塑性加工原理复习题1

合集下载

金属塑性变形理论习题集1

金属塑性变形理论习题集1

《金属塑性变形理论》前言前言《金属塑性变形理论》是关于金属塑性加工学科的基础理论课,也是金属材料工程、材料成型及控制工程专业大学本科生的主干课程。

《金属塑性变形理论》总学时为80,内容上分为两部分,即“塑性加工力学”(44学时)和“塑性加工金属学”(36学时)。

为使学生能够学好本课,以奠定扎实的理论基础,提高分析问题和解决问题的能力,编者集20余年的教学经验特编制本习题集,一方面作为学生在学习本课程时的辅导材料,供课下消化课堂内容时使用,另一方面也可供任课教师在授课时参考,此外对报考研究生的学生还具有指导复习的作用。

本“习题集”在编写时,充分考虑了学科内容的系统性、学生学习的连贯性以及与教材顺序的一致性。

该“习题集”中具有前后关联的一个个题目,带有由浅入深的启发性,能够引导学生将所学的知识不断深化。

教师也可根据教学进程从中选题,作为课外作业指导学生进行练习。

所有这些都会有助于学生理解和消化课堂上所学习的内容,从而提高课下的学习效率。

编者2005年10月第一部分:塑性加工力学第一章 应力状态分析1. 金属塑性加工中的外力有哪几种?其意义如何?2. 为什么应力分量的表达需用双下标?每个下标都表示何物理意义? 3. 已知应力状态如图1-1所示,写出应力分量,并以张量形式表示。

4. 已知应力状态的六个分量7-=x σ,4-=xy τ,0=y σ,4=yz τ,8-=zx τ,15-=z σ(MPa),画出应力状态图,写出应力张量。

5. 作出单向拉伸、单向压缩、三向等值压缩、平面应力、平面应变、纯剪切应力状态的应力Mehr 圆。

6. 已知应力状态如图1-2所示,当斜面法线方向与三个坐标轴夹角余弦31===n m l 时,求该斜面上的全应力S 、全应力在坐标轴上的分量x S 、y S 、z S 及斜面上的法线应力n σ和切应力n τ。

7. 将下列应力状态用单元体表示。

(1)⎪⎪⎪⎭⎫ ⎝⎛---=6040504050705070100σT N/mm 2 (用直角坐标系)(2)图1-1图1-2⎪⎪⎪⎭⎫ ⎝⎛-=2007090701000900120σT N/mm 2 (用柱面坐标系)8. 单元体上各面所作用的应力分量如图1-3所示。

塑性加工原理

塑性加工原理

44
二 、 稳定轧制阶段
稳定轧制阶段:
从轧件前端离开轧辊中心连线开始,到轧件后端 进入变形区入口断面止,这一阶段称为稳定轧制阶段。
45
三 、抛 (甩)出阶段
抛 (甩)出阶段: 从轧件后端进入入口断面时起到轧件完全通过辊 缝(轧辊中心连线),称为抛 (甩)出阶段。
46
1.2.1 咬入条件
1.(自然)咬入条件 受力分析如图 1-1
将各道次的延伸系数相乘,得 F0 F1 Fn1 ln 1 2 n F1 F2 Fn L
F0 1 2 n Fn
故可得出结论:总延伸系数等于相应各部分延 伸系数的乘积。
41
(2)累积压下率与道次压下率之间关系
H hn = H 即 1 (1 1 )(1 2 )(1 3 ) L L (1 n ) H hn hn 1 hn H h1 h1 h2 因为:1 (1 )(1 ) L L (1 ) H H h1 hn hn h1 h2 hn L L H H h1 hn 1
轧件对轧辊的作用力 轧辊对轧件的作用力
图1-1 咬入时轧件受力分析
图1-2
P和T力的分解
47
轧辊对轧件的作用力P、T Py 、Ty :压缩轧件,使轧件产生塑性变形 Px 、Tx :决定轧件能否咬入 Px > Tx :不能咬入 Px = Tx :临界咬入 Px < Tx :咬入 咬入条件:Px ≤ Tx 而Px = Psinα Tx=P f cosα 即sinα≤f cosα tanα≤f =tanβ
4
3、塑性加工的主要方法
1)按变形温度分类:
热加工:是指再结晶温度以上所完成的压力加工过程。
冷加工:指在再结晶温度以下所完成的压力加工过程。

材料成形技术基础复习思考题-塑性成形部分-题

材料成形技术基础复习思考题-塑性成形部分-题

《材料成形技术基础》总复习思考题一、基本概念加工硬化、轧制成形、热塑性成形、冷塑性成形、变形速度、塑性变形能力(可锻性)、自由锻造、模型锻造、敷料(余块)、锻造比、镦粗、拔长、冲孔、落料、拉深、拉深系数、反挤压成形、正挤压。

二、是非判断1、塑性是金属固有的一种属性,它不随变形方式或变形条件的变化而变化。

()2、对于塑性较低的合金材料进行塑性加工时拟采用挤压变形方式效果最好。

()3、自由锻是生产单件小批量锻件最经济的方法,也是生产重型、大型锻件的惟一方法。

()4、锻件图上的敷料或余块和加工余量都是在零件图上增加的部分,但两者作用不同。

()5、模膛深度越深,其拔模斜度就越大。

()6、对正方体毛坯进行完全镦粗变形时,可得到近似于圆形截面的毛坯。

()7、对长方体毛坯进行整体镦粗时,金属沿长度方向流动的速度大于横向流动的速度。

()8、塑性变形过程中一定伴随着弹性变形。

()9、金属在塑性变形时,压应力数目越多,则表现出的塑性就越好。

()10、金属变形程度越大,纤维组织越明显,导致其各向异性也就越明显。

()11、金属变形后的纤维组织稳定性极强,其分布状况一般不能通过热处理消除,只能通过在不同方向上的塑性成形后才能改变。

()12、材料的变形程度在塑性加工中常用锻造比来表示。

()13、材料的锻造温度范围是指始锻温度与终锻温度之间的温度。

()14、加热是提高金属塑性的常用措施。

()15、将碳钢加热到250℃后进行的塑性变形称为热塑性变性。

()16、自由锻造成形时,金属在两砧块间受力变形,在其它方向自由流动。

()17、镦粗、拔长、冲孔工序属于自由锻的基本工序。

()18、模锻件的通孔可以直接锻造出来。

()19、可锻铸铁可以进行锻造加工。

()20、始锻温度过高会导致锻件出现过热和过烧缺陷。

()21、热模锻成形时,终锻模膛的形状与尺寸与冷锻件相同。

()22、金属的锻造性与材料的性能有关,而与变形的方式无关。

()23、模锻件的精度取决于终锻模膛的精度。

塑性加工练习题参考答案

塑性加工练习题参考答案

SUST
金属工艺学
自由锻典型零件工序制定 (参见教材111页表3-1)
SUST
金属工艺学
自由锻典型零件工序制定 (参见教材111页表3-1)
SUST
金属工艺学
自由锻典型零件工序制定 (参见教材111页表3-1)
SUST
金属工艺学
自由锻典型零件工序制定 (参见教材111页表3-1)
SUST
金属工艺学
课后习题:P126-1、2、3、4、5、6、7、10;P138-2、3、4、5、6、7
SUST
金属工艺学
1. 压力加工的基本生产方式有 对于大型重要件,例如大型发电机中转子的毛坯应采用 方法来生产。

2. 图示垫圈拟采用简单冲裁模生产,其冲压工序为 (1) 、(2) ,若模具的 单面间隙为 0.05mm,则(1)的凸模尺寸为 、 凹模尺寸为 ,(2)的凸模尺寸 为 、凹模尺寸为 。
自由锻典型零件工序制定 (参见教材111页表3-1)
SUST
金属工艺学
模锻典型零件工序制定(参见教材121页三、锻造工序的确定)
10.根据下图,说明齿轮坯模锻的工艺过程
图3
SUST
金属工艺学
模锻典型零件工序制定(参见教材121页三锻造、锻造工序的确定)
SUST
金属工艺学
冲压工艺制定范例1
计算图示筒形制件的板料直径D拉深次数n及各半成品尺寸,包括直 径di、高度hi 和圆角半径ri 。材料为08F。板厚1mm
金属工艺学
SUST
金属工艺学
分析冲压件的结构工艺性
SUST
金属工艺学
SUST
金属工艺学
(6) 计算各次拉深半成品高度。
SUST

塑性成形原理复习题

塑性成形原理复习题

一、填空1、典型的塑性成形工艺包括拉深,挤压,轧制,拉拔等。

2、金属发生塑性变形时,其晶内变形的主要方式是滑移和孪生。

3、主应变简图采用主应变的个数和方向描述一点的应变状态,满足体积不变条件的应变状态主应变简图有3种。

4、米塞斯和屈雷斯加两个屈服准则相差最大的应力状态是平面应变状态。

5、不考虑材料的弹性,也不考虑材料硬化的材料模型称为理想刚塑性材料;不考虑材料的弹性,考虑材料硬化的材料模型称为刚塑性硬化材料。

6、超塑性成形工艺方法有结构超塑性和动态超塑性。

(相变超塑性)7、米塞斯和屈雷斯加两个屈服准则一致的应力状态是单向应力状态。

8、按照加工特点来分,塑性成形可以分为块料成形和板料成形两大类,其中,常见的块料成形包括拉拔,锻造,挤压,轧制等工艺。

9、冷挤压钢制零件时,需要对制件表面进行磷化处理,磷化处理后必须进行润滑处理,常用的润滑方法是表面皂化。

10、主应力简图共有9种。

满足体积不变条件的主应变简图共有3种。

11、应力偏张量引起物体产生形状变化;应力球张量引起物体产生体积变化。

12、多晶体的塑性变化包括晶内变形和晶间变形,其中,晶间变形的主要方式是滑移。

13、对数应变的主要特点是准确性、叠加性、可比性。

14、塑性应力应变关系与加载历史有关,变形过程中材料体积不变。

15、单位面积的内力被称为应力。

16、多晶体塑性变形的特点包括:具有不均匀性、不同时性、和相互协调性。

17、塑性成形中的三种摩擦状态分别是:干摩擦,流体摩擦,边界摩擦。

18、常用的求解塑性工程问题的方法有主应力法、滑移线法、上限元法。

19、塑性成形工艺按成形件的特点可以分为块料成形和板料成形。

20、金属发生塑性变形时,其晶内变形的主要方式是滑移和孪生。

21、屈雷斯加屈服准则的物理意义为,当材料的最大剪应力达到某一常数时材料就屈服了;米塞斯屈服准则的物理意义为,当材料的等效应力达到某一定值时,材料就屈服了。

22、关于摩擦产生机理有:表面凸凹学说,分子吸附学说,表面粘着学说。

成型加工基础复习题

成型加工基础复习题

基础部分1、简述引起熔体破碎的主要的原因。

熔体破裂是液体不稳定流动的一种现象。

产生熔体破裂的原因主要是熔体中的弹性回复所引起。

熔体在管道中流动时剪切速率分布的不均匀性使熔体中弹性能不均匀分布。

当熔体中产生的弹性应力一旦增加到与滞流动阻力相当时,粘滞阻力就不能再平衡弹性应力的作用,而弹性效应所致熔体流速在某一位置上的瞬时增大形成“弹性湍流”,即“应力破碎”现象。

在园管中,如果产生弹性湍流的不稳定点沿着管的周围移动,则挤出物将呈螺旋状,如果不稳定点在整个圆周上产生,就得到竹节状的粗糙挤出物。

产生不稳定流动和熔体破裂现象的另一个原因是熔体剪切历史的波动引起的。

即剪切应力不同,熔体所产生的弹性效应不同,从而使其弹性回复产生差异,形成熔体破裂。

2、将聚丙烯丝抽伸至相同伸长比,分别用冰水或90℃热水冷却后,再分别加热到90℃的二个聚丙烯丝试样,哪种丝的收缩率高,为什么?用冰水的聚丙烯丝收缩率高,因为冰水冷却时,冰水的温度远远低于聚丙烯的最佳结晶温度,此时,聚丙烯丝的结构更多的保持了其纺丝过程中分子的取向状态,而用90℃热水冷却时,聚丙烯分子具有较为充分的解取向时间,当聚丙烯丝再次分别加热到90℃时,前者才进行较高程度的解取向,表现出较高的收缩率。

3、简述高聚物熔体流动的特点。

由于高聚物大分子的长链结构和缠绕,聚合物熔体、溶液和悬浮体的流动行为远比伤分子液体复杂。

在宽广的剪切速率范围内,这类液体流动时剪切力和剪切速率不再成比例关系,液体的粘度也不是一个常此因而聚合物液体的流变行为不服从牛顿流动定律。

即非牛顿型流动。

4、举例说明高聚物熔体粘弹性行为的表现。

聚合物流动过程最常见的弹性行为是端末效应和不稳定流动。

端末效应包括入口效应和模口膨化效应(离模膨胀)即巴拉斯效应。

不稳定流动即可由于熔体弹性回复的差异产生熔体破碎现象。

5、说明链结构对高聚物粘度的影响。

聚合物的结构因素即链构型和链的极性、分子量、分子量分布以及聚合物的组成等对聚合物液体的粘度有明显影。

金属塑性期末考试试题

金属塑性期末考试试题

金属塑性期末考试试题
一、选择题(每题2分,共20分)
1. 金属塑性变形的基本原理是什么?
A. 弹性变形
B. 塑性变形
C. 断裂
D. 蠕变
2. 金属塑性加工中,哪个参数是影响材料变形能力的关键?
A. 温度
B. 应变率
C. 应力
D. 材料的化学成分
3. 金属在拉伸过程中,哪个阶段是塑性变形的主要阶段?
A. 弹性阶段
B. 屈服阶段
C. 强化阶段
D. 颈缩阶段
4. 在金属塑性变形过程中,什么是应力-应变曲线?
A. 描述材料强度的曲线
B. 描述材料硬度的曲线
C. 描述材料塑性变形的曲线
D. 描述材料弹性变形的曲线
5. 金属塑性加工中的“冷加工”和“热加工”的区别是什么?
A. 温度不同
B. 应变率不同
C. 材料类型不同
D. 变形机制不同
二、简答题(每题10分,共30分)
1. 简述金属塑性变形的微观机制。

2. 什么是金属的屈服现象?它在工程应用中有何意义?
3. 描述金属塑性加工中的“加工硬化”现象,并解释其对材料性能的影响。

三、计算题(每题25分,共50分)
1. 已知某金属材料的应力-应变曲线,求在某一应变下的材料屈服强度和抗拉强度。

(给出具体数据和计算过程)
2. 某金属棒在拉伸过程中,其直径从20mm减小到18mm,求其塑性变形率。

(给出计算公式和结果)
四、论述题(共30分)
1. 论述金属塑性加工过程中的“应变率敏感性”现象及其对材料加工的影响。

五、实验题(共30分)
1. 设计一个实验来测量不同温度下金属材料的塑性变形能力,并说明实验步骤和预期结果。

金属塑性成形原理复习题

金属塑性成形原理复习题

一、名词解释1. 主应力:只有正应力没有切应力的平面为主平面,其面上的应力为主应力。

2. 主切应力:切应力最大的平面为主切平面,其上的切应力为主主切应力。

3. 对数应变 答:变形后的尺寸与变形前尺寸之比取对数4. 滑移线 答:最大切应力的方向轨迹。

5. 八面体应力:与主平面成等倾面上的应力6. 金属的塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。

7. 等效应力:又称应力强度,表示一点应力状态中应力偏张量的综合大小。

8. 何谓冷变形、热变形和温变形:答冷变形:在再结晶温度以下,通常是指室温的变形。

热变形:在再结晶温度以上的变形。

温变形在再结晶温度以下,高于室温的变形。

9. 何谓最小阻力定律:答变形过程中,物体质点将向着阻力最小的方向移动,即做最少的功,走最短的路。

10.金属的再结晶 答:冷变形金属加热到一定的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。

11. π平面 答:是指通过坐标原点并垂于等倾线的平面。

12.塑性失稳 答:在塑性加工中,当材料所受的载荷达到某一临界后,即使载荷下降,塑性变形还会继续,这种想象称为塑性失稳。

13.理想刚塑性材料:在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。

P13914.应力偏张量:应力偏张量就是应力张量减去静水压力,即:σij ′ =σ-δij σm二、填空题1. 冷塑性变形的主要机理:滑移和孪生2. 金属塑性变形的特点:不同时性、相互协调性和不均匀性。

3. 由于塑性变形而使晶粒具有择优取向的组织称为:变形织构 。

4. 随着变形程度的增加,金属的强度 硬度增加,而塑性韧性降低,这种现象称为:加工硬化。

5. 超塑性的特点:大延伸率、低流动应力、无缩颈、易成形、无加工硬化 。

6. 细晶超塑性变形力学特征方程式中的m 为:应变速率敏感性指数。

7. 塑性是指金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力 。

金属塑性成形原理模拟题

金属塑性成形原理模拟题

⾦属塑性成形原理模拟题⼀、填空题:(每题 3 分,共计 30 分)1. 塑性是指: _ 在外⼒作⽤下使⾦属材料发⽣塑性变形⽽不破坏其完整性的能⼒。

2. ⾦属的超塑性可分为细晶超塑性和相变超塑性两⼤类。

3. ⾦属单晶体变形的两种主要⽅式有:滑移和孪⽣。

4. 影响⾦属塑性的主要因素有:化学成份,组织,变形温度,应变速率,变形⼒学条件。

5. 等效应⼒表达式:。

6. 常⽤的摩擦条件及其数学表达式:库伦摩擦条件,常摩擦条件。

7.π平⾯是指:通过坐标原点并垂于等倾线的平⾯,其⽅程为 __。

8.⼀点的代数值最⼤的 __ 主应⼒ __ 的指向称为第⼀主⽅向,由第⼀主⽅向顺时针转所得滑移线即为线。

9. 平⾯变形问题中与变形平⾯垂直⽅向的应⼒σ z =10. 在有限元法中:应⼒矩阵 [S]= ,单元内部各点位移 {U}=⼆、简答题(共计 30 分)1. 提⾼⾦属塑性的主要途径有哪些?( 8 分)答:提⾼⾦属塑性的途径有以下⼏个⽅⾯:(1) 提⾼材料成分和组织的均匀性;…… 2'(2) 合理选择变形温度和应变速率;…… 2'(3) 选择三向压缩性较强的变形⽅式;…… 2'(4) 减⼩变形的不均匀性。

…… 2'2. 纯剪切应⼒状态有何特点?( 6 分)答:纯剪切应⼒状态下物体只发⽣形状变化⽽不发⽣体积变化。

…… 2'纯剪应⼒状态下单元体应⼒偏量的主⽅向与单元体应⼒张量的主⽅向⼀致,平均应⼒。

…… 2'其第⼀应⼒不变量也为零。

…… 2'3. 塑性变形时应⼒应变关系的特点?( 8 分)答:在塑性变形时,应⼒与应变之间的关系有如下特点:(1) 应⼒与应变之间的关系是⾮线性的,因此,全量应变主轴与应⼒主轴不⼀定重合。

…… 2'(2) 塑性变形时,可以认为体积不变,即应变球张量为零,泊松⽐。

……2'(3) 对于应变硬化材料,卸载后再重新加载时的屈服应⼒就是报载时的屈服应⼒,⽐初始屈服应⼒要⾼。

金属塑性加工试卷及标准答案

金属塑性加工试卷及标准答案

中南大学考试试卷2001 —— 2002 学年第二学期时间110 分钟金属塑性加工原理课程64 学时4 学分考试形式:闭卷专业年级材料1999 级总分100 分,占总评成绩70%一、名词解释(本题10分,每小题2分)1.热效应2.塑脆转变现象3.动态再结晶4.冷变形5.附加应力二.填空题(本题10分,每小题2分)1.主变形图取决于______,与_______无关。

2.第二类再结晶图是_____,_______与__________的关系图。

3.第二类硬化曲线是金属变形过程中__________与__________之间的关系曲线。

4.保证液体润滑剂良好润滑性能的条件是_______,__________。

5.出现细晶超塑性的条件是_______,__________,__________。

三、判断题(本题10分,每小题2分)1.金属材料冷变形的变形机构有滑移(),非晶机构(),孪生(),晶间滑动()。

2.塑性变形时,静水压力愈大,则金属的塑性愈高(),变形抗力愈低()。

3.金属的塑性是指金属变形的难易程度()。

4.为了获得平整的板材,冷轧时用凸辊型,热轧时用凹辊型()。

5.从金相照片上观察到的冷变形纤维组织,就是变形织构()。

四、问答题(本题40 分,每小题10 分)1.分别画出挤压、平辊轧制、模锻这三种加工方法的变形力学图,并说明在生产中对于低塑性材料的开坯采用哪种方法为佳?为什么?2.已知材料的真实应变曲线,A 为材料常数,n 为硬化指数。

试问简单拉伸时材料出现细颈时的应变量为多少?3.试比较金属材料在冷,热变形后所产生的纤维组织异同及消除措施?4.以下两轧件在变形时轧件宽度方向哪一个均匀?随着加工的进行会出现什么现象?为什么?(箭头表示轧制方向)五、证明题(本题10 分)证明Mises 塑性条件可表达成:六、综合推导题(本题20 分)试用工程法推导粗糙砧面压缩矩形块(Z 向不变形)的变形力P 表达式,这里接触摩擦中南大学考试试卷2002 —— 2003 学年第二学期时间110 分钟金属塑性加工原理课程64 学时4 学分考试形式:闭卷专业年级材料2000 级总分100 分,占总评成绩70%一、名词解释(本小题10分,每小题2分)1.热变形2.弹塑性共存定律3.动态再结晶4.附加应力5.热效应二、填空题(本题22 分,每小题 2 分)1.金属塑性加工时,工件所受的外力分为_______________ 和_______________2.主变形图有_______________ 种,各主应变分量必须满足条件是:_______________3.应变速度是指_________________________________________4.平面应变其应力状态的特点是σz =________________________________________5.材料模型简化为理想刚塑性材料是忽略了材料的_______________ 和______________6.压力加工中热力学条件是指________、_______、_______7.第二类再结晶图是_______、________与_________关系图。

金属塑性成形原理期末复习

金属塑性成形原理期末复习
(2)变形时的外部条件,如变形温度、变形速度、 应力状态等。
塑性指标:拉伸率δ和断面收缩率Ψ。 概 念: 金属在破坏前产生的最大
变形程度,即极限变形量。
H0 - Hk
塑性指标ε= ------------- ×100%(压缩法)
H0
塑性指标衡量金属塑性高低的指标。 塑性状态图及其应用 概念:表示金属塑性指标与变形温度及加载方式的关系曲线图形,简称塑性图。 应用:合理选择加工方法
静态回复 动态回复——主要通过位错的攀移、交滑移来实现。 2.再结晶
静态再结晶:利用金属变形余热发生 动态再结晶:热塑性变形过程中发生 亚动态再结晶:动态再结晶晶粒在热变形停止后的长大过程 (二)热塑性变形后金属组织和性能的变化 1.改善铸造组织,锻合内部缺陷 2.形成纤维组织 3 产生带状组织 超塑性的分类:恒温超塑性或第一类超塑性。
提高塑性的主要途径有以下几个方面: (1)控制化学成分、改善组织结构,提高材料的成分和组织的均匀性; (2)采用合适的变形温度—速度制度; (3)选用三向压应力较强的变形过程,减小变形的不均匀性,尽量造成均匀的变形状态; (4)避免加热和加工时周围介质的不良影响
第二节 金属的流动及其影响因素
第三节 金属塑性成形中的摩擦和润滑
几个基本概念 弹性(Elasticity):卸载后变形可以恢复特性,可逆性。 塑性(Plasticity):固体金属在外力作用下能稳定地产生永久变形而不破坏其完整 性的能力 屈服(Yielding):开始产生塑性变形的临界状态 损伤(Damage):材料内部缺陷产生及发展的过程 断裂(Fracture):宏观裂纹产生、扩展到变形体破断的过程
一般讲,如果变形速度大,有没有足够时间完成塑性变形,金属的变形抗力会提高,塑 性降低。变形速度对塑性的影响概括为变形速度的增大,金属和合金的变形抗力提高; 随变形速度提高,塑性变化的一般趋势如图;变形速度对锻压工艺也有广泛的影响。

金属塑性加工原理考试总复习

金属塑性加工原理考试总复习

金属塑性加工原理考试总复习一、 填空题1.韧性金属材料屈服时, 米塞斯 准则较符合实际的; 2. 描述变形大小可用线尺寸的变化与方位上的变化来表示,即线应变正应变和切应变剪应变3.弹性变形时应力球张量使物体产生体积变化,泊松比5.0<ν 4. 在塑形变形时,需要考虑塑形变形之前的弹性变形,而不考虑硬化的材料叫做理想刚塑性材料;5.塑形成形时的摩擦根据其性质可分为干摩擦,边界摩擦和流体摩擦; 6. 根据条件的不同,任何材料都有可能产生两种不同类型的断裂:脆性断裂和韧性断裂;7.硫元素的存在使得碳钢易于产生 热脆 ; 8.塑性变形时不产生硬化的材料叫做 理想塑性材料 ; 9. 应力状态中的 压 应力,能充分发挥材料的塑性;10. 平面应变时,其平均正应力m等于 中间主应力2; 11. 钢材中磷使钢的强度、硬度提高,塑性、韧性 下降 ;12. 材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫 超塑性 ;13. 材料经过连续两次拉伸变形,第一次的真实应变为1=0.1,第二次的真实应变为2=0.25,则总的真实应变=14. 固体材料在外力作用下发生永久变形而不破坏其完整性的能力叫材料的 塑性 ;15.塑性成形中的三种摩擦状态分别是:干摩擦、流体摩擦、边界摩擦16.对数应变的特点是具有真实性、可靠性和可加性;17.就大多数金属而言,其总的趋势是,随着温度的升高,塑性升高;18.钢冷挤压前,需要对坯料表面进行磷化、皂化处理;19.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂;20.对数应变的特点是具有真实性、可靠性和可加性;21.塑性指标的常用测量方法拉伸实验,扭转实验,压缩试验 ;22.弹性变形机理原子间距的变化;塑性变形机理位错运动为主;23.物体受外力作用下发生变形,变形分为变形和变化;24.当物体变形时,向量的长短及方位发生变化,用线应变、切应变来描述变形大小25.当物体变形时,向量的长短及方位发生变化,用线应变、切应变来描述变形大小;26.在研究塑性变形时,即不考虑弹性变形,又不考虑变形过程中的加工硬化的材料称为理想刚塑性材料27.材料的塑性变形是由应力偏张量引起的,且只与应力张量的第二不变量有关;28.金属塑性加工时,工具与坯料接触面上的摩擦力采用库伦摩擦条件、最大摩擦条件、摩擦力不变条件三种假设;29.轴对称条件下,均匀变形时,径向的正应变等于周向的正应力;30.在单向拉伸时,常用延伸率、断面收缩率两个塑性指标来衡量塑性变形的能力;二、下列各小题均有多个答案,选择最适合的一个填于横线上1.塑性变形时不产生硬化的材料叫做 A ;A、理想塑性材料;B、理想弹性材料;C、硬化材料;2.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为B;A、解析法;B、主应力法;C、滑移线法;3.韧性金属材料屈服时, A 准则较符合实际的;A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加;4.塑性变形之前不产生弹性变形或者忽略弹性变形的材料叫做A;A、理想弹性材料;B、理想刚塑性材料;C、塑性材料;5.硫元素的存在使得碳钢易于产生A;A、热脆性;B、冷脆性;C、兰脆性;6.应力状态中的B应力,能充分发挥材料的塑性;A、拉应力;B、压应力;C、拉应力与压应力;7.平面应变时,其平均正应力mB中间主应力2;A、大于;B、等于;C、小于;8.钢材中磷使钢的强度、硬度提高,塑性、韧性 B ;A、提高;B、降低;C、没有变化;9.多晶体经过塑性变形后各晶粒沿变形方向显着伸长的现象称为A;A、纤维组织;B、变形织构;C、流线;10.塑性变形时,工具表面的粗糙度对摩擦系数的影响A工件表面的粗糙度对摩擦系数的影响;A、大于; B、等于; C、小于;11. 由于屈服原则的限制,物体在塑性变形时,总是要导致最大的 A 散逸,这叫最大散逸功原理;A、能量; B、力; C、应变;12. 轴对称条件下,均匀变形时,径向的正应变 C 周向的正应变,径向正应力力 C 周向正应力;A 、大于B 、小于C 、等于三、判断题对打√,错打×1. 合金元素使钢的塑性增加,变形拉力下降; ×2. 合金钢中的白点现象是由于夹杂引起的; ×3.结构超塑性的力学特性为m k S 'ε=,对于超塑性金属m =; × 4. 影响超塑性的主要因素是变形速度、变形温度和组织结构; √5. 屈雷斯加准则与密席斯准则在平面应变上,两个准则是一致的; ×6. 变形速度对摩擦系数没有影响;× 7. 静水压力的增加,有助于提高材料的塑性; √8. 碳钢中冷脆性的产生主要是由于硫元素的存在所致; ×9. 塑性是材料所具有的一种本质属性; √10. 碳钢中碳含量越高,碳钢的塑性越差;×11.在塑料变形时要产生硬化的材料叫变形硬化材料;×12.塑性变形体内各点的最大正应力的轨迹线叫滑移线;√13.二硫化钼、石墨、矿物油都是液体润滑剂;;×14.按密席斯屈服准则所得到的最大摩擦系数μ=; ×15.塑性变形时,工具表面的粗糙度对摩擦系数的影响小于工件表面的粗糙度对摩擦系数的影响; 错16.静水压力的增加,对提高材料的塑性没有影响;×17.在塑料变形时要产生硬化的材料叫理想刚塑性材料;×18.塑性变形体内各点的最大剪应力的轨迹线叫滑移线;√19.塑性是材料所具有的一种本质属性;√20.塑性就是柔软性;×21.在塑料变形时金属材料塑性好,变形抗力就低,例如:不锈钢×22.如果已知位移分量,则按几何方程求得的应变分量自然满足协调方程;若是按其它方法求得的应变分量,也自然满足协调方程,则不必校验其是否满足连续性条件; ×23.当材料受单向应力时,β=1,两准则重合;在纯剪应力作用下,两准则差别最大;√24.球应力在所有方向都没有剪切力,故不能产生体积变化,只能使物体产生形状变化和塑性变形;×25.应力偏张量只能使物体产生形状变化,不能产生体积变化;√26.常摩擦力定律 =m·k ,式中摩擦因子m 要大于1; ×四、名词解释1.什么是刚塑性材料,刚塑性硬化材料不考虑塑性变形之前的弹性变形的材料; 不考虑塑性变形之前的弹性变形,但需要考虑变形过程中的加工硬化的材料;2.什么是塑形本构关系塑性变形时应力与应变之间的关系;3.什么是干摩擦、边界摩擦、流体摩擦金属与工具的接触表面之间不存在任何外来介质,即直接接触时产生的摩擦成为干摩擦;当金属与工具表面加入润滑层较厚,摩擦副在相互运动中不直接接触,完全由润滑油膜隔开,摩擦发生在流体内部分子之间成为流体摩擦;当金属与工具之间的接触表面上加润滑剂时,随着接触压力的增加,金属表面突起部分被压平,润滑剂被挤入凹坑中,压平部分与模具之间存在一层极薄的润滑膜,是一种单分子膜,这种单分子膜润滑的状态称为边界摩擦;4.塑性成形中摩擦机理是什么5.塑性加工中的摩擦与机械摩擦的区别,并从积极与消极两方面说明它的作用;区别:在高压下产生的摩擦;较高温度下的摩擦;伴随着塑性变形而产生的摩擦;摩擦副的性质相差大;消极:改变物体应力状态,使变形力和能耗增加引起工件变形与应力分布不均匀恶化工件表面质量,加速模具磨损,降低工具寿命摩擦的利用例如,用增大摩擦改善咬入条件,强化轧制过程;增大冲头与板片间的摩擦,强化工艺,减少起皱和撕裂等造成的废品;6.什么是滑移线、滑移线场滑移线是塑形变形体内个点的最大剪应力的轨迹,最大剪应力成对出现并正交,因此滑移线在变形体区组成两族相互正交的网络为滑移线场;7.什么是均匀场、简单场一族滑移线为直线,另一族则与滑移线正交的滑移线为曲线,称为简单场;滑移线场由两组正交的平行的直线构成称为均匀场;8.什么是速度间断若塑性区与刚性区之间或塑性区内相邻两区域之间可能有相对滑动,即速度发生跳跃,此现象称为速度不连续,或速度间断;9.什么是虚功原理、什么是最大逸散功原理虚功原理:对稳定平稳状态的变形体给予符合几何约束条件的微小虚位移,则外力在此虚位移上所作的虚功,必然等于变形体内的应力在虚应变上所作的虚应变功; 最大逸散功原理:对刚塑性体一定的应变增量场而言在所有屈服准则的应力场中,与该应变增量场符合的应力应变关系的应力场所做塑性功最大; 10.什么是冷脆、红脆、蓝脆、热脆、白点当磷含量大于%时,钢完全变脆,冲击韧性接近于零,成为冷脆;当钢在800~1200°C 范围内热加工时没由于晶界处的硫化铁共晶体熔化,导致锻件开裂称为红脆;在室温或稍高温度下,氮将以N Fe 4形式析出,使钢的强度,硬度提高,塑性韧性大为降低,这种现象成为时效脆性或蓝脆;当含氢量较高的钢锭经锻轧后较快冷却,从固溶体析出的氢原子来不及向表面扩散,而集中在缸内缺陷处形成氢分子,产生相当大的压力,在压力、应力等作用下,会出现小裂纹即白点;FeO 和FeS 在铁素体中形成低熔点的共晶组织,分布于晶界处,造成钢的热脆;11. 什么是超塑性材料的伸长率超过100%的现象;12. 什么是静态回复和静态再结晶是依靠变形金属所具有的热量,使其原子运动的动能增加而恢复到稳定位置上: 金属经塑性变形后,在较高的温度下出现新的晶核,这些晶核逐渐长大代替 了原来的晶体,此过程成为动态再结晶;13. 最小阻力定律答案:塑性成形的最小阻力定律:在塑性变形过程中,如果金属质点有向几个方向移动的可能时,则金属各质点将向阻力最小的方向移动,即做最少的功,走最短的路;14. 在结构超塑性的力学特性mk S •=ε中,m 值的物理意义是什么 答案:εσ=ln d ln d m 为应变速率敏感性系数,是表示超塑性特征的一个极重要的指标,当m 值越大,塑性越好;15. 何谓冷变形、热变形和温变形,他们各自的优缺点是什么答案:冷变形:在再结晶温度以下通常是指室温的变形;热变形:在再结晶温度以上的变形;温变形:在再结晶温度以下,高于室温的变形;冷变形的产品精度高,但材料的变形抗力大,产品表面质量非常好;热变形的产品精度不高,材料的变形抗力小,产品有氧化,表面质量非常不好;; 温变形的产品精度高,材料的变形抗力也不大,产品表面质量比较好;16. 最大散逸功答案:是由于屈服原则的限制,物体在塑性变形时,总是要导致最大的能量散逸或能量消耗,这叫最大散逸功原理;17. 上限法的基本原理是什么按运动学许可速度场来确定变形载荷的近似解,这一变形载荷它总是大于真实载荷,即高估的近似值,故称上限解;五、简答题1. 什么是应力张量不变量,应力特征方程式什么321J J J 应力特征方程:032213=---J J J σσσ2. 什么是应力偏张量和球应力张量,他们的物理意义是什么球应力在所有方向都没有剪应力,故不能使物体产生形状变化和塑性变形,而只能产生体积变化;应力偏张量只能使物体产生形状变化,不能产生体积变化;3. 平面应力状态和轴对称应力状态的特点及其对应的应力张量平面应力状态:(1) 变形体内所有的质点在某一方向垂直的平面上没有应力作用;(2) 各应力分量与Z 轴无关,整个物体的应力分布可以在xy 坐标平面上表示出来;轴对称应力状态:(1) 由于通过旋转体轴线的平面,即ϕ面在变形过程中始终不会扭曲,所以在ϕ面上没有剪应力,而且ϕσ是主应力;(2) 各应力分量与ϕ坐标无关;4. 两个屈服准则有何区别,在什么状态下两个屈服准则相同,什么状态下差别最大 两个屈服准则相比,数学表达式右边相差系数β,当中间应力1=β时,时两个屈服准则的数学表达式相同,当155.1=β时,两个屈服准则差别最大;5. 弹性变形时应力-应变关系有哪些特点,为什么说塑性变形时应力和应变之间关系与加载历史有关答案:塑性应力与应变关系有如下特点:1塑性变形不可恢复,是不可逆的关系,与应变历史有关,即应力与应变关系不再保持单值关系;2塑性变形时,认为体积不变,即应变球张量为零,泊松比 =;3应力应变之间关系是非线性关系,因此,全量应变主轴与应力主轴不一定重合; 4对于硬化材料,卸载后再重新加载,其屈服应力就是卸载后的屈服应力,比初始屈服应力要高;正因为塑性变形是不可逆的,应力与应变关系不是单值对应的,与应变历史有关,而且全量应变主轴与应力主轴不一定重合,因此说应力与应变之间的关系与加载历史有关,离开加载路线来建立应力与全量应变之间的关系是不可能的;6. 塑性加工时接触表面的摩擦条件有哪几种,其数学表达式有什么不同 库伦摩擦条件:)577.0~5.0(==μμστn最大摩擦条件:k =τ,根据塑性条件,在轴对称情况下,T k σ5.0=,在平面变形条件下,T k σ577.0=摩擦力不表条件:)0.1~0(=•=m k m τ 7. 影响摩擦的主要因素有哪些金属的种类和化学成分; 工具材料及其表面状态; 接触面上的单位压力; 变形温度; 变形速度; 润滑剂; 8. 什么是上限法,其优点有哪些按运动学许可速度场来确定变形载荷的近似解,这一变形载荷它总是大于真实载荷,即高估的近似值,故称上限解;优点:(1) 不仅适用于平面问题,也适用于轴对称问题和三维问题 (2) 上限法虽是一种高估的近似解,可使之尽可能接近真实解(3) 便于与计算机结合,用以模拟工件与工具的接触面上单位压力分布及进行模具设计;(4) 上限法已成功地用于分析裂纹的产生,计算最佳工艺参数,并开始处理加工硬化材料,疏松材料,以及考虑高速成形时惯性的影响;9. 影响塑性的主要因素及提高塑性的途径有哪些 影响塑性的内部因素:化学成分; 合金元素; 组织结构; 外部因素:变形温度; 变形速度; 变形程度; 应力状态; 变形状态; 尺寸因素; 周围介质;提高尽速塑性的因素:控制化学成分,改善组织结构,提高材料的成分和组织的均匀性;采用合适的变形温度,速度制度;选用三向压应力较强的变形过程,减小变形的不均匀性,尽量造成均匀的并行状态;避免加热和加工时周围介质的不良影响等;10.为什么静水压力能提高金属的塑形(1)塑性加工若没有再结晶和溶解沉淀等修复机构时,晶见变形会使晶间显微破坏得到积累,进而迅速地引起多晶体的破坏,而三向压缩能遏止晶粒边界相对移动,使晶间变形困难;(2)三向压缩使金属变得更为致密,其各种显微破坏得到修复,甚至其宏观破坏也得到修复,而三向拉伸则加速各种破坏的发展;(3)三向压缩能完全或局部地消除变形物体内数量很小的某些夹杂物甚至液相对塑性的不良影响;而三向拉应力会使这些地方形成应力集中,加速金属破坏出现;(4)三向压缩能完全抵偿或大大降低由于不均匀变形所引起的附加拉伸应力,减轻拉应力的不良影响;11.影响动态回复的因素有哪些金属的点阵类型;应变速率和温度;溶质元素的影响;第二相的影响;原始亚结构的影响;12.热加工过程中金属组织有哪些变化1铸态组织中的缩孔、疏松、空隙、气泡等缺陷得到压密或焊合;金属在变形中由于加工硬化所造成的不致密现象,也随着再结晶的进行而恢复;2在热加工变形中可使晶粒细化和夹杂物破碎;3形成纤维组织;4产生带状组织;13.影响断裂类型的因素有哪些变形温度;变形速度;应力状态14.可谓脆性断裂,何为韧性断裂脆性断裂:断面外观上没有明显的塑性变形迹象,直接由弹性变形状态过渡到断裂,断裂面和拉伸轴接近正交,断口平齐; 韧性断裂:在断裂前金属经受了较大的塑性变形,其断口成纤维状,灰暗无光;15.等效应力有何特点写出其数学表达式;答案:等效应力的特点:等效应力不能在特定微分平面上表示出来,但它可以在一定意义上“代表”整个应力状态中的偏张量部分,因而与材料的塑性变形密切有关;人们把它称为广义应力或应力强度;等效应力也是一个不变量;其数学表达式如下:等效应力在主轴坐标系中定义为:在任意坐标系中定义为20. 何谓屈服准则常用屈服准则有哪两种试比较它们的同异点答案:屈服准则:只有当各应力分量之间符合一定的关系时,质点才进入塑性状态,这种关系就叫屈服准则;常用屈服准则:密席斯屈服准则与屈雷斯加屈服准则同异点:在有两个主应力相等的应力状态下,两者是一致的;对于塑性金属材料,密席斯准则更接近于实验数据;在平面应变状态时,两个准则的差别最大为%;21. 什么是塑性简述提高金属塑性的主要途径答案:提高金属塑性的主要途径:1)提高材料的成分和组织的均匀性2)合理选择变形温度和变形速度3)选择三向受压较强的变形方式4)减少变形的不均匀性22. 在塑性加工中润滑的目的是什么影响摩擦系数的主要因素有哪些答案:润滑的目的是:1减少工模具磨损; 2延长工具使用寿命;3提高制品质量; 4降低金属; 5变形时的能耗; 影响摩擦系数的主要因素:1金属种类和化学成分; 2工具材料及其表面状态;3接触面上的单位压力; 4变形温度;5变形速度; 6润滑剂23. 简述在塑性加工中影响金属材料变形抗力的主要因素有哪些答案:金属材料变形抗力影响因素有:1材料化学成分、组织结构; 2变形程度;3变形温度;4变形速度;5应力状态;6接触界面接触摩擦24. 什么是速度间断为什么说只有切向速度间断,而法向速度必须连续答案:若塑性区与刚性区之间或塑性区内相邻两区域之间可能有相对滑动,即速度发生跳跃,此现象称为速度不连续,或速度间断;现设变形体被速度间断面SD分成①和②两个区域;在微段dSD上的速度间断情况如下图所示;根据塑性变形体积不变条件,以及变形体在变形时保持连续形,不发生重叠和开裂可知,垂直于dSD 上的速度分量必须相等,即••-21nnuu,而切向速度分量可以不等,造成②区的相对滑动;其速度间断值为••-=21][ttuuVt25. 简述塑性成形中对润滑剂的要求1润滑剂应有良好的耐压性能,在高压作用下,润滑膜仍能吸附在接触表面上,保持良好的润滑状态;2润滑剂应有良好耐高温性能,在热加工时,润滑剂应不分解,不变质;3润滑剂有冷却模具的作用;4润滑剂不应对金属和模具有腐蚀作用;5润滑剂应对人体无毒,不污染环境;6润滑剂要求使用、清理方便、来源丰富、价格便宜等;26. 简述金属塑性加工的主要优点:结构致密,组织改善,性能提高;材料利用率高,流线分布合理;精度高,可以实现少无切削的要求;生产效率高;27.简述金属塑性加工时摩擦的特点及作用摩擦的不利方面:改变物体应力状态,使变形力和能耗增加引起工件变形与应力分布不均匀恶化工件表面质量,加速模具磨损,降低工具寿命摩擦的利用例如,用增大摩擦改善咬入条件,强化轧制过程;增大冲头与板片间的摩擦,强化工艺,减少起皱和撕裂等造成的废品;28.压力加工中所使用的润滑剂有哪几类液体润滑剂中的乳液为什么具有良好的润滑作用29.在塑性加工中润滑的目的是什么影响摩擦系数的主要因素有哪些润滑的目的是:减少工模具磨损;延长工具使用寿命;提高制品质量;降低金属变形时的能耗;影响摩擦系数的主要因素:错误!金属种类和化学成分;错误!工具材料及其表面状态;错误!接触面上的单位压力;错误!变形温度;错误!变形速度;错误!润滑剂30.材料产生塑性变形时,应力与应变关系有何特点,为什么说塑性变形时应力和应变之间关系与加载历史有关答案:塑性应力与应变关系有如下特点:1塑性变形不可恢复,是不可逆的关系,与应变历史有关,即应力与应变关系不再保持单值关系;2塑性变形时,认为体积不变,即应变球张量为零,泊松比 =;3应力应变之间关系是非线性关系,因此,全量应变主轴与应力主轴不一定重合;4对于硬化材料,卸载后再重新加载,其屈服应力就是卸载后的屈服应力,比初始屈服应力要高;正因为塑性变形是不可逆的,应力与应变关系不是单值对应的,与应变历史有关,而且全量应变主轴与应力主轴不一定重合,因此说应力与应变之间的关系与加载历史有关,离开加载路线来建立应力与全量应变之间的关系是不可能的;31. 塑性成形时常用的流体润滑剂和固体润滑剂各有哪些石墨和二硫化钼如何起润滑作用32. 主应力法的基本原理是什么(1) 把问题简化成平面问题或轴对称问题(2) 假设变形体内的法相应力分布与一个坐标轴无关 (3) 接触表面摩擦规律的简化 (4) 简化屈服条件(5) 将变形区内的工件性质看作是均匀而各向同性的、变形均匀的,以及某些数学近似处理33. 影响金属塑性流动与变形的主要因素有哪些六、计算题1. 已知一点的应力状态⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=1000...155......12ij σ10MPa ,试求该应力空间中x-2y+2z=1的斜面上的正应力n σ和切应力n τ为多少 答案31=V ,32-=m ,32=n2. 已知变形体某点的应力状态为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=015151520015010ij σ (1) 将它分解为应力球张量和应力偏张量 (2) 求出主应力1σ、2σ、3σ的值各为多少(3) 求出八面体正应力8σ和八面体剪应力8τ的值个为多少;3. 试用滑移线法求光滑平冲头压入两边为斜面的半无限高坯料时的极限载荷P 如图所示;设冲头宽度为2b,长为l,且l b 2≥;4. 某理想塑性材料,其屈服应力为100N/mm 2 ,某点的应力状态为ij σ =求其主应力,并将其各应力分量画在如图所示的应力单元图中,并判断该点处于什么状态弹性/塑性;应力单位 N/mm 2 ;{提示:σ3-15σ2+60σ-54=0可分解为:σ-9σ2-6σ+6=0};ZXY因此,该点处于弹性状态;5. 已知一点的应力状态10100015520⨯⎪⎪⎪⎭⎫ ⎝⎛--=ij σMPa,试求该应力空间中122=+-z y x 的斜截面上的正应力n σ和切应力n τ为多少6. 对于oxyz 直角坐标系,受力物体内一点的应力状态为:505050505ij σ-⎛⎫⎪=- ⎪ ⎪-⎝⎭MPa1画出该点的应力单元体;2试用应力状态特征方程求出该点的主应力及主方向; 3求出该点的最大切应力、八面体应力、等效应力;7. 在直角坐标系中,已知物体内某点的应力张量为⎪⎪⎪⎭⎫ ⎝⎛-=01001-001010-001ij σMPa ; 4 23 答案。

金属塑性成型原理部分课后习题答案

金属塑性成型原理部分课后习题答案

第一章1.什么是金属的塑性什么是塑性成形塑性成形有何特点塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形----当作用在物体上的外力取消后;物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下;利用其塑性而使其成型并获得一定力学性能的加工方法;也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类..Ⅰ.按成型特点可分为块料成形也称体积成形和板料成型两大类1块料成型是在塑性成形过程中靠体积转移和分配来实现的..可分为一次成型和二次加工..一次加工:①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形;以获得一定截面形状材料的塑性成形方法..分纵轧、横轧、斜轧;用于生产型材、板材和管材..②挤压----是在大截面坯料的后端施加一定的压力;将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形;以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法..分正挤压、反挤压和复合挤压;适于低塑性的型材、管材和零件..③拉拔----是在金属坯料的前端施加一定的拉力;将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形;以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法..生产棒材、管材和线材..二次加工:①自由锻----是在锻锤或水压机上;利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法..精度低;生产率不高;用于单件小批量或大锻件..②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形;从而获得与模腔形状、尺寸相同的坯料或零件的加工方法..分开式模锻和闭式模锻..2板料成型一般称为冲压..分为分离工序和成形工序..分离工序:用于使冲压件与板料沿一定的轮廓线相互分离;如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形;成为具有要求形状和尺寸的零件;如弯曲、拉深等工序..Ⅱ.按成型时工件的温度可分为热成形、冷成形和温成形..第二章3.试分析多晶体塑性变形的特点..1各晶粒变形的不同时性..不同时性是由多晶体的各个晶粒位向不同引起的..2各晶粒变形的相互协调性..晶粒之间的连续性决定;还要求每个晶粒进行多系滑移;每个晶粒至少要求有 5个独立的滑移系启动才能保证..3晶粒与晶粒之间和晶粒内部与晶界附近区域之间的变形的不均匀性.. Add:4滑移的传递;必须激发相邻晶粒的位错源..5多晶体的变形抗力比单晶体大;变形更不均匀..6塑性变形时;导致一些物理;化学性能的变化..7时间性..hcp系的多晶体金属与单晶体比较;前者具有明显的晶界阻滞效应和极高的加工硬化率;而在立方晶系金属中;多晶和单晶试样的应力—应变曲线就没有那么大的差别..4.试分析晶粒大小对金属塑性和变形抗力的影响..①晶粒越细;变形抗力越大..晶粒的大小决定位错塞积群应力场到晶内位错源的距离;而这个距离又影响位错的数目n..晶粒越大;这个距离就越大;位错开动的时间就越长;n也就越大..n越大;应力场就越强;滑移就越容易从一个晶粒转移到另一个晶粒..②晶粒越细小;金属的塑性就越好..a.一定体积;晶粒越细;晶粒数目越多;塑性变形时位向有利的晶粒也越多;变形能较均匀的分散到各个晶粒上;b.从每个晶粒的应力分布来看;细晶粒是晶界的影响区域相对加大;使得晶粒心部的应变与晶界处的应变差异减小..这种不均匀性减小了;内应力的分布较均匀;因而金属断裂前能承受的塑性变形量就更大..5.什么叫加工硬化产生加工硬化的原因是什么加工硬化对塑性加工生产有何利弊加工硬化----随着金属变形程度的增加;其强度、硬度增加;而塑性、韧性降低的现象..加工硬化的成因与位错的交互作用有关..随着塑性变形的进行;位错密度不断增加;位错反应和相互交割加剧;结果产生固定割阶、位错缠结等障碍;以致形成胞状亚结构;使位错难以越过这些障碍而被限制在一定范围内运动..这样;要是金属继续变形;就需要不断增加外力;才能克服位错间强大的交互作用力..加工硬化对塑性加工生产的利弊:有利的一面:可作为一种强化金属的手段;一些不能用热处理方法强化的金属材料;可应用加工硬化的方法来强化;以提高金属的承载能力..如大型发电机上的护环零件多用高锰奥氏体无磁钢锻制..不利的一面:①由于加工硬化后;金属的屈服强度提高;要求进行塑性加工的设备能力增加;②由于塑性的下降;使得金属继续塑性变形困难;所以不得不增加中间退火工艺;从而降低了生产率;提高了生产成本..6.什么是动态回复为什么说动态回复是热塑性变形的主要软化机制动态回复是在热塑性变形过程中发生的回复自发地向自由能低的方向转变的过程..动态回复是热塑性变形的主要软化机制;是因为:①动态回复是高层错能金属热变形过程中唯一的软化机制..动态回复是主要是通过位错的攀移、交滑移等实现的..对于层错能高的金属;变形时扩展位错的宽度窄;集束容易;位错的交滑移和攀移容易进行;位错容易在滑移面间转移;而使异号位错相互抵消;结果使位错密度下降;畸变能降低;不足以达到动态结晶所需的能量水平..因为这类金属在热塑性变形过程中;即使变形程度很大;变形温度远高于静态再结晶温度;也只发生动态回复;而不发生动态再结晶..②在低层错能的金属热变形过程中;动态回复虽然不充分;但也随时在进行;畸变能也随时在释放;因而只有当变形程度远远高于静态回复所需要的临界变形程度时;畸变能差才能积累到再结晶所需的水平;动态再结晶才能启动;否则也只能发生动态回复..Add:动态再结晶容易发生在层错能较低的金属;且当热加工变形量很大时..这是因为层错能低;其扩展位错宽度就大;集束成特征位错困难;不易进行位错的交滑移和攀移;而已知动态回复主要是通过位错的交滑移和攀移来完成的;这就意味着这类材料动态回复的速率和程度都很低应该说不足;材料中的一些局部区域会积累足够高的位错密度差畸变能差;且由于动态回复的不充分;所形成的胞状亚组织的尺寸小、边界不规整;胞壁还有较多的位错缠结;这种不完整的亚组织正好有利于再结晶形核;所有这些都有利于动态再结晶的发生..需要更大的变形量上面已经提到了..7.什么是动态再结晶影响动态再结晶的主要因素有哪些动态再结晶是在热塑性变形过程中发生的再结晶..动态再结晶和静态再结晶基本一样;也会是通过形核与长大来完成;其机理也是大角度晶界或亚晶界想高位错密度区域的迁移..动态再结晶的能力除了与金属的层错能高低层错能越低;热加工变形量很大时;容易出现动态再结晶有关外;还与晶界的迁移难易有关..金属越存;发生动态再结晶的能力越强..当溶质原子固溶于金属基体中时;会严重阻碍晶界的迁移、从而减慢动态再结晶的德速率..弥散的第二相粒子能阻碍晶界的移动;所以会遏制动态再结晶的进行..9.钢锭经过热加工变形后其组织和性能发生了什么变化参见 P27-31①改善晶粒组织②锻合内部缺陷③破碎并改善碳化物和非金属夹杂物在钢中的分布④形成纤维组织⑤改善偏析10.冷变形金属和热变形金属的纤维组织有何不同冷变形中的纤维组织:轧制变形时;原来等轴的晶粒沿延伸方向伸长..若变形程度很大;则晶粒呈现为一片纤维状的条纹;称为纤维组织..当金属中有夹杂或第二相是;则它们会沿变形方向拉成细带状对塑性杂质而言或粉碎成链状对脆性杂质而言;这时在光学显微镜下会很难分辨出晶粒和杂质..在热塑性变形过程中;随着变形程度的增大;钢锭内部粗大的树枝状晶逐渐沿主变形方向伸长;与此同时;晶间富集的杂质和非金属夹杂物的走向也逐渐与主变形方向一致;其中脆性夹杂物如氧化物;氮化物和部分硅酸盐等被破碎呈链状分布;而苏醒夹杂物如硫化物和多数硅酸盐等则被拉长呈条状、线状或薄片状..于是在磨面腐蚀的试样上便可以看到顺主变形方向上一条条断断续续的细线;称为“流线”;具有流线的组织就称为“纤维组织”..在热塑性加工中;由于再结晶的结果;被拉长的晶粒变成细小的等轴晶;而纤维组织却被很稳定的保留下来直至室温..所以与冷变形时由于晶粒被拉长而形成的纤维组织是不同的..12.什么是细晶超塑性什么是相变超塑性①细晶超塑性它是在一定的恒温下;在应变速率和晶粒度都满足要求的条件下所呈现的超塑性..具体地说;材料的晶粒必须超细化和等轴化;并在在成形期间保持稳定..②相变超塑性要求具有相变或同素异构转变..在一定的外力作用下;使金属或合金在相变温度附近反复加热和冷却;经过一定的循环次数后;就可以获得很大的伸长率..相变超塑性的主要控制因素是温度幅度和温度循环率..15.什么是塑性什么是塑性指标为什么说塑性指标只具有相对意义塑性是指金属在外力作用下;能稳定地发生永久变形而不破坏其完整性的能力;它是金属的一种重要的加工性能..塑性指标;是为了衡量金属材料塑性的好坏而采用的某些试验测得的数量上的指标..常用的试验方法有拉伸试验、压缩试验和扭转试验..由于各种试验方法都是相对于其特定的受力状态和变形条件的;由此所测定的塑性指标或成形性能指标;仅具有相对的和比较的意义..它们说明;在某种受力状况和变形条件下;哪种金属的塑性高;哪种金属的塑性低;或者对于同一种金属;在那种变形条件下塑性高;而在哪种变形条件下塑性低..16.举例说明杂质元素和合金元素对钢的塑性的影响..P41-44①碳:固溶于铁时形成铁素体和奥氏体;具有良好的塑性..多余的碳与铁形成渗碳体Fe 3C;大大降低塑性;②磷:一般来说;磷是钢中的有害杂质;它在铁中有相当大的溶解度;使钢的强度、硬度提高;而塑性、韧性降低;在冷变形时影响更为严重;此称为冷脆性..③硫:形成共晶体时熔点降得很低例如 FeS的熔点为 1190℃;而 Fe-FeS 的熔点为 985℃..这些硫化物和共晶体;通常分布在晶界上;会引起热脆性..④氮:当其质量分数较小0.002%~0.015%时;对钢的塑性无明显的影响;但随着氮化物的质量分数的增加;钢的塑性降降低;导致钢变脆..如氮在α铁中的溶解度在高温和低温时相差很大;当含氮量较高的钢从高温快速冷却到低温时;α铁被过饱和;随后在室温或稍高温度下;氮逐渐以 Fe 4N形式析出;使钢的塑性、韧性大为降低;这种现象称为时效脆性..若在 300℃左右加工时;则会出现所谓“兰脆”现象..⑤氢:氢脆和白点..⑥氧:形成氧化物;还会和其他夹杂物如 FeS易熔共晶体FeS-FeO;熔点为910℃分布于晶界处;造成钢的热脆性..合金元素的影响:①形成固溶体;②形成硬而脆的碳化物;……17.试分析单相与多相组织、细晶与粗晶组织、锻造组织与铸造组织对金属塑性的影响..①相组成的影响:单相组织纯金属或固溶体比多相组织塑性好..多相组织由于各相性能不同;变形难易程度不同;导致变形和内应力的不均匀分布;因而塑性降低..如碳钢在高温时为奥氏体单相组织;故塑性好;而在800℃左右时;转变为奥氏体和铁素体两相组织;塑性就明显下降..另外多相组织中的脆性相也会使其塑性大为降低..②晶粒度的影响:晶粒越细小;金属的塑性也越好..因为在一定的体积内;细晶粒金属的晶粒数目比粗晶粒金属的多;因而塑性变形时位向有利的晶粒也较多;变形能较均匀地分散到各个晶粒上;又从每个晶粒的应力分布来看;细晶粒时晶界的影响局域相对加大;使得晶粒心部的应变与晶界处的应变差异减小..由于细晶粒金属的变形不均匀性较小;由此引起的应力集中必然也较小;内应力分布较均匀;因而金属在断裂前可承受的塑性变形量就越大..③锻造组织要比铸造组织的塑性好..铸造组织由于具有粗大的柱状晶和偏析、夹杂、气泡、疏松等缺陷;故使金属塑性降低..而通过适当的锻造后;会打碎粗大的柱状晶粒获得细晶组织;使得金属的塑性提高..18.变形温度对金属塑性的影响的基本规律是什么就大多数金属而言;其总体趋势是:随着温度的升高;塑性增加;但是这种增加并不是简单的线性上升;在加热过程中的某些温度区间;往往由于相态或晶粒边界状态的变化而出现脆性区;使金属的塑性降低..在一般情况下;温度由绝对零度上升到熔点时;可能出现几个脆性区;包括低温的、中温的和高温的脆性区..下图是以碳钢为例:区域Ⅰ;塑性极低—可能是由与原子热振动能力极低所致;也可能与晶界组成物脆化有关;区域Ⅱ;称为蓝脆区断口呈蓝色;一般认为是氮化物、氧化物以沉淀形式在晶界、滑移面上析出所致;类似于时效硬化..区域Ⅲ;这和珠光体转变为奥氏体;形成铁素体和奥氏体两相共存有关;也可能还与晶界上出现FeS-FeO低熔共晶有关;为热脆区..19.什么是温度效应冷变形和热变形时变形速度对塑性的影响有何不同温度效应:由于塑性变形过程中产生的热量使变形体温度升高的现象..热效应:塑性变形时金属所吸收的能量;绝大部分都转化成热能的现象一般来说;冷变形时;随着应变速率的增加;开始时塑性略有下降;以后由于温度效应的增强;塑性会有较大的回升;而热变形时;随着应变速率的增加;开始时塑性通常会有较显着的降低;以后由于温度效应的增强;而使塑性有所回升;但若此时温度效应过大;已知实际变形温度有塑性区进入高温脆区;则金属的塑性又急速下降..第三章2.叙述下列术语的定义或含义:①张量:由若干个当坐标系改变时满足转换关系的分量所组成的集合称为张量;②应力张量:表示点应力状态的九个分量构成一个二阶张量;称为应力张量; .ζηη.x xy xz③应力张量不变量:已知一点的应力状态④主应力:在某一斜微分面上的全应力S和正应力ζ重合;而切应力η=0;这种切应力为零的微分面称为主平面;主平面上的正应力叫做主应力;⑤主切应力:切应力达到极值的平面称为主切应力平面;其面上作用的切应力称为主切应力⑥最大切应力:三个主切应力中绝对值最大的一个;也就是一点所有方位切面上切应力最大的;叫做最大切应力ηmax⑦主应力简图:只用主应力的个数及符号来描述一点应力状态的简图称为主应力图:⑧八面体应力:在主轴坐标系空间八个象限中的等倾微分面构成一个正八面体;正八面体的每个平面称为八面体平面;八面体平面上的应力称为八面体应力;⑨等效应力:取八面体切应力绝对值的3倍所得之参量称为等效应力⑩平面应力状态:变形体内与某方向垂直的平面上无应力存在;并所有应力分量与该方向轴无关;则这种应力状态即为平面应力状..实例:薄壁扭转、薄壁容器承受内压、板料成型的一些工序等;由于厚度方向应力相对很小而可以忽略;一般作平面应力状态来处理11平面应变状态:如果物体内所有质点在同一坐标平面内发生变形;而在该平面的法线方向没有变形;这种变形称为平面变形;对应的应力状态为平面应变状态..实例:轧制板、带材;平面变形挤压和拉拔等..12轴对称应力状态:当旋转体承受的外力为对称于旋转轴的分布力而且没有轴向力时;则物体内的质点就处于轴对称应力状态..实例:圆柱体平砧均匀镦粗、锥孔模均匀挤压和拉拔有径向正应力等于周向正应力..3.张量有哪些基本性质①存在张量不变量②张量可以叠加和分解③张量可分对称张量和非对称张量④二阶对称张量存在三个主轴和三个主值4.试说明应力偏张量和应力球张量的物理意义..应力偏张量只能产生形状变化;而不能使物体产生体积变化;材料的塑性变形是由应力偏张量引起的;应力球张量不能使物体产生形状变化塑性变形;而只能使物体产生体积变化..12.叙述下列术语的定义或含义1位移:变形体内任一点变形前后的直线距离称为位移;2位移分量:位移是一个矢量;在坐标系中;一点的位移矢量在三个坐标轴上的投影称为改点的位移分量;一般用 u、v、w或角标符号ui 来表示;3相对线应变:单位长度上的线变形;只考虑最终变形;4工程切应变:将单位长度上的偏移量或两棱边所夹直角的变化量称为相对切应变;也称工程切应变;即δrt = tanθxy =θxy =αyx +αxy 直角∠CPA减小时;θxy取正号;增大时取负号;5切应变:定义γ yx =γ xy= 1θyx 为切应变; 26对数应变:塑性变形过程中;在应变主轴方向保持不变的情况下应变增量的总和;记为它反映了物体变形的实际情况;故称为自然应变或对数应变;7主应变:过变形体内一点存在有三个相互垂直的应变方向称为应变主轴;该方向上线元没有切应变;只有线应变;称为主应变;用ε1、ε2、ε3 表示..对于各向同性材料;可以认为小应变主方向与应力方向重合;8主切应变:在与应变主方向成± 45°角的方向上存在三对各自相互垂直的线元;它们的切应变有极值;称为主切应变;9最大切应变:三对主切应变中;绝对值最大的成为最大切应变;10应变张量不变量:11主应变简图:用主应变的个数和符号来表示应变状态的简图;12八面体应变:如以三个应变主轴为坐标系的主应变空间中;同样可作出正八面体;八面体平面的法线方向线元的应变称为八面体应变13应变增量:产生位移增量后;变形体内质点就有相应无限小的应变增量;用dεij 来表示;14应变速率:单位时间内的应变称为应变速率;俗称变形速度;用ε& 表示;其单位为 s -1;15位移速度:14.试说明应变偏张量和应变球张量的物理意义..应变偏张量εij / ----表示变形单元体形状的变化;应变球张量δijεm ----表示变单元体体积的变化;塑性变形时;根据体积不变假设;即εm = 0;故此时应变偏张量即为应变张量15.塑性变形时应变张量和应变偏张量有何关系其原因何在塑性变形时应变偏张量就是应变张量;这是根据体积不变假设得到的;即εm = 0;应变球张量不存在了..16.用主应变简图表示塑性变形的类型有哪些三个主应变中绝对值最大的主应变;反映了该工序变形的特征;称为特征应变..如用主应变简图来表示应变状态;根据体积不变条件和特征应变;则塑性变形只能有三种变形类型①压缩类变形;特征应变为负应变即ε1<0 另两个应变为正应变;ε2 +ε3 = .ε1 ;②剪切类变形平面变形;一个应变为零;其他两个应变大小相等;方向相反;ε2 =0;ε1= .ε3 ;③伸长类变形;特征应变为正应变;另两个应变为负应变;ε1 = .ε2 .ε3 ..17.对数应变有何特点它与相对线应变有何关系对数应变能真实地反映变形的积累过程;所以也称真实应变;简称真应变..它具有如下特点:①对数应变有可加性;而相对应变为不可加应变;②对数应变为可比应变;相对应变为不可比应变;③相对应变不能表示变形的实际情况;而且变形程度愈大;误差也愈大..对数应变可以看做是由相对线应变取对数得到的..21.叙述下列术语的定义或含义:Ⅰ屈服准则:在一定的变形条件变形温度、变形速度等下;只有当各应力分量之间符合一定关系时;质点才开始进入塑性状态;这种关系称为屈服准则;也称塑性条件;它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件;Ⅱ屈服表面:屈服准则的数学表达式在主应力空间中的几何图形是一个封闭的空间曲面称为屈服表面..假如描述应力状态的点在屈表面上;此点开始屈服..对各向同性的理想塑性材料;则屈服表面是连续的;屈服表面不随塑性流动而变化..Ⅲ屈服轨迹:两向应力状态下屈服准则的表达式在主应力坐标平面上的集合图形是封闭的曲线;称为屈服轨迹;也即屈服表面与主应力坐标平面的交线..22.常用的屈服准则有哪两个如何表述分别写出其数学表达式..常用的两个屈服准则是 Tresca屈服准则和 Mises屈服准则;数学表达式分别为max minTresca屈服准则:ηmax =ζ .ζ = C2 式中;ζmax 、ζ min ----带数值最大、最小的主应力; C----与变形条件下的材料性质有关而与应力状态无关的常数;它可通过单向均匀拉伸试验求的..Tresca屈服准则可以表述为:在一定的变形条件下;当受力体内的一点的最大切应力ηmax 达到某一值时;该点就进入塑性状体..Mises屈服准则:ζ= 1 ζ1 .ζ 2 2 + ζ 2 .ζ3 2 + ζ3 .ζ12 =ζs2 = 1ζ 2s2zx2yz2xy2xz2zy2yx6ζηηηζζζζζ=+++.+.+.所以 Mises屈服准则可以表述为:在一定的变形条件下;当受力体内一点的等效应力ζ达到某一定值时;该点就进入塑性状态..23.两个屈服准则有何差别在什么状态下两个屈服准则相同什么状态下差别最大Ⅰ共同点:①屈服准则的表达式都和坐标的选择无关;等式左边都是不变量的函数;②三个主应力可以任意置换而不影响屈服;同时;认为拉应力和压应力的作用是一样的;③各表达式都和应力球张量无关..不同点:①Tresca屈服准则没有考虑中间应力的影响;三个主应力的大小顺序不知道时;使用不方便;而 Mises屈服准则则考虑了中间应力的影响;使用方便..Ⅱ两个屈服准则相同的情况在屈服轨迹上两个屈服准则相交的点表示此。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案


根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析

《金属塑性成形原理》习题库(附答案及解析)

《金属塑性成形原理》习题库(附答案及解析)

《金属塑性成形原理》试题库一、填空题:1、在外力作用下使金属材料发生塑性变形而不破坏其完整的能力称为塑性。

2、晶内变形的主要方式是滑移和孪生,其中滑移变形是主要的。

3、一般来说,滑移总是沿着原子密度最大的晶面和晶向发生。

4、体心立方金属滑移系为12 个;面心立方滑移系为12 个;密排六方滑移系为3 个。

5、孪生是晶体在切应力作用下,晶体的一部分沿着一定的晶面和一定的晶向发生均匀切变,变形部分与未变形部分构成了镜面对称关系。

6、在多晶体材料中,晶间变形的主要方式是晶体之间的相互滑动和转动。

7、多晶体塑性变形的特点:一是晶粒变形的不同时性;二是各晶粒变形的相互协调性;三是晶粒与晶粒之间以及晶粒内部与晶界附近区域之间变形的不均匀性。

8、晶体滑移时,滑移方向的应力分量为τ=σμ,μ=cosθcosλ,μ称为取向因子。

9、通常把取向因子μ=0的取向称为硬取向;把μ=0.5的取向称为软取向。

10、固溶体塑性变形时,由于位错应变能的作用,溶质原子会偏聚在位错附近形成特定的分布,这种分布现象称为“柯氏气团”或“溶质气团”。

11、随着变形程度的增加,金属的强度和硬度增加,而塑性韧性降低,这种现象称为加工硬化(或形变强化)。

12、去应力退火是回复在金属中的应用之一,既可保持金属的加工硬化(或形变强化),又可消除残余应力。

13、实验研究表明,晶粒平均直径d与屈服强度σs的关系(Hall-Petch关系)可表达为:σs=σ0+Kd-1/2。

14、由于塑性变形使得金属形成晶粒具有择优取向的组织,称为形变织构。

15、增大静水压力能抵消由于不均匀变形引起的附加拉应力,从而减轻其所造成的拉裂作用。

16、材料在一定的条件下,其拉伸变形的延伸率超过100% 的现象叫超塑性。

17、金属的超塑性分为细晶超塑性和相变超塑性两大类。

18、冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代冷变形组织,这个过程称为金属的再结晶。

材料科学基础塑性题库及答案

材料科学基础塑性题库及答案

第七章金属塑性变形一、名词解释固溶强化:固溶体中的溶质原子溶入基体金属后使合金变形抗力提高,应力-应变曲线升高,塑性下降的现象;应变时效:具有屈服现象的金属材料在受到拉伸等变形发生屈服后,在室温停留或低温加热后重新拉伸又出现屈服效应的情况;孪生:金属塑性变形的重要方式。

晶体在切应力作用下一部分晶体沿着一定的晶面(孪晶面)和一定的晶向(孪生方向)相对于另外一部分晶体作均匀的切变,使相邻两部分的晶体取向不同,以孪晶面为对称面形成镜像对称,孪晶面的两边的晶体部分称为孪晶。

形成孪晶的过程称为孪生;临界分切应力:金属晶体在变形中受到外力使某个滑移系启动发生滑移的最小分切应力;变形织构:多晶体中位向不同的晶粒经过塑性变形后晶粒取向变成大体一致,形成晶粒的择优取向,择优取向后的晶体结构称为变形织构,织构在变形中产生,称为变形织构。

二问答1 单相合金的冷塑性变形与纯金属的室温塑性变形相比,有何特点。

答:纯金属变形主要借助位错运动,通过滑移和孪生完成塑性变形,开动滑移系需要临界切应力,晶体中还会发生扭转;单相合金的基本变形过程与纯金属的基本过程是一样的,但会出现固溶强化,开动滑移系需要临界切应力较大,还有屈服和应变时效现象。

2 金属晶体塑性变形时,滑移和孪生有何主要区别?答:滑移时原子移动的距离是滑移方向原子间距的整数倍,孪生时原子移动的距离不是孪生方向原子间距的整数倍;滑移时滑移面两边晶体的位向不变,而孪生时孪生面两边的晶体位向不同,以孪晶面形成镜像对称;滑移时需要的临界分切应力小,孪生开始需要的临界分切应力很大,孪生开始后继续切变时需要的切应力小,故孪生一般在滑移难于进行时发生。

3 A-B二元系中,A晶体结构是bcc,形成α固溶体,B晶体结构是fcc,形成β固溶体,A 与B形成η相,其晶体结构是hcp:1)指出α,β,η三个相的常见滑移系;2)绘出它们单晶变形时应力-应变曲线示意图,试解释典型低层错能面心立方单晶体的加工硬化曲线,并比较与多晶体加工硬化曲线的差别。

金属塑性加工原理课后答案

金属塑性加工原理课后答案

金属塑性加工原理课后答案【篇一:金属塑性加工原理试题及答案中南大学考试试卷(试题四)】004 —— 2005 学年第二学期时间 110 分钟金属塑性加工原理课程 64 学时 4 学分考试形式:闭卷专业年级材料 2002 级总分 100 分,占总评成绩 70%一、名词解释:(本题10分,每小题2分)1.热效应2.动态再结晶3.外端4.附加应力5.塑性—脆性转变二、填空题(本题16分,每小题2分)1.一点的应力状态是指_____________________________________________________ 可以用______________________________________________________ ____来表示。

2.应力不变量的物理意义是_______________________________________________,应力偏量的物理意义是_________________________________________________。

3.应变增量是指______________________________________________________ _______,其度量基准是______________________________________________________ _______。

4.应变速度是指______________________________________________________ ________,其量纲是______________________________________________________ ___________。

5.tresca塑性条件的物理意义是________________________________________________,mises塑性条件的物理意义是_________________________________________________。

塑性成形复习题

塑性成形复习题

y 轴的切应力分量, xz 表示 x 面上平行于 z 轴的切应力分量。 应力分量的正负号按照以下方法确定。在正面上指向坐标轴正向的应力分量取正号,指 向负向的取负号。在负面上的应力分量则相反,指向坐标轴负向的应力分量取正号,指向正 向的取负号。因此拉压力为正,压应力为负。
5. 平面应力状态的基本特征有哪些,写出平面应力状态的应力张量。 答: 平面应力状态的基本特征是:1) 物体内所有质点在与某一方向垂直的平面上都没有应
汉基 1927 年阐明了米塞斯屈服准则的物理意义 即当材料质点单位体积的弹性应变能达 到某一定值时材料就会屈服。
13. 屈雷斯加屈服准则和米塞斯屈服准则在主应力空间的几何形状及几何意义是什么? 答: 米塞斯屈服准则在主应力空间是一个以等倾线为轴线的圆柱面。屈雷斯加屈服准则是一 个内接于米塞斯屈服表面的正六棱柱面。 屈服表面的物理意义是如果主应力空间中一点应力状态矢量的端点在屈服面内部,则该 点处于弹性状态,若点位于屈服面上,则该点处于塑性状态。对于理想塑性材料屈服点不能 位于屈服表面之外。 14. 后继屈服表面变化的三种假说是什么? 平面上后继屈服轨迹是如何变化的? 答: 三种假说是各向同性硬化,随动硬化,混合硬化。 在 平面上各向同性硬化材料的后继屈服轨迹是保持中心和形状不变而均匀地扩大。随 动硬化材料的后继屈服轨迹是保持形状和大小不变,中心做刚性移动。混合硬化材料的后继 屈服轨迹是仅保持形状不变,其大小和中心都在发生变化,变化的幅度介于二者之间。 15. 各向同性硬化材料的屈服轨迹在 平面上是如何变化的,写出各向同性硬化材料的屈服 准则的表达式。 答:各向同性硬化材料在硬化后,屈服轨迹的中心位置和形状保持不变,它们在 平面 上仍然是以原点为中心的对称封闭曲线,但其大小随变形的进行而不断均匀地扩大。如果材 料初始屈服时服从米塞斯或屈雷斯加准则,则后继屈服轨迹就是一系列同心圆或正六边形。 各向同性硬化材料的屈服准则可以写成 f ( ij ) C 的形式, 则屈服轨迹的中心位置和形状
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塑性加工原理复习题(一)
概念理解,判断题
1.弹簧的塑性变形量很小。

2.橡皮筋的变形量大,所以塑性好。

3.屈服强度以下屈服点的数值确定。

4.塑性材料才有屈服强度。

5.钢铁在1000℃的条件下进行轧制,属于热加工,因为轧制温度远
高于室温。

6.锡的熔点为232℃,在室温20℃的条件下加工属于热加工。

7.锡的熔点为232℃,在-50℃的条件下加工属于冷加工。

8.只要物体受到外力一定会产生应力。

9.所受外力合力为0的条件下,物体不会产生应力。

10.静水压力作用下物体一定不会发生塑性变形。

11.静水压力作用下物体也会发生变形。

12.最大主应力的平面与最大切应力平面没有位置上的关系。

P160
13.最大主应力的平面与最大切应力平面有位置上的关系。

P160
14.最大主应力可能为0。

15.最大主应力不可能为0。

16.主应力方向一定和外力方向平行。

17.最大主应力方向一定和外力方向平行。

18.最大主应力方向一定和外力合力方向平行。

19.Σf外≠0时,最大主应力方向一定和外力合力方向平行。

20.最大主应力的方向只有一个。

21.最大主应力的方向可能有多个。

22.一点的应力空间有可能是圆球形。

23.塑性变形是最终归结于切应力作用。

24.延伸率Δl/l 真实反映了变形体的变形程度,属于“真应变”。

25.真应变是可以比较的应变。

26.L0长的物体,伸长到2L0,与缩短到0.5L0,两种变形程度,按
照名义应变计算不等,按照真应变计算相等。

相关文档
最新文档