c数据结构单链表的建立与基本应用

合集下载

数据结构课程设计-单链表

数据结构课程设计-单链表

目录1 选题背景 (1)2 方案与论证 (1)2。

1 链表的概念和作用 (1)2。

3 算法的设计思想 (2)2。

4 相关图例 (3)2.4.1 单链表的结点结构 (3)2.4。

2 算法流程图 (3)3 实验结果 (4)3.1 链表的建立 (4)3.2 单链表的插入 (4)3.3 单链表的输出 (5)3.4 查找元素 (5)3。

5 单链表的删除 (5)3。

6 显示链表中的元素个数(计数) (5)4 结果分析 (6)4。

1 单链表的结构 (6)4。

2 单链表的操作特点 (6)4。

2。

1 顺链操作技术 (6)4.2。

2 指针保留技术 (6)4。

3 链表处理中的相关技术 (6)5 设计体会及今后的改进意见 (6)参考文献 (8)附录代码: (8)1 选题背景陈火旺院士把计算机60多年的发展成就概括为五个“一”:开辟一个新时代-—--信息时代,形成一个新产业-—-—信息产业,产生一个新科学—---计算机科学与技术,开创一种新的科研方法-—--计算方法,开辟一种新文化---—计算机文化,这一概括深刻影响了计算机对社会发展所产生的广泛而深远的影响。

数据结构和算法是计算机求解问题过程的两大基石。

著名的计算机科学家P.Wegner指出,“在工业革命中其核心作用的是能量,而在计算机革命中其核心作用的是信息”.计算机科学就是“一种关于信息结构转换的科学”.信息结构(数据结构)是计算机科学研究的基本课题,数据结构又是算法研究的基础。

2 方案与论证2。

1 链表的概念和作用链表是一种链式存储结构,链表属于线性表,采用链式存储结构,也是常用的动态存储方法。

链表中的数据是以结点来表示的,每个结点的构成:元素(数据元素的映象) + 指针(指示后继元素存储位置),元素就是存储数据的存储单元,指针就是连接每个结点的地址数据。

以“结点的序列”表示线性表称作线性链表(单链表)单链表是链式存取的结构,为找第 i 个数据元素,必须先找到第 i-1 个数据元素。

链表及其应用

链表及其应用
a1
头指针是指向链表中第一个结点(或为头结点或为首
元素结点)的指针。 单链表可由一个头指针唯一确定。
头结点是在链表的首元素结点之前附设的一个结点;
数据域内只放空表标志和表长等信息;
首元素结点是指链表中存储线性表第一个数据元素
a1的结点。
33
第3章 链表及其应用
讨论1. 在链表中设置头结点有什么好处?
我们可以用结构体来定义静态链表的节点数据类型: typedef struct{ Datatype data; int next; }node;
一个静态链表可以描述为: #define maxsize 100 node nodepool[maxsize];//存放链表的数组 int head; //放头指针的head 在静态链表中进行插入与删除操作不需要移动元素,
4
第3章 链表及其应用
3.1 链表的基本概念
3.1.1 什么是链表 ☞ 3.1.2 链表的逻辑结构
3.1.3 链表的存储结构 3.1.4 静态链表和动态链表 3.1.5 链表的基本运算
5
第3章 链表及其应用
♣ 链表的逻辑结构
☞ 同一链表中所有数据元素的数据类型必须相同。 ☞ 链表中相邻的元素ai-1、ai间存在序偶关系,即 对于非空的链表,ai-1是ai的唯一直接前驱,ai+1是 ai的唯一直接后继;而a1无前驱,an无后继 ☞ 链表属于线性逻辑结构。
结点3的地址:p->next;
28
第3章 链表及其应用
H
a1
p
p
a2
a3
a4
a5 ∧
再令p = p->next, 数据元素a3值:p ->data
结点4的地址:p->next;

《数据结构》教程c语言版

《数据结构》教程c语言版

《数据结构》第五版清华大学自动化系李宛洲2004年5月目录第一章数据结构--概念与基本类型 (6)1.1概述 (6)1.1.1数据结构应用对象 (6)1.1.2学习数据结构的基础 (7)1.1.2.1 C语言中的结构体 (7)1.1.2.2 C语言的指针在数据结构中的关联作用 (8)1.1.2.3 C语言的共用体(union)数据类型 (12)1.1.3数据结构定义 (15)1.2线性表 (17)1.2.1 顺序表 (18)1.2.2 链表 (20)1.2.2.1链表的基本结构及概念 (20)1.2.2.2单链表设计 (22)1.2.2.3单链表操作效率 (29)1.2.2.4双链表设计 (30)1.2.2.5链表深入学习 (32)1.2.2.6稀疏矩阵的三元组与十字链表 (36)1.2.3 堆栈 (41)1.2.3.1堆栈结构 (41)1.2.3.2基本操作 (42)1.2.3.3堆栈与递归 (44)1.2.3.4递归与分治算法 (45)1.2.3.5递归与递推 (49)1.2.3.6栈应用 (52)1.2.4 队列 (57)1.2.4.1队列结构 (57)1.2.3.2队列应用 (59)1.3非线性数据结构--树 (64)1.3.1 概念与术语 (64)1.3.1.1引入非线性数据结构的目的 (64)1.3.1.2树的定义与术语 (65)1.3.1.3树的内部节点与叶子节点存储结构问题 (66)1.3.2 二叉树 (66)1.3.2.1二叉树基本概念 (66)1.3.2.2完全二叉树的顺序存储结构 (68)1.3.2.3二叉树遍历 (69)1.3.2.4二叉树唯一性问题 (71)1.3.3 二叉排序树 (72)1.3.3.1基本概念 (72)1.3.3.2程序设计 (73)1.3.4 穿线二叉树 (79)1.3.4.1二叉树的中序线索化 (80)1.3.4.2中序遍历线索化的二叉树 (81)1.3.5 堆 (82)1.3.5.1建堆过程 (83)1.3.5.2在堆中插入节点 (85)1.3.6 哈夫曼树 (86)1.3.6.1最佳检索树 (86)1.3.6.2哈夫曼树结构与算法 (88)1.3.6.3 哈夫曼树应用 (90)1.3.6.4哈夫曼树程序设计 (92)1.3.7 空间数据结构----二叉树深入学习导读 (95)1.3.7.1k-d树概念 (96)1.3.7.2k-d树程序设计初步 (97)1.4非线性数据结构--图 (100)1.4.1图的基本概念 (100)1.4.2图形结构的物理存储方式 (103)1.4.2.1相邻矩阵 (103)1.4.2.2图的邻接表示 (104)1.4.2.3图的多重邻接表示 (106)1.4.3图形结构的遍历 (107)1.4.4无向连通图的最小生成树(minimum-cost spanning tree:MST) (110)1.4.5有向图的最短路径 (113)1.4.5.1单源最短路径(single-source shortest paths) (113)1.4.5.2每对顶点间最短路经(all-pairs shortest paths) (116)1.4.6拓扑排序 (117)第二章检索 (123)2.1顺序检索 (123)2.2对半检索 (124)2.2.1 对半检索与二叉平衡树 (124)2.2.2对半检索思想在链式存储结构中的应用---跳跃表 (127)2.3分块检索 (133)2.4哈希检索 (134)2.4.1哈希函数 (135)2.4.2闭地址散列 (136)2.4.2.1线性探测法和基本聚集问题 (136)2.4.2.2删除操作造成检索链的中断问题 (138)2.4.2.3随机探测法 (139)2.4.2.4平方探测法 (140)2.4.2.5二次聚集问题与双散列探测方法 (141)2.4.3开地址散列 (142)2.4.4哈希表检索效率 (142)第三章排序 (145)3.1交换排序方法 (145)3.1.1直接插入排序 (145)3.1.2冒泡排序 (147)3.1.3 选择排序 (148)3.1.4 树型选择排序 (149)3.2S HELL排序 (150)3.3快速排序 (152)3.4堆排序 (154)3.5归并排序 (156)3.6数据结构小结 (159)3.6.1 数据结构的基本概念 (159)3.6.2 数据结构分类 (159)3.6.2.1数据结构中的指针问题 (160)3.6.2.2线性表的效率问题 (161)3.6.2.3二叉树 (161)3.6.3排序与检索 (161)3.7算法分析的基本概念 (162)3.7.1基本概念 (162)3.7.2上限分析 (164)3.7.3下限分析 (164)3.7.4空间代价与时间代价转换 (165)第6章高级数据结构内容--索引技术 (167)6.1基本概念 (167)6.2线性索引 (168)6.2.1 线性索引 (168)6.2.2 倒排表 (169)6.32-3树 (170)6.3.1 2-3树定义 (172)6.3.2 2-3树节点插入 (173)6.4B+树 (178)6.4.1 B+树定义 (178)6.4.2 B+树插入与删除 (180)6.4.3 B+树实验设计 (182)第一章数据结构--概念与基本类型1.1概述1.1.1数据结构应用对象计算机应用可以分为两大类,一类是科学计算和工业控制,另一类是商业数据处理。

数据结构实验报告实现单链表各种基本运算的算法

数据结构实验报告实现单链表各种基本运算的算法

实验截图(1)void InitList(LinkNode *&L)//初始化线性表{L=(LinkNode *)malloc(sizeof(LinkNode)); //创建头结点L->next=NULL;//单链表置为空表}void DestroyList(LinkNode *&L)//销毁线性表{LinkNode *pre=L,*p=pre->next;实验截图(2)bool GetElem(LinkNode *L,int i,ElemType &e) //求线性表中第i个元素值{ int j=0;if (i<=0) return false;//i错误返回假LinkNode *p=L;//p指向头结点,j置为0(即头结点的序号为0) while (j<i && p!=NULL)//找第i个结点p{ j++;p=p->next;}if (p==NULL)//存在值为e的结点,返回其逻辑序号ireturn(i);}实验截图(3)bool ListInsert(LinkNode *&L,int i,ElemType e) //插入第i个元素{ int j=0;if (i<=0) return false;//i错误返回假LinkNode *p=L,*s;//p指向头结点,j置为0(即头结点的序号为0) while (j<i-1 && p!=NULL)//查找第i-1个结点p{ j++;p=p->next;}}实验截图(4)编写exp2-2.cpp程序包含有关代码//文件名:exp2-2.cpp#include "linklist.cpp"int main(){LinkNode *h;ElemType e;printf("单链表的基本运算如下:\n");printf(" (1)初始化单链表h\n");InitList(h);printf(" (2)依次采用尾插法插入a,b,c,d,e元素\n");return 1;}实验截图(5)运行得到结果实验截图(6)。

C语言数据结构线性表的基本操作实验报告

C语言数据结构线性表的基本操作实验报告

实验一线性表的基本操作一、实验目的与基本要求1.掌握数据结构中的一些基本概念。

数据、数据项、数据元素、数据类型和数据结构,以及它们之间的关系。

2.了解数据的逻辑结构和数据的存储结构之间的区别与联系;数据的运算与数据的逻辑结构的关系。

3.掌握顺序表和链表的基本操作:插入、删除、查找以及表的合并等运算。

4.掌握运用C语言上机调试线性表的基本方法。

二、实验条件1.硬件:一台微机2.软件:操作系统和C语言系统三、实验方法确定存储结构后,上机调试实现线性表的基本运算。

四、实验内容1.建立顺序表,基本操作包括:初始化,建立一个顺序存储的链表,输出顺序表,判断是否为空,取表中第i个元素,定位函数(返回第一个与x相等的元素位置),插入,删除。

2.建立单链表,基本操作包括:初始化,建立一个链式存储的链表,输出顺序表,判断是否为空,取表中第i个元素,定位函数(返回第一个与x相等的元素位置),插入,删除。

3.假设有两个按数据元素值非递减有序排列的线性表A和B,均以顺序表作为存储结构。

编写算法将A表和B表归并成一个按元素值非递增有序(允许值相同)排列的线性表C。

(可以利用将B中元素插入A中,或新建C表)4.假设有两个按数据元素值非递减有序排列的线性表A和B,均以单链表作为存储结构。

编写算法将A表和B表归并成一个按元素值递减有序(即非递增有序,允许值相同)排列的线性表C。

五、附源程序及算法程序流程图1.源程序(1)源程序(实验要求1和3)#include<stdio.h>#include<malloc.h>#include<stdlib.h>#define LIST_INIT_SIZE 100#define LISTINCREMENT 10typedef struct arr{int * elem;int length;int listsize;}Sqlist;void menu(); //菜单void InitList(Sqlist *p); // 创建线性表void ShowList(Sqlist *p); // 输出顺序线性表void ListDelete(Sqlist *p,int i,int &e); // 在顺序线性表中删除第i个元素,并用e返回其值void ListInsert(Sqlist *p); // 在顺序线性表中第i个元素前插入新元素evoid ListEmpty(Sqlist *p); // 判断L是否为空表void GetList(Sqlist *p,int i,int &e); // 用e返回L中第i个数据元素的值void ListInsert(Sqlist *p,int i,int e);bool compare(int a,int b);void LocateElem(Sqlist *L,int e); // 在顺序线性表L中查找第1个值与e满足compare()d元素的位序void MergeList_L(Sqlist *La,Sqlist *Lb); // 归并void main(){Sqlist La;Sqlist Lb;int n,m,x;menu();scanf("%d",&n);while(n){switch(n){case 0: ; break;case 1:InitList(&La);break;case 2:ListEmpty(&La);break;case 3:printf("请输入插入的位序:\n");scanf("%d",&m);printf("请出入要插入的数:\n");scanf("%d",&x);ListInsert(&La,m,x);break;case 4:printf("请输入删除元素的位序:\n");scanf("%d",&m);ListDelete(&La,m,x);printf("删除的元素为:%d\n",x);break;case 5:printf("请输入要找的与线性表中相等的数:\n");scanf("%d",&m);LocateElem(&La,m);break;case 6:printf("请输入查找的位序:\n");scanf("%d",&m);GetList(&La,m,x);printf("La中第%d个元素的值为%d\n",m,x);break;case 7:ShowList(&La);break;case 8:InitList(&Lb);break;case 9:MergeList_L(&La,&Lb);printf("归并成功!");break;}menu();scanf("%d",&n);}}/*菜单*/void menu(){printf("********************\n\n");printf(" 0.退出\n\n");printf(" 1.创建线性表La\n\n");printf(" 2.判断La是否为空表\n\n");printf(" 3.插入元素(La)\n\n");printf(" 4.删除元素(La)\n\n");printf(" 5.定位元素(La)\n\n");printf(" 6.取元素(La)\n\n");printf(" 7.输出线性表\n\n");printf(" 8.创建线性表Lb\n\n");printf(" 9.归并为一个线性表La\n\n");printf("********************\n\n");}/*创建顺序线性表L*/void InitList(Sqlist *L){int n;int i=0;L->elem=(int *)malloc(LIST_INIT_SIZE*sizeof(int));if(NULL==L->elem)printf("储存分配失败!\n");else{L->length=0;L->listsize=LIST_INIT_SIZE;printf("输入顺序表a:\n");scanf("%d",&n);while(n){L->elem[i]=n;i++;L->length++;L->listsize=L->listsize-4;scanf("%d",&n);}}}/*输出顺序线性表*/void ShowList(Sqlist *p){int i;if(0==p->length)printf("数组为空!\n");elsefor(i=0;i<p->length;i++)printf("%d ",p->elem[i]);printf("\n");}/*判断L是否为空表*/void ListEmpty(Sqlist *p)if(0==p->length)printf("L是空表!\n");elseprintf("L不是空表!\n");}/*在顺序线性表中第i个元素前插入新元素e */void ListInsert(Sqlist *p,int i,int e){int *newbase;int *q1;int *q2;while(i<1||i>p->length+1){printf("您输入的i超出范围!\n请重新输入要插入的位置\n:");scanf("%d",&i);}if(p->length>=p->listsize){newbase=(int *)realloc(p->elem,(p->listsize+LISTINCREMENT)*sizeof(int));if(!newbase)exit(0);else{p->elem=newbase;p->listsize+=LISTINCREMENT;}}q1=&(p->elem[i-1]);for(q2=&(p->elem[p->length-1]);q2>=q1;--q2)*(q2+1)=*q2;*q1=e;++p->length;}/*/在顺序线性表中删除第i个元素,并用e返回其值*/void ListDelete(Sqlist *p,int i,int &e){int *q1,*q2;while(i<1||i>p->length){printf("您输入的i超出范围!请重新输入:");scanf("%d",&i);}q1=&(p->elem[i-1]);e=*q1;q2=p->elem+p->length-1;for(++q1;q1<=q2;++q1)*(q1-1)=*q1;--p->length;}/*对比a与b相等*/bool compare(int a,int b){if(a==b)return 1;elsereturn 0;}/*在顺序线性表L中查找第1个值与e满足compare()d元素的位序*/ void LocateElem(Sqlist *L,int e){int i=1;int *p;p=L->elem;while(i<=L->length && !compare(*p++,e))++i;if(i<=L->length)printf("第1个与e相等的元素的位序为%d\n",i);elseprintf("没有该元素!\n");}/*用e返回L中第i个数据元素的值*/void GetList(Sqlist *p,int i,int &e){Sqlist *p1;p1=p;e=p1->elem[i-1];}/* 已知顺序线性表La和Lb是元素按值非递减排列*//* 把La和Lb归并到La上,La的元素也是按值非递减*/void MergeList_L(Sqlist *La,Sqlist *Lb){int i=0,j=0,k,t;int *newbase;Sqlist *pa,*pb;pa=La;pb=Lb;while(i<pa->length && j<pb->length){if(pa->elem[i] >= pb->elem[j]){if(pa->listsize==0){newbase=(int*)realloc(pa->elem,(pa->listsize+LISTINCREMENT)*sizeof(int));if(!newbase)exit(0);}for(k=pa->length-1; k>=i; k--)pa->elem[k+1]=pa->elem[k];pa->length++;pa->elem[i]=pb->elem[j];i++;j++;}elsei++;}while(j<pb->length){if( pa->listsize < pb->length-j ){newbase=(int*)realloc(pa->elem,(pa->listsize+LISTINCREMENT)*sizeof(int));if(!newbase)exit(0);}for(j;j<pb->length;j++,i++){pa->elem[i]=pb->elem[j];pa->length++;}}for(i=0;i<pa->length/2;i++){t=pa->elem[i];pa->elem[i]=pa->elem[pa->length-i-1];pa->elem[pa->length-i-1]=t;}}(2)源程序(实验要求2和4)#include<stdio.h>#include<malloc.h>#include<stdlib.h>typedef struct LNode{int data;struct LNode *next;}LNode, *LinkList;void menu();LinkList InitList();void ShowList(LinkList L);void ListDelete(LinkList L,int i,int &e);void ListEmpty(LinkList L);void GetList(LinkList L,int i,int &e);void ListInsert(LinkList L,int i,int e);bool compare(int a,int b);void LocateElem(LinkList L,int e);LinkList MergeList_L(LinkList La,LinkList Lb);int total=0;void main(){LinkList La;LinkList Lb;La=(LinkList)malloc(sizeof(struct LNode));La->next=NULL;Lb=(LinkList)malloc(sizeof(struct LNode));Lb->next=NULL;int n;int m;int x;menu();scanf("%d",&n);while(n){switch(n){case 0: ; break;case 1:La->next=InitList();break;case 2:ListEmpty(La);break;case 3:printf("请输入要插入到第几个节点前:\n");scanf("%d",&m);printf("请输入插入的数据:\n");scanf("%d",&x);ListInsert(La,m,x);break;case 4:printf("请输入删除元素的位序:\n");scanf("%d",&m);ListDelete(La,m,x);printf("删除的元素为:%d\n",x);break;case 5:printf("请输入要找的与线性表中相等的数:\n");scanf("%d",&m);LocateElem(La,m);break;case 6:printf("请输入查找的位序:\n");scanf("%d",&m);GetList(La,m,x);printf("La中第%d个元素的值为%d\n",m,x);break;case 7:ShowList(La);break;case 8:Lb->next=InitList();break;case 9:La=MergeList_L(La,Lb);printf("归并成功\n");break;}menu();scanf("%d",&n);}}void menu(){printf("********************\n\n");printf(" 0.退出\n\n");printf(" 1.创建线性表La\n\n");printf(" 2.判断是否为空表\n\n");printf(" 3.插入元素\n\n");printf(" 4.删除元素\n\n");printf(" 5.定位元素\n\n");printf(" 6.取元素\n\n");printf(" 7.输出线性表\n\n");printf(" 8.创建线性表Lb\n\n");printf(" 9.归并两线性表\n\n");printf("********************\n\n");}// 创建链式线性表LLinkList InitList(){int count=0;LinkList pHead=NULL;LinkList pEnd,pNew;pEnd=pNew=(LinkList)malloc(sizeof(struct LNode));printf("请输入数据:\n");scanf("%d",&pNew->data);while(pNew->data){count++;if(count==1){pNew->next=pHead;pEnd=pNew;pHead=pNew;}else{pNew->next=NULL;pEnd->next=pNew;pEnd=pNew;}pNew=(LinkList)malloc(sizeof(struct LNode));printf("请输入数据:\n");scanf("%d",&pNew->data);}free(pNew);total=total+count;return pHead;}// 判断L是否为空表void ListEmpty(LinkList L){if(NULL==L->next)printf("此表为空表!\n");elseprintf("此表不为空表!\n");}// 在链式线性表中第i个元素前插入新元素e void ListInsert(LinkList L,int i,int e){LinkList p;LinkList s;p=L;int j=0;while(p&&j<i-1){p=p->next;++j;}if(!p||j>i-1)printf("不存在您要找的节点!\n");else{s=(LinkList)malloc(sizeof(int));s->data=e;s->next=p->next;p->next=s;printf("插入节点成功!\n");}}// 输出链式线性表void ShowList(LinkList L){LinkList p;p=L->next;if(p==NULL)printf("此表为空表!\n");elsewhile(p){printf("%d ",p->data);p=p->next;}printf("\n");}// 在链式线性表中删除第i个元素,并用e返回其值void ListDelete(LinkList L,int i,int &e){LinkList p;LinkList q;p=L;int j=0;while(p->next && j<i-1){p=p->next;++j;}if(!(p->next)||j>i-1)printf("没有找到要删除的位置!");else{q=p->next;p->next=q->next;e=q->data;free(q);}}// 用e返回L中第i个数据元素的值void GetList(LinkList L,int i,int &e){LinkList p;p=L->next;int j=0;while(p->next && j<i-1){p=p->next;++j;}if(!(p)||j>i-1)printf("没有找到要查找的位置!");elsee=p->data;}// 对比a与b相等bool compare(int a,int b){if(a==b)return 1;elsereturn 0;}// 在链式线性表L中查找第1个值与e满足compare()d元素的位序void LocateElem(LinkList L,int e){int i=0;LinkList p;p=L;while(p->next && !compare(p->data,e)){p=p->next;i++;}if(NULL==p->next){if(0==compare(p->data,e))printf("没有该元素!\n");elseprintf("第1个与e相等的元素的位序为%d\n",i);}elseif(compare(p->data,e))printf("没有该元素!\n");}LinkList MergeList_L(LinkList La,LinkList Lb){int i,j,k;LinkList pa_1,pb_1,pa_2,pb_2,pc,pd;pa_1=La->next;pc=pa_2=La;pb_1=pb_2=Lb->next;if(pa_1->data > pb_1->data){pc=pa_2=Lb;pa_1=Lb->next;pb_1=pb_2=La->next;}while(pa_1 && pb_1){if(pa_1->data >= pb_1->data){pa_2->next=pb_1;pb_2=pb_1->next;pb_1->next=pa_1;pb_1=pb_2;pa_2=pa_2->next;}else{pa_1=pa_1->next;pa_2=pa_2->next;}}if(pb_1)pa_2->next=pb_1;pd=(LinkList)malloc(sizeof(struct LNode));pd->next=NULL;pa_2=pd;k=total;for(i=0;i<total;i++){pa_1=pc->next;for(j=1;j<k;j++)pa_1=pa_1->next;pb_1=(LinkList)malloc(sizeof(struct LNode));pa_2->next=pb_1;pa_2=pa_2->next;pa_2->data=pa_1->data;k--;}pa_2->next=NULL;return pd;}2.流程图(实验要求1和3)图1 主函数流程图图2创建线性表La流程图图3判断La是否为空表流程图图4 插入元素(La)流程图图5删除元素(La)流程图图6定位元素(La)流程图图7取元素(La)流程图图8输出线性表流程图图9输出线性表流程图流程图(实验要求2和4)图10主函数流程图图11创建线性表La流程图图12判断是否为空表流程图图13插入元素流程图图14删除元素流程图图15定位元素流程图图图16取元素流程图图17创建Lb流程图图18归并两表流程图六、运行结果1. (实验要求1和3)点击运行,首先出现的是菜单界面,选择菜单选项进行操作,如图所示。

单链表数据结构

单链表数据结构

插入
if (p != NULL && j == i-1) { // 找到第i个结点
s = (LinkList) malloc ( sizeof (LNode)); // 生成新结点
s->data = e;
// 数据域赋值
s->next = p->next; //新结点指针指向后一结点
p->next = s; return OK;
6、销毁
4.6 销毁操作
while(L) { p = L->next; free(L); L=p;
// p指向第一结点(头节点为“哑结点”) // 释放首结点 // L指向p
}
// 销毁完成后,L为空(NULL)
算法的时间复杂度为:O(ListLength(L))
判空 求表长
4.7 其它操作
if(L->next==NULL) return TRUE; // 空
5、清空
4.5 清空操作
while (L->next) { p = L->next; L->next = p->next; free(p);
// p指向当前结点 // 头结点指向当前结点的后结点 // 释放当前结点内存
}
// 清空完成后,仍保留头结点L
算法的时间复杂度为:O(ListLength(L))
点。
5.1.2 逆序建立单链表
①建立一个带头结点的空单链表;
②输入数据元素ai,建立新结点p, 并把p插入在头结点之后成为第一个 结点。
③重复执行②步,直到完成单链表的 建立。
a1
a2 a1
创建出来的链表 点顺序与插入操作
顺序相反。

数据结构实验报告实现单链表各种基本运算的算法

数据结构实验报告实现单链表各种基本运算的算法

实验截图(1)void InitList(LinkNode *&L)//初始化线性表{L=(LinkNode *)malloc(sizeof(LinkNode)); //创建头结点L->next=NULL;//单链表置为空表}void DestroyList(LinkNode *&L)//销毁线性表{LinkNode *pre=L,*p=pre->next;实验截图(2)bool GetElem(LinkNode *L,int i,ElemType &e) //求线性表中第i个元素值{ int j=0;if (i<=0) return false;//i错误返回假LinkNode *p=L;//p指向头结点,j置为0(即头结点的序号为0) while (j<i && p!=NULL)//找第i个结点p{ j++;p=p->next;}if (p==NULL)//存在值为e的结点,返回其逻辑序号ireturn(i);}实验截图(3)bool ListInsert(LinkNode *&L,int i,ElemType e) //插入第i个元素{ int j=0;if (i<=0) return false;//i错误返回假LinkNode *p=L,*s;//p指向头结点,j置为0(即头结点的序号为0) while (j<i-1 && p!=NULL)//查找第i-1个结点p{ j++;p=p->next;}}实验截图(4)编写exp2-2.cpp程序包含有关代码//文件名:exp2-2.cpp#include "linklist.cpp"int main(){LinkNode *h;ElemType e;printf("单链表的基本运算如下:\n");printf(" (1)初始化单链表h\n");InitList(h);printf(" (2)依次采用尾插法插入a,b,c,d,e元素\n");return 1;}实验截图(5)运行得到结果实验截图(6)。

数据结构-C语言描述(耿国华主编)教案

数据结构-C语言描述(耿国华主编)教案

西安文理学院精品课《数据结构》教案计算机科学系韩利凯《数据结构》第一章绪论[教学目标]掌握数据结构的定义、内容、方法、描述、评价。

[重点、难点]数据结构的研究范围,研究采用的方法,算法规则描述的工具,对算法作性能评价。

[教学方法]用多媒体课件( ppt )以及与生活实例相结合等方法讲授,这样便于描述相关概念及学生记笔记,加深他们的印象,使基础知识掌握地比较牢固。

[学习要点]1. 熟悉各名词、术语的含义,掌握基本概念,特别是数据的逻辑结构和存储结构之间的关系。

分清哪些是逻辑结构的性质,哪些是存储结构的性质。

2. 了解抽象数据类型的定义、表示和实现方法。

3.理解算法五个要素的确切含义:①动态有穷性(能执行结束);②确定性(对于相同的输入执行相同的路径);③有输入;④有输出;⑤可行性(用以描述算法的操作都是足够基本的)。

4.掌握计算语句频度和估算算法时间复杂度的方法。

1.1 什么是数据结构(定义)首先介绍数据结构的相关名词。

1.数据(Data)数据是描述客观事物的数值、字符以及能输入机器且能被处理的各种符号集合。

2.数据元素(Data Element)数据元素是组成数据的基本单位 ,是数据集合的个体,在计算机中通常作为一个整体进行考虑和处理。

例如:学生登记表是数据,每一个学生的记录就是一个数据元素。

3.数据对象(Data Object)数据对象是性质相同的数据元素的集合,是数据的一个子集。

4.数据结构(DA TA Structure)数据结构是指相互之间存在一种或多种特定关系的数据元素集合,是带有结构的数据元素的集合,它指的是数据元素之间的相互关系,即数据的组织形式。

5.数据类型(Data Type)数据类型是一组性质相同的值集合以及定义在这个值集合上的一组操作的总称。

6.数据抽象与抽象数据类型1)数据的抽象高级语言中提供整型、实型、字符、记录、文件、指针等多种数据类型,可以利用这些类型构造出象栈、队列、树、图等复杂的抽象数据类型。

《数据结构C语言版》----第02章

《数据结构C语言版》----第02章

同理可证:顺序表删除一元素的时间效率为: 同理可证:顺序表删除一元素的时间效率为: T(n)=(n-1)/2 ≈O(n) O(n) (
插入效 E = ∑ is 率: i=0
n
1 n n pi ( n − i ) = ∑ (n − i) = 2 n + 1 i=0
n −1 删除效 1 n −1 n −1 Edl = ∑ qi (n − i ) = ∑ (n − i ) = 率: n i =0 2 i =0
2.2 线性表的顺序表示和实现
顺序存储结构的线性表称作顺序表 1.顺序表的存储结构 顺序表的存储结构
实现顺序存储结构的方法是使用数组。数组把线性表 实现顺序存储结构的方法是使用数组。 使用数组 的数据元素存储在一块连续地址空间的内存单元中, 连续地址空间的内存单元中 的数据元素存储在一块连续地址空间的内存单元中,这样 线性表中逻辑上相邻的数据元素在物理存储地址上也相邻。 线性表中逻辑上相邻的数据元素在物理存储地址上也相邻。 数据元素间的逻辑上的前驱、 数据元素间的逻辑上的前驱、后继逻辑关系就表现在数据 元素的存储单元的物理前后位置上。 元素的存储单元的物理前后位置上。 顺序表的存储结构如图所示
2.线性表抽象数据类型 2.线性表抽象数据类型
数据集合:{ 的数据类型为DataType 数据集合 { a0, a1, … , an-1 }, ai的数据类型为 (1) ListInitiate(L) 初始化线性表 (2) ListLength(L) 求当前数据元素个数 操作集合: 操作集合 (3) ListInsert(L,i,x) 插入数据元素 (4) ListDelete(L,i,x) 删除数据元素 (5) ListGet(L,i,x) 取数据元素
printf("参数 不合法 \n"); 参数i不合法 参数 不合法! return 0;

数据结构c语言版创建单链表的代码

数据结构c语言版创建单链表的代码

数据结构c语言版创建单链表的代码单链表作为常用的线性结构之一,常常用于解决以链式方式存储数据的问题。

创建单链表需要掌握一些基础的数据结构知识以及对C语言的熟练运用。

接下来,本文将分步骤地阐述数据结构C语言版创建单链表的代码。

第一步,定义单链表结构体并定义节点类型。

在C语言中,我们可以通过结构体的方式定义单链表,其中结构体中包含两个成员变量,分别为存储数据的data和指向下一个节点的指针next。

对于节点类型,我们可以使用typedef对节点类型进行定义,例如:```struct ListNode {int data;struct ListNode *next;};typedef struct ListNode ListNode;```在以上代码中,我们首先定义了一个结构体ListNode作为单链表的元素类型,其中包含存储数据的data和指向下一个元素的指针next。

接着我们使用typedef将结构体ListNode定义为仿函数ListNode,从而使其更加方便使用。

第二步,初始化单链表。

在创建单链表之前,我们需要先将单链表的头指针初始化为NULL,表示当前链表为空。

具体代码如下:```ListNode *createLinkedList() {ListNode *head = NULL;return head;}```以上代码中,函数createLinkedList用于创建并初始化单链表,其中head表示单链表头指针,我们将其初始化为NULL。

第三步,向单链表中添加元素。

在单链表中添加元素需要借助于指针的指向关系。

具体来说,我们需要先创建新的节点,将其数据添加到节点中,然后将新节点的next指针指向之前的头节点,最后将头指针指向新节点。

具体过程如下:```ListNode *addListNode(ListNode **head, int val) {ListNode *newNode = (ListNode *)malloc(sizeof(ListNode)); newNode->data = val;newNode->next = *head;*head = newNode;return *head;}```在以上代码中,函数addListNode接收一个指向头指针的指针head,以及需要添加的元素值val。

数据结构C语言版 线性表的单链表存储结构表示和实现

数据结构C语言版 线性表的单链表存储结构表示和实现

#include 〈stdio.h>#include <malloc。

h>#include 〈stdlib.h>/*数据结构C语言版线性表的单链表存储结构表示和实现P28—31编译环境:Dev-C++ 4。

9。

9。

2日期:2011年2月10日*/typedef int ElemType;// 线性表的单链表存储结构typedef struct LNode{ElemType data; //数据域struct LNode *next;//指针域}LNode, *LinkList;// typedef struct LNode *LinkList;// 另一种定义LinkList的方法// 构造一个空的线性表Lint InitList(LinkList *L){/*产生头结点L,并使L指向此头结点,头节点的数据域为空,不放数据的。

void *malloc(size_t)这里对返回值进行强制类型转换了,返回值是指向空类型的指针类型.*/(*L)= (LinkList)malloc(sizeof(struct LNode) );if( !(*L))exit(0);// 存储分配失败(*L)-〉next = NULL;// 指针域为空return 1;}// 销毁线性表L,将包括头结点在内的所有元素释放其存储空间。

int DestroyList(LinkList *L){LinkList q;// 由于单链表的每一个元素是单独分配的,所以要一个一个的进行释放while(*L ){q = (*L)—〉next;free(*L );//释放*L = q;}return 1;}/*将L重置为空表,即将链表中除头结点外的所有元素释放其存储空间,但是将头结点指针域置空,这和销毁有区别哦。

不改变L,所以不需要用指针。

*/int ClearList( LinkList L ){LinkList p,q;p = L—〉next;// p指向第一个结点while( p ) // 没到表尾则继续循环{q = p—>next;free( p );//释放空间p = q;}L—>next = NULL; // 头结点指针域为空,链表成了一个空表return 1;}// 若L为空表(根据头结点L—〉next来判断,为空则是空表),则返回1,// 否则返回0.int ListEmpty(LinkList L){if(L—>next ) // 非空return 0;elsereturn 1;}// 返回L中数据元素个数。

数据结构C语言版(第2版)严蔚敏人民邮电出版社课后习题答案

数据结构C语言版(第2版)严蔚敏人民邮电出版社课后习题答案

数据结构(C语言版)(第2版)课后习题答案李冬梅2015.3目录第1章绪论...................................................................................... 错误!未定义书签。

第2章线性表 .................................................................................. 错误!未定义书签。

第3章栈和队列 .............................................................................. 错误!未定义书签。

第4章串、数组和广义表 ............................................................... 错误!未定义书签。

第5章树和二叉树........................................................................... 错误!未定义书签。

第6章图............................................................................................ 错误!未定义书签。

第7章查找...................................................................................... 错误!未定义书签。

第8章排序...................................................................................... 错误!未定义书签。

《数据结构》实验3链表

《数据结构》实验3链表
二、源代码以及输入数据输出结果为:
三、源代码以及实验结果为
四、源代码以及实验结果为
五、源代码以及实验结果为
六、源代码以及实验结果为
七、附加题以及实验体会:
{
NODE *s; /*定义指向结点类型的指针*/
s=(NODE *)malloc(sizeof(NODE));
/*生成新结点*/
3
4
5
return 1;
}
/*删除P所指向的结点的后继结点*/
void DelLinkList(NODE *p)
{ NODE *q;
if(p->next!=0)
{ q=p->next; /* q指向p的后继结点*/
ch=getchar();
while(ch!='$')
{ p=(NODE *)malloc(sizeof(NODE));
p->data=ch;
1
2
ch=getchar();
}
return (head);
}
/*在链表的P指定结点之后插入值为x的结点*/
int InsLinkList(NODE *p, char x)
四、设有两个单链表A、B,其中元素递增有序,编写算法将A、B归并成一个按元素值递减(允许有相同值)有序的链表C,要求用A、B中的原结点形成,不能重新申请结点。
五、已知单链表表示的线性表中含有两类的数据元素(字母字符,数字字符)。试设计算法,按结点的值将单链表拆分成两个循环链表,分别只含有数字或字母。要求:利用原表中的结点空间作为这两个表的结点空间,头结点可另开辟空间。
附加题:如果换成循环单链表该如何实现?
即题目变成:已知单循环链表表示的线性表中含有两类的数据元素(字母字符,数字字符)。试设计算法,按结点的值将单链表拆分成两个循环链表,分别只含有数字或字母。

数据结构实验,线性表的插入和删除,单链表操作,Huffman编码树

数据结构实验,线性表的插入和删除,单链表操作,Huffman编码树
2.上机输入、调试实验程序;
{ int i,j,k,x1,x2,m1,m2;
for(i=1;i<(2*n);i++)
{ t[i].pa=t[i].lc=t[i].rc=0;
if(i<=n)
t[i].data=w[i];
else
t[i].data=0;
}
for(i=1;i<n;i++)
{ m1=m2=MAX;
x1=x2=0;
for(j=1;j<(n+i);j++)
ListCount=0;
int nOperateState;
while(TRUE)
{
printf( "选择你要操作的方法,1为插入,2为删除,3为查询!4为退出\r\n ");
scanf("%d",&nOperateState);
switch(nOperateState)
{
case 1:
InsertInfo();
{
printf("请不要重复插入相同学号的信息\r\n");
LocalFree(Info);
return;
}
ptemp=ptemp->pNext;
}
}
if (ListHead)
{
if (ListCount==1)
{
ListTail=Info;
ListTail->pNext=NULL;
ListHead->pNext=ListTail;
temp->stu_num,temp->stu_age,temp->stu_english_grade);

数据结构课程设计-单链表

数据结构课程设计-单链表

目录1 选题背景 (2)2 方案与论证 (3)2.1 链表的概念和作用 (3)2.3 算法的设计思想 (4)2.4 相关图例 (5)2.4.1 单链表的结点结构 (5)2.4.2 算法流程图 (5)3 实验结果 (6)3.1 链表的建立 (6)3.2 单链表的插入 (6)3.3 单链表的输出 (7)3.4 查找元素 (7)3.5 单链表的删除 (8)3.6 显示链表中的元素个数(计数) (9)4 结果分析 (10)4.1 单链表的结构 (10)4.2 单链表的操作特点 (10)4.2.1 顺链操作技术 (10)4.2.2 指针保留技术 (10)4.3 链表处理中的相关技术 (10)5 设计体会及今后的改进意见 (11)参考文献 (12)附录代码: (13)1 选题背景陈火旺院士把计算机60多年的发展成就概括为五个“一”:开辟一个新时代----信息时代,形成一个新产业----信息产业,产生一个新科学----计算机科学与技术,开创一种新的科研方法----计算方法,开辟一种新文化----计算机文化,这一概括深刻影响了计算机对社会发展所产生的广泛而深远的影响。

数据结构和算法是计算机求解问题过程的两大基石。

著名的计算机科学家P.Wegner指出,“在工业革命中其核心作用的是能量,而在计算机革命中其核心作用的是信息”。

计算机科学就是“一种关于信息结构转换的科学”。

信息结构(数据结构)是计算机科学研究的基本课题,数据结构又是算法研究的基础。

2 方案与论证2.1 链表的概念和作用链表是一种链式存储结构,链表属于线性表,采用链式存储结构,也是常用的动态存储方法。

链表中的数据是以结点来表示的,每个结点的构成:元素(数据元素的映象) + 指针(指示后继元素存储位置),元素就是存储数据的存储单元,指针就是连接每个结点的地址数据。

以“结点的序列”表示线性表称作线性链表(单链表)单链表是链式存取的结构,为找第 i 个数据元素,必须先找到第 i-1 个数据元素。

数据结构课程标准

数据结构课程标准

《数据结构》课程标准(专科)一、课程的性质:《数据结构》是计算机专业的一门必修专业基础课,它是一门理论性强,但有一定的实践性和较强实用性的基础课程。

二、课程的教学目的与任务:本课程的任务是讨论数据的各种逻辑结构、存储结构以及有关操作的算法。

目的是使学生掌握分析研究计算机加工的数据对象的特性,以便对所要处理的数据对象选择合适的数据结构和存储结构,并在此基础上掌握对这些数据的操作(查找、插入、删除和修改等)。

同时培养学生运用C 语言编写结构清晰、正确易读的算法,并具备初步评价算法的能力,为学生今后继续学习和研究打下坚实的基础。

三、课程的教学手段和方法:本课程理论讲授采用教材与多媒体相配合的教学手段。

本课程包括课堂教学与实践教学两大部份。

课堂教学在方法上,采用课堂讲授、课后自学、课堂讨论、平时测验等教学形式。

实践教学部份主要是实验。

四、课程内容及学时分配(共 72 学时,其中讲课 60 学时,实验 12 学时):一、基本要求:掌握数据结构的一些基本概念,了解抽象数据类型的定义和使用。

二、教学重点及难点:本节重点是了解数据结构的逻辑结构、存储结构及数据的运算三方面的概念及相互关系。

教学难点是什么是数据的逻辑结构及物理结构?三、讲授内容:(一)数据结构的一些基本概念:数据、数据元素、数据逻辑结构、数据存储结构、数据类型、算法等。

(二)抽象数据类型。

四、思量题:举出一个数据结构的例子,叙述其逻辑结构、存储结构、结构上的操作内容。

一、基本要求:掌握算法的时间复杂度和空间复杂度的分析方法,了解算法的描述方法。

二、教学重点及难点:本节重点是算法的各种描述方法和算法分析(时间复杂度及空间复杂度)。

教学难点是对一个算法时间复杂度的分析。

三、讲授内容:(一)描述算法所用的 C 语言中的一些有关问题。

(二)算法时间复杂度和空间复杂度的分析。

四、思量题:编写算法,求一元多项式 P (x)=a +a x+a x2+a x3+…a x n 的值 P (x ),要求时间复杂度尽可能小。

数据结构单链表实验报告

数据结构单链表实验报告
if(!(pre->next)) /*即while循环是因为p->next=NULL或i<1而跳出的,而是因为没有找到合法的前驱位置,说明删除位置i不合法。*/
{
printf("删除结点的位置i不合理!");
return ERROR;
}
r=pre->next;
pre->next=pre->next->next; /*修改指针,删除结点r*/
返回值说明:返回ERROR插入失败,返回OK插入成功;
(5)按位置查找链表元素:int GetList(LinkList L,int i,int *e);
4.详细设计
void init_linklist(LinkList *l)/*对单链表进行初始化*/{
*l=(LinkList)malloc(sizeof(Node)); /*申请结点空间*/
(*l)->next=NULL; /*置为空表*/
}
void CreateFromHead(LinkList L)
{
Node *s;
charc;
intflag=1;
while(flag) /* flag初值为1,当输入"$"时,置flag为0,建表结束*/
{
c=getchar();
if(c!='$')
*e = r->data;
free(r); /*释放被删除的结点所占的内存空间*/
printf("成功删除结点!");
return OK;
}
intListLength(LinkList L)
/*求带头结点的单链表L的长度*/

数据结构c++顺序表、单链表的基本操作,查找、排序代码

数据结构c++顺序表、单链表的基本操作,查找、排序代码

} return 0; }
实验三 查找
实验名称: 实验3 查找 实验目的:掌握顺序表和有序表的查找方法及算法实现;掌握二叉排序 树和哈希表的构造和查找方法。通过上机操作,理解如何科学地组织信 息存储,并选择高效的查找算法。 实验内容:(2选1)内容1: 基本查找算法;内容2: 哈希表设计。 实验要求:1)在C++系统中编程实现;2)选择合适的数据结构实现查 找算法;3)写出算法设计的基本原理或画出流程图;4)算法实现代码 简洁明了;关键语句要有注释;5)给出调试和测试结果;6)完成实验 报告。 实验步骤: (1)算法设计 a.构造哈希函数的方法很多,常用的有(1)直接定址法(2)数字分析法;(3) 平方取中法;(4)折叠法;( 5)除留余数法;(6)随机数法;本实验采用的是除 留余数法:取关键字被某个不大于哈希表表长m的数p除后所得余数为哈 希地址 (2)算法实现 hash hashlist[n]; void listname(){ char *f; int s0,r,i; NameList[0].py="baojie"; NameList[1].py="chengቤተ መጻሕፍቲ ባይዱoyang"; ……………………………… NameList[29].py="wurenke"; for(i=0;i<q;i++){s0=0;f=NameList[i].py; for(r=0;*(f+r)!='\0';r++) s0+=*(f+r);NameList[i].k=s0; }} void creathash(){int i;
v[k-1]=v[k]; nn=nn-1; return ; } int main() {sq_LList<double>s1(100); cout<<"第一次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.ins_sq_LList(0,1.5); s1.ins_sq_LList(1,2.5); s1.ins_sq_LList(4,3.5); cout<<"第二次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.del_sq_LList(0); s1.del_sq_LList(2); cout<<"第三次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); return 0; } 运行及结果:

数据结构C语言版(第2版)严蔚敏人民邮电出版社课后习题答案

数据结构C语言版(第2版)严蔚敏人民邮电出版社课后习题答案

数据结构( C语言版)(第 2版)课后习题答案李冬梅2015.3目录第 1 章绪论 (1)第 2 章线性表 (5)第 3 章栈和队列 (13)第 4 章串、数组和广义表 (26)第 5 章树和二叉树 (33)第 6 章图 (43)第 7 章查找 (54)第 8 章排序 (65)第1章绪论1.简述下列概念:数据、数据元素、数据项、数据对象、数据结构、逻辑结构、存储结构、抽象数据类型。

答案:数据:是客观事物的符号表示,指所有能输入到计算机中并被计算机程序处理的符号的总称。

如数学计算中用到的整数和实数,文本编辑所用到的字符串,多媒体程序处理的图形、图像、声音、动画等通过特殊编码定义后的数据。

数据元素:是数据的基本单位,在计算机中通常作为一个整体进行考虑和处理。

在有些情况下,数据元素也称为元素、结点、记录等。

数据元素用于完整地描述一个对象,如一个学生记录,树中棋盘的一个格局(状态)、图中的一个顶点等。

数据项:是组成数据元素的、有独立含义的、不可分割的最小单位。

例如,学生基本信息表中的学号、姓名、性别等都是数据项。

数据对象:是性质相同的数据元素的集合,是数据的一个子集。

例如:整数数据对象是集合N={0 ,± 1,± 2,, } ,字母字符数据对象是集合C={‘A’,‘B’, , ,‘Z’,‘ a’,‘ b’, , ,‘z ’} ,学生基本信息表也可是一个数据对象。

数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。

换句话说,数据结构是带“结构”的数据元素的集合,“结构”就是指数据元素之间存在的关系。

逻辑结构:从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。

因此,数据的逻辑结构可以看作是从具体问题抽象出来的数学模型。

存储结构:数据对象在计算机中的存储表示,也称为物理结构。

抽象数据类型:由用户定义的,表示应用问题的数学模型,以及定义在这个模型上的一组操作的总称。

具体包括三部分:数据对象、数据对象上关系的集合和对数据对象的基本操作的集合。

《数据结构》实验指导书(C语言版)(浦江学院)

《数据结构》实验指导书(C语言版)(浦江学院)

实验1: 顺序表的操作实验一、实验名称和性质二、实验目的1.掌握线性表的顺序存储结构的表示和实现方法。

2.掌握顺序表基本操作的算法实现。

3.了解顺序表的应用。

三、实验内容1.建立顺序表。

2.在顺序表上实现插入、删除和查找操作(验证性内容)。

3.删除有序顺序表中的重复元素(设计性内容)。

四、实验的软硬件环境要求硬件环境要求:PC机(单机)使用的软件名称、版本号:Windows环境下的VC++6.0五、知识准备前期要求熟练掌握了C语言的编程规则、方法和顺序表的基本操作算法。

六、验证性实验1.实验要求编程实现如下功能:(1)根据输入顺序表的长度n和各个数据元素值建立一个顺序表,并输出顺序表中各元素值,观察输入的内容与输出的内容是否一致。

(2)在顺序表的第i个元素之前插入一个值为x的元素,并输出插入后的顺序表中各元素值。

(3)删除顺序表中第i个元素,并输出删除后的顺序表中各元素值。

(4)在顺序表中查找值为e的数据元素,如果查找成功,则显示“查找成功”和该元素在顺序表中的位置,否则显示“查找失败”。

2. 实验相关原理线性表的顺序存储结构称为顺序表,顺序表的存储结构描述为:#define MAXLEN 30 /*线性表的最大长度*/typedef struct{Elemtype elem[MAXLEN]; /*顺序表中存放元素的数组,其中elemtype为抽象数据类型,在程序具体实现时可以用任意类型代替*/int length; /*顺序表的长度,即元素个数*/}Sqlist; /*顺序表的类型*/【核心算法提示】(1)顺序表插入操作的基本步骤:要在顺序表中的第i个数据元素之前插入一个数据元素x,首先要判断插入位置i是否合法,假设线性表的表长为n,则i的合法值范围:1≤i ≤n+1,若是合法位置,就再判断顺序表是否满,如果满,则增加空间或结束操作,如果不满,则将第i个数据元素及其之后的所有数据元素都后移一个位置,此时第i个位置已经腾空,再将待插入的数据元素x插入到该位置上,最后将线性表的表长增加1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#include"stdio.h"
#include"stdlib.h"
typedef struct node
{
int data;
struct node *next;
}Lnode,*Linklist;
input(Lnode *p,int n)//实现用键盘顺序输入链表数据{
Lnode *s;int i,d;
printf("请输入数据:");
for(i=1;i<=n;i++)
{
if(i==1)
{
scanf("%d",&d);
p->data=d;
continue;
}
if(n==1)break;
scanf("%d",&d);
s=(Linklist)malloc(sizeof(Lnode));
s->data=d;
p->next=s;
s->next=NULL;
p=s;//使当前指针指向链表尾部节点
}
}
output(Lnode *p,int n)//实现输出当前链表所有数据
{
int i=1;
printf("当前链表的值为:");
while(p->next!=NULL)
{
printf("%d ",p->data);
p=p->next;
i++;
}
if(i==n)//当是最后一个节点时,其next已经是空,所以最后一个节点数据无法用while循环写出,所以另用了一个计数器i
printf("%d",p->data);
}
insert(Lnode *p,int i,int e)//实现在第i个元素之后插入新元素{
int j=0;Lnode *s;
while(p&&j<i-1){p=p->next;++j;}if(!p||j>i-1)return 0;
s=(Linklist)malloc(sizeof(Lnode));
s->data=e;s->next=p->next;p->next=s;
return 1;
}
delet(Lnode *p,int i)//实现删除链表中第i+1个元素
{
int j=0;Lnode *q;
while(p->next&&j<i-1)
{
p=p->next;++j;
}
if(!(p->next)||j>i-1)return 0;
q=p->next;p->next=q->next;
free(q);
return 1;
}
search(Lnode *p,int e,int n)
{
int i=1;
while(p->next!=NULL)
{
if(p->data==e)
{
printf("在链表中找到了相同元素");
break;
}
p=p->next;
i++;
}
if(i==n)
{
if(p->data==e)
printf("在链表中找到了相同元素");
else
printf("在链表中没有寻找到相同元素");
}
}
void main()
{
Lnode *head;int n,i,e;
head=(Linklist)malloc(sizeof(Lnode));
head->next=NULL;//建立空链表头
printf("请输入链表长度:");
scanf("%d",&n);
input(head,n);
output(head,n);
printf("\n请输入要在链表的第几个元素之后插入数据:"); scanf("%d",&i);
printf("请输入要插入的数据:");
scanf("%d",&e);
insert(head,i,e);
output(head,n+1);
printf("\n请输入要删除链表第几个节点之后的元素:"); scanf("%d",&i);
delet(head,i);
output(head,n);
printf("\n请输入要查找的数据:");
scanf("%d",&e);
search(head,e,n);
}。

相关文档
最新文档