形式的电源均由用户提供,可根据实际负载确定选用直流或交流电源。

图1.12 输入/输出接线3.开关量输入单元的接线方式说明PLC的输入端用于连接按钮开关及各类传感器。

这些器件的功率消耗都很小,一般可以采用PLC内部电源为其供电,也可以由外部设备供电。

图1.13所示为FX系列PLC的输入/输出端开关量信号的接线示意图,PLC开关量输入端的接线说明如下所述。

(1)图中·表示空端子,勿接线。

(2)如图1.13 (a)所示,PLC输入端的XO~X3采用汇点式接线方式。

(3)图1.13 (b)中的XO和X1接入传感器信号,其中XO端的传感器采用PLC内部的24VDC工作电源供电,XI端的传感器采用外部电源为其供电。

开关量输入输出通道资料

开关量输入输出通道资料

3、输入/输出电气接口
开关量输入/输出电气接口 的功能主要有滤波、电平转 换、隔离和功率驱动。
二、开关量输入通道
➢ 开关量输入通道(DI通道)的任务--是把 生产过程中的数字信号转换成计算机易于 接受的形式。
➢ 信号调理电路--虽然都是数字信号,不需 进行A/D转换,但对通道中可能引入的各 种干扰必须采取相应的技术措施,即在外 部信号与单片机之间要设置输入信号调理 电路。
1、CPU接口逻辑
这部分电路一般由数据总线缓冲 器/驱动器、输入/输出地址译码器、 读写控制等组成,主要完成开关量 输入/输出通道的选通和关闭等控 制信号的传输。
2、输入缓冲器和输出锁存器
输入缓冲器的作用是缓冲或选通 外部输入的信号,CPU通过缓冲器 读入外部输入的信号,CPU通过缓 冲器读入外部开关量的状态。输出 锁存器的作用是锁存CPU的输出数 据,在未刷新前保持稳定以供外部 设备的使用。
数字量反相传递如图3-3(b)所示, 与(a)不同的是光耦的集电极 c 端直 接接另一个正电源,而发射极 e 端通过 电阻接地,则光耦输出端从发射极 e 端 引出。从而完成了数字信号的反相传递

三、开关量输出通道
开关量输出通道简称 DO 通道,它的任务是 把计算机输出的微弱数字信号转换成能对生产 过程进行控制的数字驱动信号。根据现场负荷 的不同,如指示灯、继电器、接触器、电机、 阀门等,可以选用不同的功率放大器件构成不 同的开关量驱动输出通道。常用的有三极管输 出驱电器输出驱动电路等。
2、 固态继电器驱动电路
固态继电器SSR(Solid State Relay)是一 种新型的无触点开关的电子继电器,它利用电子 技术实现了控制回路与负载回路之间的电隔离和 信号耦合,而且没有任何可动部件或触点,却能 实现电磁继电器的功能,故称为固态继电器。它 具有体积小、开关速度快、无机械噪声、无抖动 和回跳、寿命长等传统继电器无法比拟的优点, 在计算机控制系统中得到广泛的应用,大有取代 电磁继电器之势。

开关量输入╱输出电路

开关量输入╱输出电路

开关量输入/输出电路一、开关量的隔离与抗干扰1、开关量的隔离(1)隔离的作用隔离的主要作用是:使低压输入电路与大功率的电源隔离;外部现场器件与传输线同数字电路隔离,以免计算机受损;限制地回路电流与地线的错接而带来的干扰;多个输入电路之间的隔离。

(2)开关量的隔离方法常用的开关量的隔离方法主要有以下方式。

○1光电隔离。

(图3-28 光电耦合器原理接线图)○2继电器隔离。

(图3-29 采用继电器隔离的开关原理接线图)○3继电器和光电耦合器双重隔离。

2、抗干扰软件抗干扰措施主要是适当增加延时,以躲开触点抖动的影响。

二、开关量的采集、检测与变位识别1、开关量的采集方式(图3—30 中断申请电路图)当开关状态发生变化时,由于Q端仍保持原状态,D、Q异或的结果使输出由低电平跳变为高电平,通过非门变成低电平向CPU申请一次中断。

当CPU 响应中断以后,发出INTA信号使触发器触发。

D、Q状态趋于一致,异或门输出又成为低电平。

2、开关动作的检测把3次采样的开关量用A、B、C三个布尔数来表示,从中任取出两个进分“与”运算,如果其中有两个或两个以上为“1”,则运算结果必定有一个为“1”;反之,若有两个或两个以上为“0”,则运算结果必定全为“0”。

另外,再根据“或”运算的规则,在N个数中只要有一个是“1”,则运算结果必定是“1”;只有当N个数全为“0”时,结果才为“0”。

可以把三取二表决的算法用以下逻辑算式来处理(A·B)+(B·C)+(C·A)(3-15)3、开关变位的识别开关量的状态通常用一位二进制数来表示,例如用“1”代表闭合,用“0”代表断开。

变电所的开关量数目很多,为了简化分析,下面只对用一个字节的二进制数表示的8个开关状态进行分析,但所得到的结论具有普遍的意义。

○1现状○+原状,若有变位则该位为1;若无变位,则该位为0。

○2(现状○+原状)∧原状,若为1,则该位由1→0。

○3(现状○+原状)∧现状,若为1,则该位由0→1。

输入输出通道接口技术

输入输出通道接口技术

现由模拟量到数字量再到模拟量的转换,从而完成系统所要求的测
控目标。
课 程
“测” ,即所谓的数据采集过程。它是通过被测信号的输入 通
内 道,将传感器送来的过程参数,转换成数字量送入微机; “控” ,
容 即所谓的数字信号转换成模拟信号的过程。它是由输出通道将微机
1
运算的结果变成控制参量送到执行机构取得相应的控制效果。
检测与控制技术
第四章 输入输出通道接口技术
◆课时授课计划
◆提


品 课
◆课 程 内 容

第四章 输入输出通道接口技术
课题: 第4章 输入输出通道接口技术
4.1 数据采集与处理技术基础 4.2 模拟量输入通道 4.3 模拟量输出通道 4.4 开关量输入/输出通道 4.5 电机、步进电机接口技术 4.6 数据采集系统举例 目的与要求:
了解微机测控系统中输入/输出通道的作用; 课 了解信号调理的一般方法和信号调理电路中常用的器件和电路 ; 时 掌握数据采集系统的基本概念; 授 掌握输入/输出通道的一般结构和常用器件的使用方法; 课 学会输入/输出通道的及软、硬件设计方法。


第四章 输入输出通道接口技术
重点与难点: 重点:输入/输出通道的设计方法; 难点:模拟量输入通道的信号调理。

课 ① 单通道数据采集系统。如图所示。 感

S/H
A/D
CPU



模拟信号经放大器放大,通过采
内 样/保持器(S/H)送入A/D转换器。

单通道数据采集系统结构
6
第四章 输入输出通道接口技术
② 多通道典型数据采集系统
传感器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GNDX
图4.2
基本的光隔电路(a)
Hale Waihona Puke 基本的光隔电路(二)(1)此种接法更为常用 (2) VCCX=+5V时, R4去掉 VCCX=+12V时,R4取6.8K(或改用ULN2004) VCCX=+24V时,R4取20K(或改用ULN2002)
VCC
ULN2003 R3
VCC X
IN1
TLP521
R4
图4.4 TLP521的负载电阻对开关时间的影响
2、高频脉冲的隔离
对波形要求较高的场合,应使用高频特性好的光隔 如4N25(300KHZ)、4N35(300KHZ)、6N136(2MHZ)
4N35
6N136
光敏二极管的开关时间通常比光敏三极管小
负载电阻越小,开关时间越短,光耦的开关速度越高。最小负载电阻可以小到500Ω。带基极 引脚的光耦,其基极应使用一电阻接到集电极,阻值以50kΩ到100kΩ为佳。如省略该电阻, 则开关时间会大4~5倍,则开关频率就降低4~5倍。不应该省略该电阻。
5mA时工作频率最高
高频逻辑门专用隔离电路
简单化是逻辑电路 在6N136的基础上,将输出电路做成与TTL 兼容的标准逻辑电路,这就是6N137 , 6N137典型应用
图4.18 6N137典型应用电路(单路)
► 直接逻辑输入/逻辑输出的隔离器件
(1)输出+3.3V,+5V,TTL/CMOS兼容,注意使能端
第四章 开关量输入输出 的隔离技术
开关量的输入输出隔离主要有两个目的: 电气隔离,防止被隔离两边的电噪声干扰; 电平转换,两边的工作电平、电源电压、信号 极性都可以不同。
4.1开关量输入端隔离
开关量的输入隔离一般使用光电隔离器件。可以使用的光电隔离器件很多,有许多 器件性能相近,普通开关量的输入隔离使用TLP521-X即可
1、RS-422/485隔离芯片
典型芯片及用途 隔离收发器
MAX1480——用于RS-485半双工网络
MAX1490——用于RS-422全双工网络 MAX3157——全双工或半双工,但不是真正的隔离
MAX3157的使用方便,仅需提供两个0.047μF的隔离电容。器件的 隔离电压为±50V。为保证该隔离电压,要求隔离电容的耐压必须高 于50V。该器件可以通过引脚选择工作在半双工方式或全双工方式, 更重要的是器件可以选择反相输出,当信号线正反接反时,可以自动 倒相
(3)ISO1001——光电耦合
(1)AD202 :2端口,隔离电压2000V
图4.13
低成本线性隔离放大器AD202
采样/保持电路 对于一个动态模拟信号在模拟转换过程中,输入的模 拟信号是不确定的,从而引起转换器输出的不确定性误差, 直接影响转换精度 要求输入模拟量在整个模数转换过程中被“冻结”起 来,保持不变。但在转换之后,又要求A/D转换器的输入端 能跟踪输入模拟量的变化,能完成上述任务的器件叫采样/ 保持电路,简称采/保(S/H)。
图4.5 4N35负载电阻及基极-发射极电阻对开关时间的影响
影响工作频率的因素: (1)负载电阻,越小,开关速度越快,最好不小于1000Ω (2)基极电阻,一般取50KΩ~100KΩ
VCC VCC X R3 550Ω
R1
4N35 LED+ LEDNC B C E GNDX
R1 100k
DIN
7406
低电池电压检 测输出
图4.9 MAX639/MAX640/MAX653的电路连接
适于A/D转换器或模拟放大器使用的,通常是双电源输出型。MAX743可提 供±12V或±15V的对称电压,MAX743的最大电流可达±100mA, 图中两个电感100μH、两个电解电容100μF和两个肖特基二极管1N5817
出功率标注 );3)再次要注意器件输出电压是否已经过稳压,经过稳压的输出波纹有 多大
(3)尽量选用经稳压的。稳压输出的DC-DC变换器的输出电压稳定度通常优于
1%,交流波纹电压也很小,一般情况下可以直接使用。
使用DC-DC变换器模块非常方便,仅需在输入、输出端加上适当的滤波电容
滤波电容的选取
Vin Cin GND Cout
1、廉价实用的TLP521-X
工作频率不高,一般限制在 10KHZ以内
TLP521-1
TLP521-2 TLP521-4
图4.1 TLP521的各种封装及引脚排列
A图输入高电平,输出高电平,输入低电平,输出低电平; b图输入高电平,输出低电平,输入低电平,输出高电平
图4.2 基本的光电隔离电路
基本的光隔电路(一)
输出:-5V 输出:-15V
-15V输出可给LCD提供负偏置电压
单电源输出变换器
双电源输出变换器
BUCK 降压型 是指输入电压大于输出电压 如12V->5V BOOST 则反之 5V->12V 单电源变双电源4.2V~10V直流电源变成双±12V, ±15V直流电源
(1)MAX742 输入:4.2V~10V (2)MAX743 输入:5V 输出: ±12V, ±15V, ±100mA 输出:±12V, ±15V, ±2A
(2)工作频率可达100M波特
(3)隔离电压高达2500V
图4.21 单路
► 直接逻辑输入/逻辑输出的隔离器件
图4.21 单路
三种器件的性能指标均相同,仅输入、输出端口的方向不同
图4.22 三种器件输入/输出的方向
4.4
(1)R1可按驱动电流5~10mA, 选择驱动发光二极管的驱动器件任意,只 要能保证长时间提供5~10mA电流即可 (2) R2可取2.2K~10K,太小则电路功耗增大,太大则抗干扰能力减弱, 且关断时输出端的上升速度将减慢, VCCX=+5V时,R2可取3.3K
VCC VCC X
R1
R2
DOUT
IN1 TLP521
_
最基本的采/保 电路由模拟开关,保 持电容和缓冲放大器 组成
Vi
S
CH
Vc
+
A
VO
图8-38 采样/保持器原理 图
增益1:1
反相输入
同相输入
(2)AD210:
3端口,宽频带隔离放大器,频率20Hz、隔离电压2500V、输出阻抗低 可提供±15V电源(5mA)
供电 15V 图4.14 AD210结构框图
MAX743的最大电流可达±100mA,而 MAX742的最大电流则可达±2A
集成运算放大器、AD转换器常用双电源
ICL7660(A)提供从 1.5V到10.0V的互补电压,以电荷泵原理工作,需外接 泵电容两个。泵电容通常选用10μf的电解电容。7脚为振荡器输入,不接时 使用内部振荡器。也可外接电容以降低振荡频率。降低振荡频率时泵电容 的容量应加大,加大到100μf可保证任何振荡频率都能正常工作(最低1kHz)。 6脚为低压调整端。当工作电压低于3.5V时,6脚应接地,否则浮空。
+VOUT 100uf,25V -VOUT
5V~12V:Cin 100uf,25V
24V~48V:Cin 10uf,100V
器件功率增加时,输入、输出电容应相应增大。无稳压输出的DC-DC变换器使用时必 须注意:负载电流不可小于额定电流的20%,不足时应加装假负载(功率足够的电阻)。
4.3专用隔离芯片及模块
(1)ICL7660 Intersil公司 输出:1.5V~10V (2)MAX640/MAX848Maxim公司 输入:5V 型应用为给低电压器件供电 (3)MAX735 (4)MAX737 输入:4V~6.2V 输入:4V~8.6V
输:互补电压 输出:3.3V,典
(通常为正电压入、负电压出) 主要用于单电源供电的A/D转换场合
DOUT
74LS14
图4.6 可以工作到115.2波特的光隔电路
(1)VCCX取5V时,负载电阻R3应取2.2KΩ~3.3KΩ
(2)74LS14用于整形,为保证输出波形为理想的方波,防止出
现干扰脉冲等非正常情况的发生,输出端使用施密特触发器对波形整形
VCC VCC X 6N136
R1
R3 2.2KΩ
共模抑制比(放大器输出功率与输入功率比值的对数,用以表示功率 放大的程度。亦指电压或电流的放大倍数,通常以分贝(dB)数来规定。)高 130db,信号最高频率5KHZ
供电电压15V,可提供±7.5V电源(0.4mA/2mA) (2)MAX210(三端口宽频带隔离放大器 )——3端口,变压器耦合 隔离电压高达2500V 共模抑制比高120db,信号最高频率可达20KHZ 供电电压15V, 可提供±15V电源(5mA)
图4.8 ICL7660的泵电容连接
低电压器件供电器件工作时需在输出端增加三个元件:一个二极管、一个 电感、一个电解电容。为使器件能提供最大输出电流,电感应选用100μH, 电容应选用100μF,二极管可以使用常用的1N5817或相当的肖特基二极管。
输出电压5V/3.3V/3V
低电池电压检 测输入
图4.10双电源输出变换器MAX473的基本 应用电路
2、隔离变压器型DC-DC变换
体积通常相对较大
Vin Cin GND
DC-DC变换器通常使用高频变压器(2~5kHz)隔离,再作整流及稳压器件
+VOUT Cout 100uf,25V -VOUT
图4.11 DC-DC变换器模块的使用电路 (1)固定电压输入(用于信号隔离) 宽电压输入(用于未经稳压的输入电压) (2)选取器件:1)根据输入、输出电压选取器件;2)输出电流应按系统最大 工作电流的1.2~1.5倍计算需要的功率,根据功率选用 (DC-DC变换器通常以输
3、高频逻辑门专用隔离电路
特点及常见模块
(1)输入电流仅需5mA(有的更低),OC门输出,通 信速率可达10M波特以上,有极高的抗共模干扰性能和 极高的隔离耐压
相关文档
最新文档