化简求值经典练习五十题(带答案解析)-精选.pdf
化简求值题及答案化简求值50题
化简求值题及答案化简求值50题化简求值50题1、已知2x+y=0,求分式x,2yx~y222.(x+y)的值.2. 先化简,再求值:(2a~2,1)a~aa~422,其中a ~1(2213(已知2x,y 0,求x~2yx,xy2(x~y)2x~4xy,4yx的值(4(已知x2,x~6 0,求代数式x2(x,1)~x(x2~1)~7的值( 5. 已知x2~x 6,求代数式 x(x,1)2~x2(x,1)~2x~8的值(3aa~1aa,1a~1a26、先化简,再求值:(1m1n~) ,其中a=2~27. 已知: ~ 5 ,求代数式3m,12mn~3nm,6mn~n的值.8( 已知2x,2y ~5,求2x2,4xy,2y2~7 的值.23229(已知x~1 0,求代数式x(x~x),x(3x,1),4的值 (2210. 先化简,再求值:x~1x~2x,12,x~2xx~2?x,其中x=223(1 a~4 a,32,11( 先化简,再求值: ,其中a~4a,1 0( 3 a~22~a221 112.(2008年天津市)若 x, 9,则 x~的值为 (x x313.(2008年四川巴中市)若x2y3z40,则2x,3yz14.(2008年四川巴中市)当x 时,分式x~3x~3无意义(15.(08山东省日照市)化简,再求值:1a~b~b?,其中a 1, 22a~2ab,ba,b124,b 1~2(2a a~1 3a~16.(2008年辽宁省十二市)先化简,再求值: ,其中a 2( a a~1a,117.(2008年乐山市)已知x 1,求代数式xx~2(2,x~42~x)的值18. (2008山东德州)先化简,再求值: b1 1?,其中a 1,~ 22a~2ab,ba~ba,b2,b1~2(19. (2008黑龙江黑河)先化简:值( 4~a522a,6a,9a~22a,6,2,再任选一个你喜欢的数代入求20.(2008年陕西省)先化简,再求值: a,1a,2ba,b,a2b222a~b,其中a ~2,b1a13(21.(2008 河南)先化简,再求值:a~1a~2a,112x22((2008 四川泸州)化简 ,261,x1~x,2?,其中a,1,223((2008年浙江省嘉兴市)先化简,再求值: a~2a211, ,其中a ~2( a,1a24((2008北京)已知x~3y 0,求2x,yx~2xy,yxx~1~22(x~y)的值(x,2x,1x,3225((2008湖北咸宁)先化简,再求值:x,3x~1272,其中x 1(26.(2008年江苏省无锡市)(2)先化简,再求值:2x~4x,42x~42(x,2),其中x2327.(2008年山东省枣庄市)先化简,再求值:28((2008 江苏南京)解方程2x,1x~1x~2x,12,x~2xx~2?x,其中x=(-2x,128=0.29((2008湖北黄石)先化简后求值(22aba,b~2,其中a ~1,1,2a~ab 2abab~b,b ~1~30((2008江苏宿迁)先化简,再求值:a,3aa,4a,4,22a,3a,2~2a,2,其中a 2~2(31.(2008 湖南长沙)先化简,再求值:22a29a~41,其中a 1. 2~a232((2008 重庆)先化简,再求值:(a~5a,2a,2,1)a~4a,4a,422,其中a 2,333.(2008 四川广安)先化简再求值:(x~x~4x~3x~)x~4x~332,其中x 5(2334.(2008 湖南怀化)先化简,再求值: x~12,x~1,,x,2,10~1,其中x ~(1 x~2x,135.(2008 河北)已知x ~2,求 1~的值( xx36((08乌兰察布市)先化简,再求值x,1x,122(x,1)43x~1~x~3x,1,其中x ,1.37((08厦门市)先化简,再求值xx~12x,xx2,其中x 2(1138((2008山东东营)先化简,再求值:b1 1?,其中a 1,~ 22a~2ab,ba~ba,b2,b1~2(39((2008泰安)先化简,再求值: 40.(2008佛山)(先化简(1,2p~23x x,22~2x,其中x 4~, 2x~2x~4x)?p~pp~4122,再求值(其中P是满足-3 3x,2x241. (2008黑龙江哈尔滨)先化简,再求代数式(1-,2cos60?42.(2008湖北襄樊)化简求值: (x~16x,8x,162008a22-1x,2的值,其中x,4sin45?,xx~4)1x~162,其中x 2,143.(2008湖北孝感)请你先将式子一个数作为a的值代入其中求值.1 1, 化简,然后从1,2,3中选择213a~2a,1 a~144.(2008江苏盐城)先化简,再求值:45.(08年山东省)先化简,再求值:5x,2~x~2 x~2x~3,其中x ~4b1 1?,其中a 1,~ 22a~2ab,ba~ba,b2,b1~2(46.(2008年上海市)解方程:6xx~12,5x~1x,4x,11447.(2008年山东省威海市)先化简,再求值: 1,x2xx~ 1~x 1~x,其中x2(48(49. 50.1x,3x,22,1x,5x,622,1x,7x,1232x,6x,9x,2732215x~5x,6x~4x,4x~82a~b~ca~ab~ac,bc2x~92,2c~a~bc~ac~bc,ab2,2b~c~ab~ab~bc,ac2百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆16。
专题 整式的化简求值(五大题型50题)(解析版)
(苏科版)七年级上册数学《第三章代数式》专题整式的化简求值(50题)1.先化简再求值:2x 2y−[x y 2+3(x 2y−13x y 2)],其中x =12,y =2.【分析】先化简整式,再代入求值.【解答】解:原式=2x 2y ﹣(xy 2+3x 2y ﹣xy 2)=2x 2y ﹣3x 2y=﹣x 2y .当x =12,y =2时,原式=﹣(12)2×2=−14×2=−12.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.2.先化简,再求值:4x 2﹣2xy +y 2﹣(x 2﹣xy +y 2),其中x =﹣1,y =−12.【分析】去括号,合并同类项后代入求值.【解答】解:原式=4x 2﹣2xy +y 2﹣x 2+xy ﹣y 2=3x 2﹣xy ,当x =﹣1,y =−12时,原式=3×(﹣1)2﹣(﹣1)×(−12)=3−12=52.【点评】本题考查了整式的加减—化简求值,掌握去括号法则与合并同类项是解题的关键.3.(2022秋•秦淮区期末)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=﹣1,b=2.【分析】先进行整式的化简,再代入求值即可.【解答】解:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),=7a2b﹣4a2b+5ab2﹣2a2b+3ab2=a2b+8ab2当a=﹣1,b=2时,原式=(﹣1)2×2+8×(﹣1)×22=2﹣32=﹣30.【点评】本题考查了整式的加减,解决本题的关键是先化简.4.(2022秋•邹城市校级期末)先化简,再求值:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2),其中x=﹣1,y=2.【分析】利用整式的加减混合运算化简整式,再代入求值.【解答】解:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2)=2x2﹣2y2﹣4x2y﹣4xy2+4x2y2+4y2=2x2+2y2﹣4x2y﹣4xy2+4x2y2,∵x=﹣1,y=2,∴原式=2×(﹣1)2+2×22﹣4×(﹣1)2×2﹣4×(﹣1)×22+4×(﹣1)2×22=2×1+2×4﹣4×2+4×4+4×4=2+8﹣8+16+16=34.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的加减混合运算.5.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x+6y2﹣4x﹣6x+3y2=﹣6x+9y2,当x=2,y=﹣2时,原式=﹣6×2+9×(﹣2)2=﹣12+36=24.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.6.(2022秋•龙沙区期中)先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)]=﹣3a2+4ab+(a2﹣4a﹣4ab)=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a.当a=﹣2,b=2022时,原式=﹣2×(﹣2)2﹣4×(﹣2)=﹣2×4+8=﹣8+8=0.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.7.(2022秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【分析】将代数式去括号,合并同类项,从而将整式化为最简形式,然后把x、y的值代入即可.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点评】本题主要考查了整式的加减运算.整式的加减运算实际上就是去括号、合并同类项.8.(2022秋•梁子湖区期末)先化简,再求值:5x2−[2xy−3(13xy+2)+4x2],其中x=−2,y=12.【分析】先将原式去括号、合并同类项,再把x=﹣2,y=12代入化简后的式子,计算即可.【解答】解:5x2−[2xy−3(13xy+2)+4x2]=5x2﹣(2xy﹣xy﹣6+4x2)=5x2﹣2xy+xy+6﹣4x2=(5x2﹣4x2)+(﹣2xy+xy)+6=x2﹣xy+6,当x=−2,y=12时,原式=(−2)2−(−2)×12+6=4+1+6=11.【点评】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.9.先化简,再求值:2(ab−32a2+a﹣b2)﹣3(a﹣a2+23ab),其中a=5,b=﹣2.【分析】先化简整式,再代入求值.【解答】解:2(ab−32a2+a﹣b2)﹣3(a﹣a2+23ab)=2ab﹣3a2+2a﹣2b2﹣3a+3a2﹣2ab=﹣a﹣2b2.当a=5,b=﹣2时,原式=﹣5﹣2×(﹣2)2=﹣5﹣2×4=﹣5﹣8=﹣13.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.10.先化简,再求值:2(mn ﹣4m 2﹣1)﹣(3m 2﹣2mn ),其中m =1,n =﹣2.【分析】先化简,再代入求值即可.【解答】解:原式=2mn ﹣8m 2﹣2﹣3m 2+2mn=4mn ﹣11m 2﹣2,当m =1,n =﹣2时,原式=4×1×(﹣2)﹣11×12﹣2=﹣21.【点评】本题主要考查了整式的加减,解题的关键是正确的化简.11.先化简再求值:5xy ﹣(4x 2+2y )﹣2(52xy +x 2),其中x =3,y =﹣2.【分析】利用去括号法则先去括号再合并同类项,最后代入求值.【解答】解:原式=5xy ﹣4x 2﹣2y ﹣5xy ﹣2x 2=(5xy ﹣5xy )﹣(4x 2+2x 2)﹣2y=﹣6x 2﹣2y当x =3,y =﹣2时原式=﹣6×32﹣2×(﹣2)=﹣50.【点评】本题考查了整式的化简求值,掌握去括号法则和合并同类项法则是解决本题的关键.12.(2022秋•绿园区期末)先化简,再求值:12m−(2m−23n 2)+(−32m +13n 2),其中m =−14,n =−12.【分析】先去括号,然后合并同类项,再代入求值.【解答】解:原式=12m−2m +23n 2−32m +13n 2=n 2﹣3m ,当m =−14,n =−12时,原式=n 2﹣3m=(−12)2﹣3×(−14)=14+34=1.【点评】本题考查了整式的加减—化简求值,熟悉去括号和合并同类项法则是解题的关键.13.(2022秋•万秀区月考)先化简,再求值2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b,其中a=3,b=﹣2.【分析】先去括号再合并同类项,最后代入求值.【解答】解:2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b=2a2b+2ab﹣4a2b+4ab﹣4a2b=﹣6a2b+6ab.当a=3,b=﹣2,原式=﹣6×32×(﹣2)+6×3×(﹣2)=6×9×2﹣6×3×2=108﹣36=72.【点评】本题考查了整式的化简,掌握去括号法则、合并同类项法则是解决本题的关键.14.(2022秋•陕州区期中)先化简,再求值3x2y−2(x2y+14x y2)−2(x y2−xy),其中x=12,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:3x2y−2(x2y+14x y2)−2(x y2−xy)=3x2y−2x2y−12x y2−2x y2−2xy=x y2−52x y2+2xy把x=12,y=﹣2代入原式=(12)2×(−2)−52×12×(−2)2+2×12×(−2)=−712.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.15.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.【分析】(1)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.16.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=5m2﹣(5m2﹣2m2+mn﹣7mn+7)=5m2﹣5m2+2m2﹣mn+7mm﹣7=2m2+6mm﹣7,∵m2+3mn=﹣5,∴原式=2(m2+3mn)﹣7=2×(﹣5)﹣7=﹣10﹣7=﹣17.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.17.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.18.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.19.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.【分析】先去括号,合并同类项,再将x+y=6,xy=﹣4,整体代入进行计算即可.【解答】解:原式=5x+2y﹣3xy﹣2x+y﹣2xy=3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.21.(2022秋•荔湾区期末)已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=7a2+3ab+3b2﹣8a2﹣6ab﹣4b2=﹣a2﹣3ab﹣b2;当a2+b2=3,ab=﹣2时,原式=﹣(a2+b2)﹣3ab=﹣3﹣3×(﹣2)=﹣3+6=3,∴原代数式的值为3.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想解题是关键.22.(2022秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6x2﹣2x+4y﹣2xy﹣6x2+9x+3y﹣3xy=7x+7y﹣5xy,当x+y=67,xy=﹣2时,原式=7(x+y)﹣5xy=7×67−5×(﹣2)=6+10=16.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想代入求值是解题关键.23.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1= .(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时,2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时,2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①,ab﹣2b2=﹣3②,①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9.【点评】本题考查了整式的加减—化简求值,掌握整体代入的思想,把每一个整式进行适当的变形是解题的关键.24.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)根据阅读材料,直接合并同类项即可;(2)根据等式性质可得3x2﹣6y=12,然后整体代入即可求值;(3)先根据已知3个等式可得a﹣c=8,2b﹣d=5,再整体代入即可求值.【解答】解:(1)3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=﹣(a﹣b)2;(2)∵x2﹣2y=4,∴3x2﹣6y=12,∴3x2﹣6y﹣21=12﹣21=﹣9;(3)∵a﹣2b=3①,2b﹣c=﹣5②,c﹣d=10③,∴①+②得,a﹣c=﹣2,②+③得,2b﹣d=5,∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣2+5﹣(﹣5)=8.【点评】本题考查了整式的加减﹣化简求值,解决本题的关键是掌握整式的加减.25.阅读理解:已知4a−52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a−52b=1,所以原式=2a−2b+6a−3b=8a−5b=2(4a−52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.【分析】(1)把(a﹣b)看成一个整体,先变形要求值代数式,再整体代入;(2)可变形已知,整体代入求值.【解答】解:(1)3(a﹣b)﹣a+b+1=3(a﹣b)﹣(a﹣b)+1=2(a﹣b)+1.当a﹣b=﹣3时,原式=2×(﹣3)+1=﹣6+1=﹣5.(2)法一、∵a2+2ab=2,ab﹣b2=1,∴2a2+4ab=4,∴2a2+4ab+ab﹣b2=5.即2a2+5ab﹣b2=5.法二、∵a2+2ab=2,ab﹣b2=1,∴a2=2﹣2ab,﹣b2=1﹣ab.∴2a2+5ab﹣b2=2(2﹣2ab)+5ab+1﹣ab=4﹣4ab+5ab+1﹣ab=5.【点评】本题主要考查了整式的化简求值,掌握整式的运算法则和整体的思想方法是解决本题的关键.26.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.【分析】(1)根据题意得出x2﹣2x+3=5,求出x2﹣2x=2,变形后代入,即可求出答案;(2)根据题意求出a+b+5=8,求出a+b=3,再把x=﹣1代入代数式,最后整体代入,即可求出答案;(3)代数式x2﹣2xy+y2=20减去代数式xy﹣y2=6,即可得出答案.【解答】解:(1)根据题意得:x2﹣2x+3=5,即x2﹣2x=2,所以3x2﹣6x﹣1=3(x2﹣2x)﹣1=3×2﹣1=6﹣1=5;(2)∵当x=1时,代数式ax3+bx+5的值为8,∴a+b+5=8,∴a+b=3,当x=﹣1时,ax3+bx﹣6=a×(﹣1)3+b×(﹣1)﹣6=﹣a﹣b﹣6=﹣(a+b)﹣6=﹣3﹣6=﹣9;(3)∵①x2﹣2xy+y2=20,②xy﹣y2=6,∴①﹣②,得x2﹣2xy+y2﹣(xy﹣y2)=20﹣6,整理得:x2﹣3xy+2y2=14.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.27.(2022秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1= ;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时,2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时,2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①,ab﹣2b2=﹣3②,①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9.【点评】本题考查了整式的加减—化简求值,掌握整体代入的思想,把每一个整式进行适当的变形是解题的关键.28.(2022秋•西安期中)化简求值:−12(5xy−2x2+3y2)+3(−12xy+23x2+y26),其中x、y满足(x+1)2+|y﹣2|=0.【分析】由非负数的和为0得非负数为0,解出x,y的值,代入化简后的代数式求值即可.【解答】解:∵(x+1)2+|y﹣2|=0.∴x+1=0,y﹣2=0,∴x=﹣1,y=2.−12(5xy﹣2x2+3y2)+3(−12xy+23x2+y26)=−52xy+x2−32y2−32xy+2x2+y22=﹣4xy+3x2﹣y2.当x=﹣1,y=2时,原式=﹣4×(﹣1)×2+3×(﹣1)2﹣22=8+3﹣4=7.【点评】本题考查的是整式的化简和非负数的性质,解题的关键是利用非负数的性质求出x,y的值.29.(2022秋•公安县期中)先化简,再求值:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab,其中a=12,b=﹣4.【分析】首先去括号进而合并同类项,再把a,b的值代入计算求出答案即可.【解答】解:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab =4a2b﹣(﹣2ab2﹣2ab+2ab2+a2b)﹣3ab=4a2b+2ab﹣a2b﹣3ab=3a2b﹣ab;当a=12,b=﹣4时,原式=3×(12)2×(−4)−12×(−4)=−3+2=−1.【点评】此题主要考查了整式的加减﹣化简求值,正确合并同类项是解题关键.30.(2022秋•海林市期末)先化简再求值:12a+2(a+3ab−13b2)−3(32a+2ab−13b2),其中a、b满足|a﹣2|+(b+3)2=0.【分析】先去括号,然后合并同类项进行化简,根据非负数的性质求出a、b的值代入化简后的结果进行计算即可.【解答】解:原式=12a+2a+6ab−23b2−92a−6ab+b2=−2a+13b2,∵|a﹣2|+(b+3)2=0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,当a=2,b=﹣3时,原式=﹣2×2+13(﹣3)2=﹣4+3=﹣1.【点评】本题考查了整式的加减——化简求值,涉及了去括号法则,合并同类项法则,非负数的性质等,熟练掌握各运算的运算法则以及非负数的性质是解题的关键.31.(2022秋•万州区期末)化简求32a2b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.【分析】利用去括号的法则和合并同类项的法则化简运算,利用非负数的性质求得a,b的值,将a,b 的值代入运算即可.【解答】解:原式=32a2b﹣2ab2﹣2−32a2b+12ab2﹣2=−32a b2−4.∵2(a−3)2022+|b+23|=0,(a﹣3)2022≥0,|b+23|≥0,∴a﹣3=0,b+23=0,∴a=3,b=−2 3.∴原式=−32×3×(−23)2−4=−92×49−4=﹣2﹣4=﹣6.【点评】本题主要考查了求代数式的值,整式的加减与化简求值,非负数的应用,正确利用去括号的法则和合并同类项的法则运算是解题的关键.32.(2022秋•偃师市期末)已知:(x−2)2+|y+12|=0,求2(xy2+x2y)﹣[2xy2﹣3(1﹣x2y)]+2的值.【分析】根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.【解答】解:原式=2xy2+2x2y﹣(2xy2﹣3+3x2y)+2=2xy2+2x2y﹣2xy2+3﹣3x2y+2=(2﹣2)xy2+(2﹣3)x2y+(3+2)=﹣x2y+5;∵(x+2)2≥0,|y−12|≥0,又∵(x−2)2+|y+12|=0,∴x﹣2=0,y+12=0,∴x=2,y=−1 2,∴原式=﹣22×(−12)+5=2+5=7.【点评】本题考查整式的化简求值,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.33.(2022秋•沙坪坝区校级期中)先化简,再求值:2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)],其中x 是最大的负整数,y 是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x 是最大的负整数,y 是绝对值最小的正整数,∴x =﹣1,y =1,∴2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)]=2x 2y ﹣4xy 2﹣(﹣x 2y 2+4x 2y ﹣2xy 2+x 2y 2)=2x 2y ﹣4xy 2+x 2y 2﹣4x 2y +2xy 2﹣x 2y 2=﹣2x 2y ﹣2xy 2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x 2y ﹣2xy 2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.34.(2022秋•越秀区期末)已知代数式M =(2a 2+ab ﹣4)﹣2(2ab +a 2+1).(1)化简M ;(2)若a ,b 满足等式(a ﹣2)2+|b +3|=0,求M 的值.【分析】(1)直接利用去括号,进而合并同类项即可得出答案;(2)结合非负数的性质得出a ,b 的值,代入a ,b 的值得出答案.【解答】解:(1)M =2a 2+ab ﹣4﹣4ab ﹣2a 2﹣2=﹣3ab ﹣6;(2)∵(a ﹣2)2+|b +3|=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,故M=﹣3×2×(﹣3)﹣6=18﹣6=12.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.35.(2022秋•和平区校级期中)先化简再求值:若(a+3)2+|b﹣2|=0,求3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}的值.【分析】先去括号、合并同类项,再根据非负数的性质求出a、b,最后代入化简后的整式求值.【解答】解:3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}=3ab2﹣[2a2b﹣(5ab2﹣6ab2+2a2b)]=3ab2﹣(2a2b﹣5ab2+6ab2﹣2a2b)=3ab2﹣2a2b+5ab2﹣6ab2+2a2b=2ab2.∵(a+3)2+|b﹣2|=0,又∵(a+3)2≥0,|b﹣2|≥0,∴a+3=0,b﹣2=0.∴a=﹣3,b=2.当a=﹣3,b=2时,原式=2×(﹣3)×22=2×(﹣3)×4=﹣24.【点评】本题考查了整式的化简﹣求值,掌握去括号法则、合并同类项法则、非负数的性质及有理数的混合运算是解决本题的关键.36.(2022秋•江都区期末)已知代数式A=x2+xy﹣12,B=2x2﹣2xy﹣1.当x=﹣1,y=﹣2时,求2A﹣B 的值.【分析】将x=﹣1,y=﹣2代入求出A、B的值,再代入到2A﹣B即可.【解答】解:当x=﹣1,y=﹣2时,A=1+2﹣12=﹣9,B=2﹣4﹣1=﹣3,∴2A﹣B=﹣18+3=﹣15.【点评】本题考查整式的加减以及代数式求值,掌握去括号、合并同类项分组是正确解答的前提.37.已知:A=x−12y+2,B=x﹣y﹣1.(1)化简A﹣2B;(2)若3y﹣2x的值为2,求A﹣2B的值.【分析】(1)把A、B表示的代数式代入A﹣2B中,计算求值即可;(2)利用等式的性质,变形已知,整体代入(1)的结果中求值即可.【解答】解:∵A=x−12y+2,B=x﹣y﹣1,∴A﹣2B=x−12y+2﹣2(x﹣y﹣1)=x−12y+2﹣2x+2y+2=﹣x+32y+4;(2)当3y﹣2x=2时,即﹣x+32y=1.A﹣2B=﹣x+32y+4=1+4=5.【点评】本题考查了整式的加减、整体代入的思想方法,掌握去括号、合并同类项法则是解决本题的关键.38.(2022秋•邹平市校级期末)先化简,再求值:A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy).求A ﹣B ,其中x ,y 满足(x +1)2+|3﹣y |=0.【分析】利用整式的混合运算化简整式,再根据非负数的性质判断x ,y 的值,代入求值即可.【解答】解:∵A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy) =xy 2﹣3xy 2+xy=﹣2xy 2+xy ,∴A ﹣B=5xy 2﹣xy ﹣(﹣2xy 2+xy )=5xy 2﹣xy +2xy 2﹣xy=7xy 2﹣2xy ,∵(x +1)2+|3﹣y |=0,∴x +1=0,3﹣y =0,∴x =﹣1,y =3,∴原式=7xy 2﹣2xy=7×(﹣1)×32﹣2×(﹣1)×3=﹣7×9+6=﹣63+6=﹣57.【点评】本题考查了整式的混合运算化简求值,非负数的性质,解题的关键是掌握整式的混合运算,非负数的性质.39.(2022秋•大丰区期末)已知A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a .(1)求A ﹣3B .(2)求当a =2,b =﹣1时,A ﹣3B 的值.【分析】(1)先把A 、B 表示的代数式代入,然后化简求值;(2)把a 、b 的值代入化简的代数式,计算得结果.【解答】解:(1)∵A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a ,∴A﹣3B=2a2b﹣5ab2﹣3(a2b﹣2ab2﹣a)=2a2b﹣5ab2﹣3a2b+6ab2+3a=﹣a2b+ab2+3a.(2)当a=2,b=﹣1时,A﹣3B=﹣22×(﹣1)+2×(﹣1)2+3×2=4+2+6=12.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.【分析】先把A、B表示的代数式代入并化简整式,再利用非负数的性质求出x、y的值,最后代入计算.【解答】解:B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣2x﹣4y=﹣5x﹣5y.∵|x﹣2|+(y−15)2=0,|x﹣2|≥0,(y−15)2≥0,∴|x﹣2|=0,(y−15)2=0.∴x=2,y=1 5.当x=2,y=15时,原式=﹣5×2﹣5×1 5=﹣10﹣1=﹣11.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则,非负数的性质是解决本题的关键.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab=7ab;(2)当a=−27,b=3时,A﹣2(A﹣B)=7×(−27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a2+2ab+7﹣6a2+9ab+3=11ab+10.(2)当a,b互为倒数时,ab=1,2A﹣(A+3B)=11ab+10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.44.(2021秋•沂源县期末)已知多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,求代数式3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)的值.【分析】先根据代数式的差与字母x 无关,求出a 、b 的值,再化简代数式,代入计算.【解答】解:x 2+ax ﹣y +b ﹣(bx 2﹣3x +6y ﹣3)=x 2+ax ﹣y +b ﹣bx 2+3x ﹣6y +3=(1﹣b )x 2+(a +3)x ﹣7y +b +3.∵多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,∴1﹣b =0,a +3=0.∴b =1,a =﹣3.3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)=3a 2﹣6ab ﹣3b 2﹣4a 2﹣4ab ﹣4b 2=﹣a 2﹣10ab ﹣7b 2.当b =1,a =﹣3时.原式=﹣(﹣3)2﹣10×(﹣3)×1﹣7×12=﹣9+30﹣7=14.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及绝对值的意义是解决本题的关键.45.(2022秋•大竹县校级期末)已知代数式x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6的值与字母x 的取值无关,求13a 3−2b 2−14a 3+3b 2的值.【分析】首先对题中前一个代数式合并同类项,由代数式的值与字母x 无关求得a 、b 的值,再把a 、b 的值代入后一个代数式计算即可.注意第二个代数式先进行合并同类项,可简化运算.【解答】解:x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6=(1﹣2b )x 2+(a +3)x ﹣6y +5,因为此代数式的值与字母x 无关,所以1﹣2b =0,a +3=0;解得a =﹣3,b =12,13a 3−2b 2−14a 3+3b 2 =112a 3+b 2,当a=﹣3,b=12时,上式=112×(﹣3)3+(12)2=−2.【点评】此题考查的知识点是整式的加减﹣化简求值,关键是掌握用到的知识点为:所给代数式的值与某个字母无关,那么这个字母的相同次数的系数之和为0.46.(2022秋•利川市校级期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.【分析】原式去括号合并后,根据结果与x取值无关求出a与b的值,所求式子去括号合并后代入计算即可求出值.【解答】解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,由结果与x取值无关,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=5ab2﹣a2b﹣2a2b+6ab2=11ab2﹣3a2b=﹣33﹣27=﹣60.【点评】此题考查了整式的加减﹣化简求值,以及整式的加减,熟练掌握运算法则是解本题的关键.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式3a2b−[2a b2−4(ab−34a2b)]+2a b2的值.【分析】首先求出a,b的值,再化简求值即可.【解答】解:A﹣B=(x2+ax﹣y)﹣(bx2﹣x﹣2y)=(1﹣b)x2+(a+1)x+y,∵A与B的差与x的取值无关,∴a=﹣1,b=1,∴原式=3a2b﹣2ab2+4ab﹣3a2b+2ab2=4ab=﹣4.【点评】本题考查整式的加减,解题关键是理解题意,掌握整式是加减法则,属于中考常考题型.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2+3xy﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以y=2 5.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=−1 2;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b =3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=−12时,原式=(﹣4)2×(−12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。
化简求值练习题(打印版)
化简求值练习题(打印版)# 化简求值练习题## 一、基础代数式化简1. 题目:化简下列代数式,并求值:\[ x^2 - 2x + 1 \]解答:\[ x^2 - 2x + 1 = (x - 1)^2 \]当 \( x = 2 \) 时,代入得:\[ (2 - 1)^2 = 1 \]2. 题目:化简并求值:\[ \frac{2x^2 - 4x}{x - 2} \]解答:\[ \frac{2x^2 - 4x}{x - 2} = \frac{2x(x - 2)}{x - 2} = 2x \]当 \( x = 3 \) 时,代入得:\[ 2 \times 3 = 6 \]3. 题目:化简下列代数式:\[ \frac{a^3 - b^3}{a - b} \]解答:\[ \frac{a^3 - b^3}{a - b} = a^2 + ab + b^2 \]## 二、多项式化简1. 题目:化简下列多项式:\[ 3x^3 - 5x^2 + 2x - 4 \]解答:多项式已经是最简形式,无需进一步化简。
2. 题目:化简并求值:\[ (x + 1)^2 - 4(x + 1) + 4 \]解答:\[ (x + 1)^2 - 4(x + 1) + 4 = x^2 + 2x + 1 - 4x - 4 + 4 = x^2 - 2x + 1 \]当 \( x = 1 \) 时,代入得:\[ 1^2 - 2 \times 1 + 1 = 0 \]3. 题目:化简下列多项式:\[ 4x^3 - 8x^2 + 4x \]解答:\[ 4x^3 - 8x^2 + 4x = 4x(x^2 - 2x + 1) = 4x(x - 1)^2 \] ## 三、分式化简1. 题目:化简下列分式:\[ \frac{2x^2 + 3x}{x + 1} \]解答:\[ \frac{2x^2 + 3x}{x + 1} = \frac{x(2x + 3)}{x + 1} \] 如果 \( x \neq -1 \),可以化简为:\[ 2x + 3 \]2. 题目:化简并求值:\[ \frac{(x - 1)^2}{x^2 - 1} \]解答:\[ \frac{(x - 1)^2}{x^2 - 1} = \frac{(x - 1)^2}{(x + 1)(x - 1)} = \frac{x - 1}{x + 1} \]当 \( x = 2 \) 时,代入得:\[ \frac{2 - 1}{2 + 1} = \frac{1}{3} \]3. 题目:化简下列分式:\[ \frac{a^2 - 2ab + b^2}{a - b} \]解答:\[ \frac{a^2 - 2ab + b^2}{a - b} = (a - b) \]## 四、复合函数化简1. 题目:化简下列复合函数:\[ (x + 2)^2 - 4(x + 2) + 4 \]解答:\[ (x + 2)^2 - 4(x + 2) + 4 = (x + 2 - 2)^2 = x^2 \]2. 题目:化简下列复合函数:\[ \frac{(x + 1)^3}{x + 1} \]。
化简求值50道及答案
化简求值50道及答案化式求值就是数学中的一种求值方法,是指用已知的数值来代入化式中,得到化式结果的过程。
这种方法在数学中非常常见,也是数学中基本的计算方式之一。
为了帮助大家更好地掌握化式求值的方法,本文将为大家介绍50道化式求值的题目及其答案。
希望能对大家在数学学习中提供一定的帮助。
一、基础题1. 如果 a=2,b=3,求下面式子的值:a+b答案:52. 如果 a=2,b=3,c=4,求下面式子的值:a+b+c答案:93. 如果 a=2,b=3,c=4,求下面式子的值:a-b+c答案:34. 如果 a=2,b=3,c=4,求下面式子的值:a*b答案:65. 如果 a=2,b=3,c=4,求下面式子的值:a*b*c答案:24二、进阶题6. 如果 x=3,y=4,求下面式子的值:2*x+3*y答案:187. 如果 a=2,b=3,c=4,求下面式子的值:a^2+b^2+c^2答案:298. 如果 a=2,b=3,c=4,求下面式子的值:a^3+b^3+c^3答案:739. 如果 a=2,b=3,求下面式子的值:a^2-b^2答案:-510. 如果 a=2,b=3,c=4,求下面式子的值:(a+b)^2-c答案:21三、高阶题11. 如果 a=2,b=3,c=4,求下面式子的值:a^2+b^2-2*a*b 答案:-112. 如果 a=2,b=3,c=4,求下面式子的值:(a+b)*(a-b)+c答案:913. 如果 a=2,b=3,c=4,求下面式子的值:(a+b)*(a-b)+c^2答案:1714. 如果 a=2,b=3,c=4,求下面式子的值:(a+b)^3-3*a*b*(a+b)答案:12515. 如果 a=2,b=3,c=4,求下面式子的值:a^3+b^3+c^3-3*a*b*c答案:9四、挑战题16. 如果 a=2,b=3,c=4,求下面式子的值:a^3-b^3+c^3-3*a*b*c答案:1017. 如果 a=2,b=3,c=4,求下面式子的值:(a+b)*(a-b)^2+(b+c)*(b-c)^2+(c+a)*(c-a)^2答案:6118. 如果 a=2,b=3,c=4,求下面式子的值:(a+b+c)^3-3*(a^2+b^2+c^2)*(a+b+c)+3*a*b*c答案:-4519. 如果 a=2,b=3,c=4,求下面式子的值:a^4+b^4+c^4-4*a*b*c*(a^2+b^2+c^2)+2*a^2*b^2+2*a^2*c^2+2*b^2*c^2答案:5720. 如果 a=2,b=3,c=4,求下面式子的值:(a+b+c)^4-2*(a^2+b^2+c^2)*(a+b+c)^2+2*(a^3+b^3+c^3)*(a+b+c)+12*a*b*c*( a^2+b^2+c^2)-3*a^2*b^2*c^2答案:1550五、总结本文介绍了50道化式求值的题目及其答案,涉及到了基础、进阶、高阶和挑战四个难度等级。
初一上册整式化简求值60题(含答案)
整式化简求值:先化简再求值1.)3(2)2132()83(3232--+-+-a a a a a a ,其中4-=a 2.)45(2)45(332-+---+-x x x x ,其中2-=x 3.求)3123()31(22122y x y x x +-+--的值,其中2-=x 32=y4.22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦其中1-=a 3-=b 1=c 5.化简求值:若a=﹣3,b=4,c=﹣17,求{}222278[(2)]a bc a cb bca ab a bc --+-的值 6.先化简后求值:2233[22()]2x y xy xy x y xy ---+,其中x=3,y=﹣137.8.化简求代数式:22(25)2(35)a a a a ---+的值,其中a=﹣1.9.先化简,再求值:2222115()(3),,23a b ab ab a b a b --+==其中 10.求代数式的值:2212(34)3(4)3,3xy x xy x x y +-+=-=,其中11.12.先化简,再求值:2(3a ﹣1)﹣3(2﹣5a ),其中a=﹣2. 13.先化简,再求值:22212()[3()2]2xy x x xy y xy ----++,其中x=2,y=﹣1. 14.先化简,再求值:222(341)3(23)1x x x x x -+---,其中x=﹣5. 15.先化简,再求值:32x ﹣[7x ﹣(4x ﹣3)﹣22x ];其中x=2. 16.先化简,再求值:(﹣2x +5x+4)+(5x ﹣4+22x ),其中x=﹣2. 17.先化简,再求值:3(x ﹣1)﹣(x ﹣5),其中x=2. 18.先化简,再求值:3(2x+1)+2(3﹣x ),其中x=﹣1.19.先化简,再求值:(32a ﹣ab+7)﹣(5ab ﹣42a +7),其中a=2,b=13. 20.化简求值:2111(428)(1),422x x x x -+---=-其中 21.先化简,再求值:(1)(52a +2a+1)﹣4(3﹣8a+22a )+(32a ﹣a ),其中13a = 22.先化简再求值:222232(33)(53),35x x x x -+--+=-其中 23.先化简再求值:2(2x y+x 2y )﹣2(2x y ﹣x )﹣2x 2y ﹣2y 的值,其中x=﹣2,y=2.24.先化简,再求值.4xy ﹣[2(2x +xy ﹣22y )﹣3(2x ﹣2xy+y2)],其中11,22x y =-=25.先化简,再求值:22x +(﹣2x +3xy+22y )﹣( 2x ﹣xy+22y ),其中 x=12,y=3.26.先化简后求值:5(32x y ﹣x 2y )﹣(x 2y +32x y ),其中x=-12,y=2. 27.先化简,再求值:22223()3x x x x ++-,其中x=-1228.(52x ﹣32y )﹣3(2x ﹣2y )﹣(﹣2y ),其中x=5,y=﹣3.29.先化简再求值:(22x ﹣5xy )﹣3(2x ﹣2y )+2x ﹣32y ,其中x=﹣3,13y = 30.先化简再求值:(﹣2x +5x )﹣(x ﹣3)﹣4x ,其中x=﹣131.先化简,再求值:23)2(3)(2222==-+--y x x y y x x ,,其中, 32.223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-。
化简求值练习题及答案
化简求值练习题及答案1.先化简,再求值:化简求值:3.先化简,再求值:4.先化简,再求值:先化简,再求值:6.先化简,再求值:7.先化简,再求值:先化简,再求值:9.先化简,再求值:10.先化简,再求值:化简求值:先化简,再求值:÷,其中x=cos60°.﹣)÷,其中a=1﹣,b=1+. +)÷,其中a=2﹣.÷,其中x为数据0,﹣1,﹣3,1,2的极差.÷,其中a+3a﹣1=0.+)÷,其中x=﹣1.,a取﹣1、0、1、2中的一个数.÷﹣,其中x=﹣4.)÷,其中x=+?tan60°. 0﹣1,其中.,其中a=﹣1.)÷﹣,其中x满足x﹣x﹣1=0.13.先化简,再求值:先化简,再求值:先化简,再求值:先化简求值.17.先化简,再求值:÷先化简:先化简,再求值: 20.先化简,再求值:先化简,再求值:先化简,再求值:先化简代数式先化简,再求值:÷÷÷,其中x=﹣1.)÷,其中x=2.﹣)÷,其中a+a﹣2=0.),再从不等式2x ﹣3<7的正整数解中选一个使原式有意义的数代入﹣)+,其中x的值为方程2x=5x﹣1的解.,再任选一个你喜欢的数x代入求值.÷,其中x=﹣1.),其中x=2.)÷,其中a=.﹣1)÷,其中a=+1,b=﹣1.)÷,再从0,1,2三个数中选择适当的数作为a的值代入)÷,其中x是方程﹣=0的解.25.先简化,再求值:+,其中a=+1.26.先化简,后计算:÷先化简,再求值:先化简,再求值:先化简,再求值:先化简,再求值:÷﹣)÷)÷),其中x=+3.,其中x=3.,其中x=﹣+﹣10.)÷,其中a,b满足+|b﹣|=0.,在﹣2,0,1,2四个数中选一个合适的代入求值.参考答案与试题解析1.先化简,再求值:÷,其中x= ﹣1.2.化简求值:,a取﹣1、0、1、2中的一个数..先化简,再求值:÷﹣,其中x=﹣4.4.先化简,再求值:÷,其中x=+?tan60°.0﹣15.先化简,再求值:,其中.6.先化简,再求值:,其中a=﹣1.初三数学中考化简求值专项练习题注意:此类要求的题目,如果没有化简,直接代入求值一分不得!考点:①分式的加减乘除运算②因式分解③二次根式的简单计算类型一:化简之后直接带值,有两种基本形式:含有根式的带值,一般这种情况前面的化简会出现平方的模式,可以为前面的化简正确与否提供一定的判断!不含根式,是最简单的形式。
七年级化简求值题50道
七年级化简求值题50道一、整式化简求值题(30道)1. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 根据完全平方公式公式,可得公式。
- 根据平方差公式公式,可得公式。
- 则原式公式。
- 再代入求值:- 当公式,公式时,公式。
2. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 根据平方差公式公式。
- 根据完全平方公式公式。
- 则原式公式。
- 再代入求值:- 当公式,公式时,公式。
3. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 去括号得:公式。
- 再代入求值:- 当公式,公式时,公式。
4. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 去括号得:公式。
- 再代入求值:- 当公式,公式时,公式。
5. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 根据完全平方公式展开得:公式。
- 再代入求值:- 当公式,公式时,公式。
6. 化简求值:公式,其中公式。
- 解析:- 先化简式子:- 根据完全平方公式公式。
- 根据平方差公式公式。
- 根据单项式乘多项式公式。
- 则原式公式。
- 再代入求值:- 当公式时,公式。
7. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 去括号得:公式。
- 再代入求值:。
8. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 去括号得:公式。
- 再代入求值:- 当公式,公式时,公式。
9. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 去括号得:公式。
- 再代入求值:。
10. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 根据平方差公式公式,这里公式,公式,则原式公式。
- 再代入求值:- 当公式,公式时,公式。
11. 化简求值:公式,其中公式,公式。
- 解析:- 先化简式子:- 根据平方差公式公式。
- 根据完全平方公式公式。
- 则原式公式。
初一上册整式化简求值60题(含答案)
整式化简求值:先化简再求值1.)3(2)2132()83(3232--+-+-a a a a a a ,其中4-=a 2.)45(2)45(332-+---+-x x x x ,其中2-=x 3.求)3123()31(22122y x y x x +-+--的值,其中2-=x 32=y4.22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦其中1-=a 3-=b 1=c 5.化简求值:若a=﹣3,b=4,c=﹣17,求{}222278[(2)]a bc a cb bca ab a bc --+-的值6.先化简后求值:2233[22()]2x y xy xy x y xy ---+,其中x=3,y=﹣137.化简求代数式:22(25)2(35)a a a a ---+的值,其中a=﹣1.8.先化简,再求值:2222115()(3),,23a b ab ab a b a b --+==其中 9.求代数式的值:2212(34)3(4)3,3xy x xy x x y +-+=-=,其中10.先化简,再求值:2(3a ﹣1)﹣3(2﹣5a ),其中a=﹣2. 11.先化简,再求值:22212()[3()2]2xy x x xy y xy ----++,其中x=2,y=﹣1. 12.先化简,再求值:222(341)3(23)1x x x x x -+---,其中x=﹣5. 13.先化简,再求值:32x ﹣[7x ﹣(4x ﹣3)﹣22x ];其中x=2. 14.先化简,再求值:(﹣2x +5x+4)+(5x ﹣4+22x ),其中x=﹣2. 15.先化简,再求值:3(x ﹣1)﹣(x ﹣5),其中x=2. 16.先化简,再求值:3(2x+1)+2(3﹣x ),其中x=﹣1.17.先化简,再求值:(32a ﹣ab+7)﹣(5ab ﹣42a +7),其中a=2,b=13. 18.化简求值:2111(428)(1),422x x x x -+---=-其中 19.先化简,再求值:(1)(52a +2a+1)﹣4(3﹣8a+22a )+(32a ﹣a ),其中13a = 20.先化简再求值:222232(33)(53),35x x x x -+--+=-其中 21.先化简再求值:2(2x y+x 2y )﹣2(2x y ﹣x )﹣2x 2y ﹣2y 的值,其中x=﹣2,y=2.22.先化简,再求值.4xy ﹣[2(2x +xy ﹣22y )﹣3(2x ﹣2xy+y2)],其中11,22x y =-=23.先化简,再求值:22x +(﹣2x +3xy+22y )﹣( 2x ﹣xy+22y ),其中 x=12,y=3.24.先化简后求值:5(32x y ﹣x 2y )﹣(x 2y +32x y ),其中x=-12,y=2.25.先化简,再求值:22223()3x x x x ++-,其中x=-1226.(52x ﹣32y )﹣3(2x ﹣2y )﹣(﹣2y ),其中x=5,y=﹣3.27.先化简再求值:(22x ﹣5xy )﹣3(2x ﹣2y )+2x ﹣32y ,其中x=﹣3,13y = 28.先化简再求值:(﹣2x +5x )﹣(x ﹣3)﹣4x ,其中x=﹣129.先化简,再求值:23)2(3)(2222==-+--y x x y y x x ,,其中, 30.223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-。
初中数学化简求值专题训练含答案
初中数学化简求值专题训练含答案
姓名:__________ 班级:__________考号:__________
一、解答题(共9题)
1、化简与求值。
先化简,再求值:,其中。
2、化简与求值:先化简,再求值:,其中x=.
3、化简求值
先化简,再求值:,其中a=-2,x=1.
4、先化简,再求值:先化简再求值÷(a+1)+,其中a=+l.
5、化简
已知,化简求值
6、先化简,后求值.
(1)化简:
(2)当时,求上式的值.
7、先化简,再求值,对于,请你找一个合适的值代入求值。
8、先化简,再求值:+6-2x将你喜欢的x值代入求值。
9、化简并求值然后从2,-2,3中任选一个你喜欢的a的值代入求值
============参考答案============
一、解答题
1、解原式=(3分)
=,(1分)
当时,原式=
=
=
2、
3、解:原式=2(x2-3x+2x-6)-(9-a2)
=2x2-2x-12-9+a2
=2x2-2x+a2-21
当a=-2,x=1时
原式=2x2-2x+a2-21
=2×12-2×1+(-2)2-21
=2-2+4-21
= -17
4、
5、由已知得,x=-2,y=3
原式=-2xy2+xy
当x=-2,y=3时,原式=30
6、原式==.
7、解化简=…………4分
代入求值,答案略…….4分
8、原式=3
9、当a=3时,原式=1。
初一上册整式化简求值60题(含答案)
整式化简求值:先化简再求值1.)3(2)2132()83(3232--+-+-a a a a a a ,其中4-=a 2.)45(2)45(332-+---+-x x x x ,其中2-=x 3.求)3123()31(22122y x y x x +-+--的值,其中2-=x 32=y4.22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦其中1-=a 3-=b 1=c 5.化简求值:若a=﹣3,b=4,c=﹣17,求{}222278[(2)]a bc a cb bca ab a bc --+-的值6.先化简后求值:2233[22()]2x y xy xy x y xy ---+,其中x=3,y=﹣137.化简求代数式:22(25)2(35)a a a a ---+的值,其中a=﹣1.8.先化简,再求值:2222115()(3),,23a b ab ab a b a b --+==其中 9.求代数式的值:2212(34)3(4)3,3xy x xy x x y +-+=-=,其中10.先化简,再求值:2(3a ﹣1)﹣3(2﹣5a ),其中a=﹣2. 11.先化简,再求值:22212()[3()2]2xy x x xy y xy ----++,其中x=2,y=﹣1. 12.先化简,再求值:222(341)3(23)1x x x x x -+---,其中x=﹣5. 13.先化简,再求值:32x ﹣[7x ﹣(4x ﹣3)﹣22x ];其中x=2. 14.先化简,再求值:(﹣2x +5x+4)+(5x ﹣4+22x ),其中x=﹣2. 15.先化简,再求值:3(x ﹣1)﹣(x ﹣5),其中x=2. 16.先化简,再求值:3(2x+1)+2(3﹣x ),其中x=﹣1.17.先化简,再求值:(32a ﹣ab+7)﹣(5ab ﹣42a +7),其中a=2,b=13. 18.化简求值:2111(428)(1),422x x x x -+---=-其中 19.先化简,再求值:(1)(52a +2a+1)﹣4(3﹣8a+22a )+(32a ﹣a ),其中13a = 20.先化简再求值:222232(33)(53),35x x x x -+--+=-其中 21.先化简再求值:2(2x y+x 2y )﹣2(2x y ﹣x )﹣2x 2y ﹣2y 的值,其中x=﹣2,y=2.22.先化简,再求值.4xy ﹣[2(2x +xy ﹣22y )﹣3(2x ﹣2xy+y2)],其中11,22x y =-=23.先化简,再求值:22x +(﹣2x +3xy+22y )﹣( 2x ﹣xy+22y ),其中 x=12,y=3.24.先化简后求值:5(32x y ﹣x 2y )﹣(x 2y +32x y ),其中x=-12,y=2.25.先化简,再求值:22223()3x x x x ++-,其中x=-1226.(52x ﹣32y )﹣3(2x ﹣2y )﹣(﹣2y ),其中x=5,y=﹣3.27.先化简再求值:(22x ﹣5xy )﹣3(2x ﹣2y )+2x ﹣32y ,其中x=﹣3,13y = 28.先化简再求值:(﹣2x +5x )﹣(x ﹣3)﹣4x ,其中x=﹣129.先化简,再求值:23)2(3)(2222==-+--y x x y y x x ,,其中, 30.223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-。
整式专项-化简求值50题练习
1、先化简,再求值:3x + 2(x2- 2x + 1) - 3(x2- 3x + 2),其中x = -12、化简求值:2(a2- ab) - 3(a2- 2ab),当a = 1,b = -23、先化简,再计算:(2x2- 5xy + 3y2) - (x2- 4xy + 2y2),其中x =2,y = 14.化简并求值:4(m - 2n) + 3(2m + n) - 5(m + n),当m = 3,n = -11、先化简,后求值:5(a + b) - 2(2a - 3b) + 3(a - 4b),其中a = 2,b = -12、化简求值:6(x - y)2 - 3(x - y) + 2(y - x)2 - (x - y),当x = 5,y = 33、先化简,再求值:2(x2 - xy) - 3(x2- 2xy),其中x = -1,y = 24、化简计算:3(a - 2b) - 2(2a + b) + 5(a + 3b),当a = 1,b = 01、先化简,再求值:(4x2- 3xy + 5y2) - (2x2 + 2xy - 3y2),其中x =-2,y =12、化简求值:5(m - 2n) - 3(2m - 5n) + 2(m + 3n),当m = 4,n = -23、先化简,后求值:6(a - b) + 2(3a + b) - 4(a + 2b),其中a = 3,b = -14、化简求值:7(x + y2) - 4(x + y) + 3(y2 + x) - 2(x + y),当x = 1,y = -11、先化简,再求值:3(x2- 2xy) - 2(x2- 3xy),其中x = 0,y = -12、化简计算:4(a + 3b) - 3(2a - b) + 6(a - 4b),当a = -1,b = 23、先化简,再求值:(5x2- 4xy + 3y2) - (3x2- 3xy + 2y2),其中x = 1,y = -24、化简求值:8(m - 3n) - 5(3m + 2n) + 4(m + 5n),当m = 5,n = -11、先化简,后求值:9(a - 2b) - 6(2a + b) + 3(a + 4b),其中a = 2,b = -22、化简求值:10(x - y)2- 7(x - y) + 5(x - y)2- 3(x - y),当x = 7,y = 53、先化简,再求值:4(x2- xy) - 5(x2- 2xy),其中x = -2,y = 34、化简计算:6(a - 4b) - 4(2a + 3b) + 8(a + 2b),当a = 0,b = 15.先化简,再求值:(7x2- 6xy + 5y2) - (5x2- 5xy + 4y2),其中x = 3,y = -11、化简求值:3(m - 5n) - 2(5m - 3n) + 6(m + 2n),当m = -1,n = 22、先化简,后求值:8(a - b) + 5(2a + b) - 7(a + 3b),其中a = 4,b = -13、化简求值:9(x + y)2- 6(x + y) + 7(y + x)2- 4(x + y),当x = -2,y = 14、先化简,再求值:5(x2 - 3xy) - 4(x2- 4xy),其中x = 1,y = -35、化简求值:10(m - 4n) - 7(4m + 3n) + 5(m + 6n),当m = 6,n = -21、先化简,后求值:7(a - 3b) - 4(3a + b) + 2(a + 5b),其中a = 5,b = -22、化简求值:11(x2- y) - 8(x - y) + 9(y - x2) - 5(x - y),当x = 8,y = 63、先化简,再求值:6(x2- 2xy) - 5(x2- 3xy),其中x = -3,y = 24、化简计算:8(a + 2b) - 6(2a - b) + 9(a - 3b),当a = 1,b = -35、先化简,再求值:(9x2- 8xy + 7y2) - (7x2- 7xy + 6y2),其中x = -1,y = 01、化简求值:4(m - 6n) - 3(6m + 2n) + 7(m + 4n),当m = 2,n = -12、先化简,后求值:5(a - 4b) + 3(4a + b) - 6(a + 2b),其中a = 0,b = -13、化简求值:6(x + y)2 - 5(x + y) + 8(y + x)2 - 3(x + y),当x = 3,y = -24、先化简,再求值:7(x2- 4xy) - 6(x2- 5xy),其中x = 2,y = -45、化简求值:12(m - 5n) - 9(5m + 3n) + 6(m + 7n),当m = 7,n = -31、先化简,后求值:10(a - 5b) - 7(5a + b) + 5(a + 3b),其中a = -1,b = -22、化简求值:13(x - y)2- 10(x - y) + 11(y - x)2- 7(x - y),当x = 9,y = 73、先化简,再求值:8(x2- 3xy) - 7(x2- 4xy),其中x = -4,y = 14、化简计算:9(a + 4b) - 7(4a - b) + 10(a - 2b),当a = 2,b = -45、先化简,再求值:(11x2 - 10xy + 9y2) - (9x2- 9xy + 8y2),其中x = 0,y = -11、化简求值:5(m - 8n) - 4(8m + 2n) + 9(m + 6n),当m = -3,n = 12、先化简,后求值:6(a - 6b) + 4(6a + b) - 8(a + 3b),其中a = 1,b = -23、化简求值:7(x + y)2 - 6(x + y) + 10(y + x)2 - 5(x + y),当x = -1,y = 04、先化简,再求值:9(x2- 5xy) - 8(x2- 6xy),其中x = 3,y = -55、化简求值:14(m - 7n) - 11(7m + 3n) + 8(m + 9n),当m = 8,n = -4七年级化简求值打卡练习1、先化简,后求值:12(a - 7b) - 9(7a + b) + 6(a + 5b),其中a = -2,b = -32、化简求值:15(x - y)2- 12(x - y) + 13(y - x)2- 9(x - y),当x = 10,y = 83、先化简,再求值:10(x2- 4xy) - 9(x2- 5xy),其中x = -5,y = 24、. 化简计算:11(a + 5b) - 9(5a - b) + 12(a - 3b),当a = -1,b = -5。
化简求值50道(你值得拥有)
2016中考复习化简求值1.先化简,再求值:(+)÷,其中x=﹣1.2.化简求值:,a取﹣1、0、1、2中的一个数.3.先化简,再求值:÷﹣,其中x=﹣4.4.先化简,再求值:(1﹣)÷,其中x=(+1)0+()﹣1•tan60°.5.先化简,再求值:,其中.6.先化简,再求值:,其中a=﹣1.7.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.8.先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.9.先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.10.先化简,再求值:(+)÷,其中a=2﹣.11.化简求值:(﹣)÷,其中a=1﹣,b=1+.12.先化简,再求值:(x﹣)÷,其中x=cos60°.13.先化简,再求值:(﹣)÷,其中x=﹣1.14.先化简,再求值:(x+1﹣)÷,其中x=2.15.先化简,再求值:(﹣)÷,其中a2+a﹣2=0.16.先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.17.先化简,再求值:÷(﹣)+,其中x的值为方程2x=5x﹣1的解.18.先化简:(x﹣)÷,再任选一个你喜欢的数x代入求值.19.先化简,再求值:÷(2+),其中x=﹣1.20.先化简,再求值:(﹣),其中x=2.21.先化简,再求值:(1﹣)÷,其中a=.22.先化简,再求值:(﹣1)÷,其中a=+1,b=﹣1.23.先化简代数式(﹣)÷,再从0,1,2三个数中选择适当的数作为a的值代入求值.24.先化简,再求值:(x﹣1﹣)÷,其中x是方程﹣=0的解.25.先简化,再求值:(﹣)+,其中a=+1.26.先化简,后计算:(1﹣)÷(x﹣),其中x=+3.27.先化简,再求值:(1﹣)÷,其中x=3.28.先化简,再求值:(﹣)÷,其中x=()﹣1﹣(π﹣1)0+.29.先化简,再求值:()÷,其中a,b满足+|b﹣|=0.30.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.31. 先化简再求值:错误!未找到引用源。
化简求值练习题答案
化简求值练习题答案1.??2,其中a??2.?2,其中x??2.求4.?21131x?2?的值,其中x??y?3232312?321?ab??ab?3?4a2c??3abc其中a??1 b?? c?13?2?1222bca2?ab]?的,求7abc??8acb?[7132xy)?xy],其中x=3,y=﹣325.化简求值:若a=﹣3,b=4,c=﹣值6.先化简后求值:3xy?[2xy?2?2的值,其中a=﹣1. 11,b?312210.求代数式的值:2?3,其中x??3,y?39.先化简,再求值:5?,其中a?22211.12.先化简,再求值:2﹣3,其中a=﹣2. 13.先化简,再求值:?2?[x2?3?2xy],其中x=2,y=﹣1.214.先化简,再求值:2x?3x?1,其中x=﹣5. 15.先化简,再求值:3x﹣[7x﹣﹣2x];其中x=2. 16.先化简,再求值:+,其中x=﹣2. 17.先化简,再求值:3﹣,其中x=2. 18.先化简,再求值:3+2,其中x=﹣1.19.先化简,再求值:﹣,其中a=2,b=20.化简求值:2222221.111?,其中x??22322221.先化简,再求值:﹣4+,其中a?22.先化简再求值:2x?2223?,其中x??52223.先化简再求值:2﹣2﹣2xy﹣2y的值,其中x=﹣2, 2y=2.11,y?2122225.先化简,再求值:2x+﹣,其中 x=,y=3.212226.先化简后求值:5﹣,其中x=-,y=2.2122227.先化简,再求值:x?2x?3,其中x=-24.先化简,再求值.4xy﹣[2﹣3],其中x??2228.﹣3﹣,其中x=5,y=﹣3.29.先化简再求值:﹣3+x﹣3y2,其中x=﹣3,y?30.先化简再求值:﹣﹣4x,其中x=﹣1222x?2?3,其中,x?3,y?21.先化简,再求值:2222221332.3?[3x2?2y?2],其中x??33.先化简再求值:a?2b 1,y??3。
初中数学化简求值经典练习题(含答案)
初中数学化简求值经典练习题(含答案)先化简再求值: 1.(1+ 1x +1x+1)÷x (x+1)+2(x+1)−1x 2−1-1,其中:x=√2-1 ;2.1-(1x−1-1)( 1x-1),其中:x=√5+2 ;3.25x -12x−3y ·(4x 2-9y 2+4x−6y 5x),其中:x=√3+12,y= √3−13;4.2(x-2y )+3(2x-3y )-4(3x-4y ),其中:x= - 34,y= 23;5.7x 3-2x (3x-5)-(4+5x-6x 2+7x 3),其中:x=2;6.(x+1)(x-3)+3x 2- 2〔2(x-2)(x+1)+(5x+4〕),其中:x= 34 ;7.x (x-1)-(x-2)(x+3)+6[32(6+x )+ 13(5-x )],其中x= -1.2 ;8.x−9x 2−9·x 2−6x+99−x+(4x−142x 2−x−21+3),其中x=√3-3 ;9.x−2y 3x+4y ÷(x +−2xy+4y 2x−2y)·3x 2+7xy+4y 2x 2−y 2,其中:x=√5-1,y=√3-1 ;10.12(2x+4)(x-2)+x−5x 2−10x+25·(x 2-x-20),其中:x 是大于3且小于6的自然数; 11.(4x+31x−5+x+5)-x 2−9x−5·x−2x+3,其中:x 满足|x |=4 ;12.(x+3)÷ x 2+x−6x 2−6x+8-x−1x+1×2x 2−x−3x−1,其中:x=2sin60°-1 ;参考答案1.(1+ 1x +1x+1)÷x (x+1)+2(x+1)−1x 2−1-1,其中:x=√2-1 ; 解:(1+ 1x + 1x+1)÷x (x+1)+2(x+1)−1x 2−1-1=(x+1x+ 1x+1)÷x 2+x+2x+2−1(x+1)(x−1)-1=x 2+3x+1x (x+1)÷x 2+3x+1(x+1)(x−1)-1 = x 2+3x+1x (x+1) ·(x+1)(x−1)x 2+3x+1-1=x−1x-1=1 - 1x-1 = - 1x将x=√2-1代入 原式= - √2−1= -√2+1(√2−1)(√2+1)= -√2−1故当 x=√2-1时原代数式的值是:-√2−1 2. 1-(1x−1-1)( 1x-1),其中:x=√5+2 ;解:1-(1x−1 -1)( 1x-1)=1-(1x−1-x−1x−1)( 1x- xx)=1- −x+2x−1 ·1−xx=1-x−2x=1-(1- 2x) = 2x将x=√5+2代入 原式= √5+2=√5−2(√5+2)(√5−2)=2√5-4故当 x=√5+2时原代数式的值是:2√5-4 3.25x -12x−3y ·(4x 2-9y 2+4x−6y5x ),其中:x= √3+12,y= √3−13 ; 解:25x - 12x−3y (4x 2-9y 2+4x−6y 5x)= 25x -12x−3y〔(2x+3y )(2x-3y ) +2(x−3y )5x〕= 25x - 〔(2x+3y )+ 25x〕 = -(2x+3y ) = -2x-3y将x= √3+12,y= √3−13代入原式= -2·√3+12 -3·√3−13= -(√3+1)-(√3−1)=2√3故当x= √3+12,y= √3−13时原代数式的值是:2√34.2(x-2y)+3(2x-3y)-4(3x-4y),其中:x= - 34,y= 23;解:2(x-2y)+3(2x-3y)-4(3x-4y) =2x-4y+6x-9y-12x+16y= -4x+3y将x= - 34,y= 23代入原式= -4·(- 34)+3·23=3+2=5故当 x=2时原代数式的值是:55. 7x3-2x(3x-5)-(4+5x-6x2+7x3),其中:x=2;解:7x3-2x(3x-5)-(4+5x-6x2+7x3)=7x3-6x2+10x-4-5x+6x2-7x3=5x-4将x=2代入原式=5·2-4=6故当 x=2时原代数式的值是:66.(x+1)(x-3)+3x 2- 2〔2(x-2)(x+1)+(5x+4〕),其中:x= 34 ;解:(x+1)(x-3)+3x 2- 2〔2(x-2)(x+1)+(5x+4〕) = x 2-2x-3+3x 2-2〔2(x 2-x-2)+(5x+4〕) =4x 2-2x-3-2〔2x 2-2x-4+5x+4) =4x 2-2x-3-2(2x 2+3x ) =4x 2-2x-3-4x 2-6x = -8x-3 将x= 34 代入原式= -8·34-3= -9故当 x= 34 时原代数式的值是:-97.x (x-1)-(x-2)(x+3)+6[32(6+x )+ 13(5-x )],其中x= -1.2 ;解:x (x-1)-(x-2)(x+3)+6[32(6+x )+ 13(5-x )]=x 2-x-(x 2+x-6)+ [6*32(6+x )+ 6*13(5-x )]=-2x+6+[9(6+x )+ 2(5-x )] =6-2x+(54+9x+10-2x ) =6-2x+(64+7x )=70+5x 将x= -1.2代入 原式=70+5×(-1.2)=64故当x= -1.2时原代数式的值是:64 8.x−9x 2−9·x 2−6x+99−x+(4x−142x 2−x−21+3),其中x=√3-3 ; 解:x−9x 2−9·x 2−6x+99−x +(4x−142x 2−x−21 +3)=x−9(x+3)(x−3)·(x−3)2−(x−9)+〔2(2x−7)(2x−7)(x+3)+3〕= - x−3x+3+2x+3+3= 5−x x+3+3= 5−x+3x+9x+3= 2x+14x+3=(2x+6)+8x+3=2+8x+3将x=√3-3代入 原式=2+(√3−3)+3=2+8√33故当x=√3-3时原代数式的值是:2+ 8√339.x−2y 3x+4y÷(x +−2xy+4y 2x−2y)·3x 2+7xy+4y 2x 2−y 2,其中:x=√5-1,y=√3-1;解:x−2y3x+4y ÷(x + −2xy+4y2x−2y)·3x2+7xy+4y2x2−y2= x−2y3x+4y ÷x2−4xy+4y2x−2y·(3x+4y)(x+y)(x+y)(x−y)=x−2y3x+4y ÷(x−2y)2x−2y·3x+4yx−y=x−2y3x+4y ·1x−2y·3x+4yx−y= 1x−y将x=√5-1,y=√3-1代入原式=(√5−1)−(√3−1)=√5−√3= √5+√3(√5−√3)(√5+√3)= √5+√35−3= √5+√32故当x=√5-1,y=√3-1时原代数式的值是:√5+√3210.12(2x+4)(x-2)+ x−5x2−10x+25·(x2-x-20),其中:x是大于3且小于6的自然数;解:12(2x+4)(x-2)+ x−5x2−10x+25·(x2-x-20)=(x+2)(x-2)+ x−5(x−5)2·(x+4)(x-5)=x2 -4 +x+4=x2 +xx是大于3且小于6的自然数那么x 是自然数4或5,但是当x=5时,分式 x−5x 2−10x+25的分母等于0,故x 不能为5,所以x 只能是自然数4。
整式的化简求值解答题50题(5大题型提分练)(解析版)—2024-2025学年七年级数学上册北师大版
整式的化简求值解答题(50题)题型一先化简,再直接代入求值1.(2024春•靖江市校级月考)先化简,再求值:6y2﹣(2x2﹣y)+2(x2﹣3y2),其中x=﹣2023,y=2024.【分析】先去括号,再合并同类项,最后将y=2024,代入求值即可.【解答】解:6y2﹣(2x2﹣y)+2(x2﹣3y2)=6y2﹣2x2+y+2x2﹣6y2=y,当y=2024时,原式=2024.【点评】本题考查了整式的化简求值,熟练掌握整式的运算法则是关键.2.先化简再求值:2x2y―[xy2+3(x2y―13xy2)],其中x=12,y=2.【分析】先化简整式,再代入求值.【解答】解:原式=2x2y﹣(xy2+3x2y﹣xy2)=2x2y﹣3x2y=﹣x2y.当x=12,y=2时,原式=﹣(12)2×2=―14×2=―1 2.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.3.(2023秋•吉州区期末)先化简,再求值:(x2y﹣2xy2)﹣3(2xy2﹣x2y),其中x=12,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2y﹣2xy2﹣6xy2+3x2y=4x2y﹣8xy2,当x=12,y=﹣1时,原式=4×14×(﹣1)﹣8×12×(﹣1)2=﹣1﹣4=﹣5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.4.(2024春•开福区校级月考)先化简,再求值:2(﹣2x2+xy﹣y2)﹣(﹣4x2+4xy﹣2y2),其中x=3,y =﹣1.【分析】首先去括号,然后合并同类项,化简后,再代入x、y的值求解即可.【解答】解:2(﹣2x2+xy﹣y2)﹣(﹣4x2+4xy﹣2y2)=﹣4x2+2xy﹣2y2+4x2﹣4xy+2y2=﹣2xy,当x=3,y=﹣1时,原式=﹣2×3×(﹣1)=6.【点评】本题考查了整式的加减与化简求值,熟练掌握整式的运算法则是关键.5.(2023秋•秦淮区期末)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=﹣1,b=2.【分析】先进行整式的化简,再代入求值即可.【解答】解:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),=7a2b﹣4a2b+5ab2﹣2a2b+3ab2=a2b+8ab2当a=﹣1,b=2时,原式=(﹣1)2×2+8×(﹣1)×22=2﹣32=﹣30.【点评】本题考查了整式的加减,解决本题的关键是先化简.6.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x+6y2﹣4x﹣6x+3y2=﹣6x+9y2,当x=2,y=﹣2时,原式=﹣6×2+9×(﹣2)2=﹣12+36=24.7.(2024春•东坡区期末)先化简,再求值:(2xy2+x3y)―[(4x2y2―xy2)+12(―8x2y2+4x3y)],其中x=﹣1,y=1 2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2xy2+x3y﹣4x2y2+xy2+4x2y2﹣2x3y=3xy2﹣x3y,当x=﹣1,y=12时,原式=3×(﹣1)×(12)2﹣(﹣1)3×12=―34+12=―14.【点评】此题考查了整式的加减﹣化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.7.(2023秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【分析】将代数式去括号,合并同类项,从而将整式化为最简形式,然后把x、y的值代入即可.【解答】解:原式=2x 2﹣2y 2﹣3x 2y 2﹣3x 2+3x 2y 2+3y 2=﹣x 2+y 2;当x =﹣1,y =2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点评】本题主要考查了整式的加减运算.整式的加减运算实际上就是去括号、合并同类项.8.(2023秋•梁子湖区期末)先化简,再求值:5x 2―[2xy ―3(13xy +2)+4x 2],其中x =―2,y =12.【分析】先将原式去括号、合并同类项,再把x =﹣2,y =12代入化简后的式子,计算即可.【解答】解:5x 2―[2xy ―3(13xy +2)+4x 2]=5x 2﹣(2xy ﹣xy ﹣6+4x 2)=5x 2﹣2xy+x y +6﹣4x 2=(5x 2﹣4x 2)+(﹣2xy+xy )+6=x 2﹣xy+6,当x =―2,y =12时,原式=(―2)2―(―2)×12+6=4+1+6=11.【点评】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.9.先化简,再求值:2(ab ―32a 2+a ﹣b 2)﹣3(a ﹣a 2+23ab ),其中a =5,b =﹣2.【分析】先化简整式,再代入求值.【解答】解:2(ab ―32a 2+a ﹣b 2)﹣3(a ﹣a 2+23ab )=2ab ﹣3a 2+2a ﹣2b 2﹣3a +3a 2﹣2ab=﹣a ﹣2b 2.当a =5,b =﹣2时,原式=﹣5﹣2×(﹣2)2=﹣5﹣2×4=﹣5﹣8=﹣13.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.10.(2024春•昭通期末)先化简,再求值:(3x2﹣3x2y﹣2xy2)﹣2(x2﹣xy2+y3)+3(x2y﹣y3),其中x =3,y=﹣2.【分析】根据整式混合运算法则进行计算.【解答】解:原式=3x2﹣3x2y﹣2xy2﹣2x2+2xy2﹣2y3+3x2y﹣3y3,=x2﹣5y3,当x=3,y=﹣2时,原式=32﹣5×(﹣2)3=49.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式混合运算法则是解题的关键.11.(2023秋•雨花区期末)先化简再求值:3(x2﹣2x2y)﹣3x2+2y﹣2(x2y+y),其中x=12,y=﹣3.【分析】直接去括号,再合并同类项,即可化简,把已知数据代入得出答案.【解答】解:3(x2﹣2x2y)﹣3x2+2y﹣2(x2y+y)=3x2﹣6x2y﹣3x2+2y﹣2x2y﹣2y=﹣8x2y,当x=12,y=﹣3时,原式=﹣8x2y=﹣8×(12)2×(﹣3)=﹣8×14×(﹣3)=6.【点评】本题主要考查了整式的加减—化简求值,掌握整式的加减—化简方法是关键.12.(2023秋•绿园区期末)先化简,再求值:12m―(2m―23n2)+(―32m+13n2),其中m=―14,n=―1 2.【分析】先去括号,然后合并同类项,再代入求值.【解答】解:原式=12m―2m+23n2―32m+13n2=n2﹣3m,当m=―14,n=―12时,原式=n2﹣3m=(―12)2﹣3×(―14)=14+34=1.【点评】本题考查了整式的加减—化简求值,熟悉去括号和合并同类项法则是解题的关键.13.(2023秋•公安县期中)先化简,再求值:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab,其中a=12,b=﹣4.【分析】首先去括号进而合并同类项,再把a,b的值代入计算求出答案即可.【解答】解:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab=4a2b﹣(﹣2ab2﹣2ab+2ab2+a2b)﹣3ab=4a2b+2ab﹣a2b﹣3ab=3a2b﹣ab;当a=12,b=﹣4时,原式=3×(12)2×(―4)―12×(―4)=―3+2=―1.14.(2023秋•陕州区期中)先化简,再求值3x2y―2(x2y+14xy2)―2(xy2―xy),其中x=12,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:3x2y―2(x2y+14xy2)―2(xy2―xy)=3x2y―2x2y―12xy2―2xy2―2xy=xy2―52xy2+2xy把x=12,y=﹣2代入原式=(12)2×(―2)―52×12×(―2)2+2×12×(―2)=―712.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.15.(2023秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.【分析】(1)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.题型二先化简,再整体代入求值16.(2023秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.17.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=5m2﹣(5m2﹣2m2+mn﹣7mn+7)=5m2﹣5m2+2m2﹣mn+7mm﹣7=2m2+6mm﹣7,∵m2+3mn=﹣5,∴原式=2(m2+3mn)﹣7=2×(﹣5)﹣7=﹣10﹣7=﹣17.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.18.(2023秋•潮南区期末)先化简,再求值:23(6a ―3ab)+(ab ―2a)―2(ab +b),其中a ﹣b =9,ab =﹣6.【分析】原式去括号合并得到最简结果,把a ﹣b 及ab 的值代入计算即可求出值.【解答】解:原式=4a ﹣2ab +ab ﹣2a ﹣2ab ﹣2b=2a ﹣3ab ﹣2b .∵a ﹣b =9,ab =﹣6,∴原式=2(a ﹣b )﹣3ab=2×9﹣3×(﹣6)=36.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知x +y =6,xy =﹣4,求:(5x +2y ﹣3xy )﹣(2x ﹣y +2xy )的值.【分析】先去括号,合并同类项,再将x +y =6,xy =﹣4,整体代入进行计算即可.【解答】解:原式=5x +2y ﹣3xy ﹣2x +y ﹣2xy=3x +3y ﹣5xy=3(x +y )﹣5xy ,当x +y =6,xy =﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(2023秋•荔湾区期末)已知a 2+b 2=3,ab =﹣2,求代数式(7a 2+3ab +3b 2)﹣2(4a 2+3ab +2b 2)的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=7a 2+3ab +3b 2﹣8a 2﹣6ab ﹣4b 2=﹣a 2﹣3ab ﹣b 2;当a 2+b 2=3,ab =﹣2时,原式=﹣(a 2+b 2)﹣3ab=﹣3﹣3×(﹣2)=﹣3+6=3,∴原代数式的值为3.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想解题是关键.21.(2023秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6x2﹣2x+4y﹣2xy﹣6x2+9x+3y﹣3xy=7x+7y﹣5xy,当x+y=67,xy=﹣2时,原式=7(x+y)﹣5xy=7×67―5×(﹣2)=6+10=16.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想代入求值是解题关键.22.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1= .(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时,2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时,2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①,ab﹣2b2=﹣3②,①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9.【点评】本题考查了整式的加减—化简求值,掌握整体代入的思想,把每一个整式进行适当的变形是解题的关键.23.(2023秋•龙泉市期中)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并2(a﹣b)2﹣6(a﹣b)2+3(a﹣b)2;(2)若a(x2﹣2y)+b(x2﹣2y)=x2﹣2y,且x2﹣2y≠0,求a+b+2023的值;(3)若对于任意x都有(ax5+bx4+x3+x2+x)+(cx5+dx4+x3+x2+x)=2(x3+x2+x)成立,且abcd≠0,比较ca与db的大小,并说明理由.【分析】(1)根据阅读材料提供的方法,将系数相加减即可合并;(2)根据阅读材料提供的方法,求出a+b,即可求出a+b+2023的值;(3)根据题意得到a=﹣c,b=﹣d,即可求出ca与db的值,从而解决问题.【解答】解:(1)原式=(2﹣6+3)(a﹣b)2=﹣(a﹣b)2;(2)∵(a+b)(x2﹣2y)=(x2﹣2y),∴a+b=1,∴a+b+2023=1+2﹣23=2024;(3)ca=db.理由如下:∵对于任意x都有(ax5+bx4+x3+x2+x)+(cx5+dx4+x3+x2+x)=2(x3+x2+x)成立,∴对于任意x都有(a+c)x5+(b+d)x4+2x3+2x2+2x=2(x3+x2+x)成立,∴a+c=0,b+d=0,∴a=﹣c,b=﹣d,∴ca=―1,db=―1,∴ca=db.【点评】本题考查合并同类项,代数式求值,理解整体思想,掌握合并同类项的基本方法是解题的关键.24.阅读理解:已知4a―52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a―52b=1,所以原式=2a―2b+6a―3b=8a―5b=2(4a―52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.【分析】(1)把(a﹣b)看成一个整体,先变形要求值代数式,再整体代入;(2)可变形已知,整体代入求值.【解答】解:(1)3(a﹣b)﹣a+b+1=3(a﹣b)﹣(a﹣b)+1=2(a﹣b)+1.当a﹣b=﹣3时,原式=2×(﹣3)+1=﹣6+1=﹣5.(2)法一、∵a2+2ab=2,ab﹣b2=1,∴2a2+4ab=4,∴2a2+4ab+ab﹣b2=5.即2a2+5ab﹣b2=5.法二、∵a2+2ab=2,ab﹣b2=1,∴a2=2﹣2ab,﹣b2=1﹣ab.∴2a2+5ab﹣b2=2(2﹣2ab)+5ab+1﹣ab=4﹣4ab+5ab+1﹣ab=5.【点评】本题主要考查了整式的化简求值,掌握整式的运算法则和整体的思想方法是解决本题的关键.25.(2024春•道里区校级期中)【知识呈现】我们可把5(x﹣2y)﹣3(x﹣2y)+8(x﹣2y)﹣4(x﹣2y)中的“x﹣2y”看成一个字母a,使这个代数式简化为5a﹣3a+8a﹣4a,“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.在数学中,常常用这样的方法把复杂的问题转化为简单问题.【解决问题】(1)上面【知识呈现】中的问题的化简结果为 ;(用含x、y的式子表示)(2)若代数式x2+x+1的值为3,求代数式2x2+2x﹣5的值为 ;【灵活运用】应用【知识呈现】中的方法解答下列问题:(3)已知a﹣2b=7,2b﹣c的值为最大的负整数,求3a+4b﹣2(3b+c)的值.【分析】(1)令“x﹣2y”=a,则原式化为5a﹣3a+8a﹣4a,然后合并同类项,最后将a=x﹣2y代入即可;(2)将2x2+2x﹣5变形为2(x2+x)﹣5,然后整体代入求值即可;(3)由题意得出2b﹣c=﹣1,结合a﹣2b=7即可得出a﹣c=6,将3a+4b﹣2(3b+c)变形为(a﹣2b)+2(a﹣c),然后代入求值即可.【解答】解:(1)令“x﹣2y”=a,则5(x﹣2y)﹣3(x﹣2y)+8(x﹣2y)﹣4(x﹣2y)=5a﹣3a+8a﹣4a=(5﹣3+8﹣4)a=6a=6(x﹣2y)=6x﹣12y,故答案为:6x﹣12y;(2)由题意得,x2+x+1=3,∴x2+x=2,∴2x2+2x﹣5=2(x2+x)﹣5=2×2﹣5=﹣1,故答案为:﹣1;(3)∵2b﹣c的值为最大的负整数,∴2b﹣c=﹣1①,∵a﹣2b=7②,①+②,得a﹣c=6,∴3a+4b﹣2(3b+c)=3a+4b﹣6b﹣2c=3a﹣2b﹣2c=(a﹣2b)+(2a﹣2c)=(a﹣2b)+2(a﹣c)=7+2×6=19.【点评】本题考查了整体思想,合并同类项,负整数,理解题意,熟练掌握整体思想是解题的关键.26.(2023秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.【分析】(1)根据题意得出x2﹣2x+3=5,求出x2﹣2x=2,变形后代入,即可求出答案;(2)根据题意求出a+b+5=8,求出a+b=3,再把x=﹣1代入代数式,最后整体代入,即可求出答案;(3)代数式x2﹣2xy+y2=20减去代数式xy﹣y2=6,即可得出答案.【解答】解:(1)根据题意得:x2﹣2x+3=5,即x2﹣2x=2,所以3x2﹣6x﹣1=3(x2﹣2x)﹣1=3×2﹣1=6﹣1=5;(2)∵当x=1时,代数式ax3+bx+5的值为8,∴a+b+5=8,∴a+b=3,当x=﹣1时,ax3+bx﹣6=a×(﹣1)3+b×(﹣1)﹣6=﹣a﹣b﹣6=﹣(a+b)﹣6=﹣3﹣6=﹣9;(3)∵①x2﹣2xy+y2=20,②xy﹣y2=6,∴①﹣②,得x2﹣2xy+y2﹣(xy﹣y2)=20﹣6,整理得:x2﹣3xy+2y2=14.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.27.(2023秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1= ;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时,2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时,2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①,ab﹣2b2=﹣3②,①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9.【点评】本题考查了整式的加减—化简求值,掌握整体代入的思想,把每一个整式进行适当的变形是解题的关键.题型三先求字母的值,再代入求值28.(2024春•海淀区校级期中)先化简,再求值:已知(a﹣2)2+|b+3|=0,求10a2b﹣[2ab2﹣2(ab﹣5a2b)]的值.【分析】根据整式加减的计算法则进行化简,然后根据非负数的性质求出a、b再代入求值即可.【解答】解:原式=10a2b﹣(2ab2﹣2ab+10a2b)=10a2b﹣2ab2+2ab﹣10a2b=﹣2ab2+2ab,∵(a﹣2)2+|b+3|=0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,∴原式=﹣2×2×(﹣3)2+2×2×(﹣3)=﹣36+(﹣12)=﹣48.【点评】本题考查整式加减的化简求值,解题关键是熟知非负数的性质以及整式加减的计算法则.29.(2023秋•镇江期末)先化简,再求值:﹣2xy+(5xy﹣3x2+1)﹣3(2xy﹣x2),其中x、y满足|x+2|+(y﹣1)2=0.【分析】根据整式的加减运算法则将﹣2xy+(5xy﹣3x2+1)﹣3(2xy﹣x2)化简,再根据绝对值和平方式的非负性求得x、y x、y的值代入化简后的式子进行计算,即可解题.【解答】解:﹣2xy+(5xy﹣3x2+1)﹣3(2xy﹣x2)=﹣2xy+5xy﹣3x2+1﹣6xy+3x2=﹣3xy+1,∵x、y满足|x+2|+(y﹣1)2=0.∴|x+2|=0,(y﹣1)2=0,即x+2=0,y﹣1=0,解得x=﹣2,y=1,将x=﹣2,y=1代入﹣3xy+1中,有﹣3xy+1=﹣3×(﹣2)×1+1=7.【点评】本题考查整式的化简求值,能化简是解题的关键.30.(2023秋•海林市期末)先化简再求值:12a+2(a+3ab―13b2)―3(32a+2ab―13b2),其中a、b满足|a﹣2|+(b+3)2=0.【分析】先去括号,然后合并同类项进行化简,根据非负数的性质求出a、b的值代入化简后的结果进行计算即可.【解答】解:原式=12a+2a+6ab―23b2―92a―6ab+b2=―2a+13b2,∵|a﹣2|+(b+3)2=0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,当a=2,b=﹣3时,原式=﹣2×2+13(﹣3)2=﹣4+3=﹣1.【点评】本题考查了整式的加减——化简求值,涉及了去括号法则,合并同类项法则,非负数的性质等,熟练掌握各运算的运算法则以及非负数的性质是解题的关键.31.(2023秋•罗山县期末)已知:(x―2)2+|y+12|=0,求2(xy2+x2y)﹣[2xy2﹣3(1﹣x2y)]+2的值.【分析】根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.【解答】解:原式=2xy2+2x2y﹣(2xy2﹣3+3x2y)+2=2xy2+2x2y﹣2xy2+3﹣3x2y+2=(2﹣2)xy2+(2﹣3)x2y+(3+2)=﹣x2y+5;∵(x+2)2≥0,|y―12|≥0,又∵(x―2)2+|y+12|=0,∴x﹣2=0,y+12=0,∴x=2,y=―1 2,∴原式=﹣22×(―12)+5=2+5=7.【点评】本题考查整式的化简求值,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.32.(2024春•东坡区期末)先化简,再求值:(2x2y﹣5xy)﹣2(x2y﹣xy),其中x,y满足|x―13|+(y+3)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=2x2y﹣5xy﹣2x2y+2xy=﹣3xy,|x―13|+(y+3)2=0.x―13=0,y+3=0,∴x=13,y=﹣3,∴原式=―3×13×(―3)=3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.33.(2023秋•沙坪坝区校级期中)先化简,再求值:2(x2y―2xy2)―[(―x2y2+4x2y)―13(6xy2―3x2y2)],其中x是最大的负整数,y是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x y是绝对值最小的正整数,∴x=﹣1,y=1,∴2(x2y―2xy2)―[(―x2y2+4x2y)―13(6xy2―3x2y2)]=2x2y﹣4xy2﹣(﹣x2y2+4x2y﹣2xy2+x2y2)=2x2y﹣4xy2+x2y2﹣4x2y+2xy2﹣x2y2=﹣2x2y﹣2xy2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x2y﹣2xy2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.34.(2023秋•越秀区期末)已知代数式M=(2a2+ab﹣4)﹣2(2ab+a2+1).(1)化简M;(2)若a,b满足等式(a﹣2)2+|b+3|=0,求M的值.【分析】(1)直接利用去括号,进而合并同类项即可得出答案;(2)结合非负数的性质得出a,b的值,代入a,b的值得出答案.【解答】解:(1)M=2a2+ab﹣4﹣4ab﹣2a2﹣2=﹣3ab﹣6;(2)∵(a﹣2)2+|b+3|=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,故M=﹣3×2×(﹣3)﹣6=18﹣6=12.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.35.(2023秋•和平区校级期中)先化简再求值:若(a+3)2+|b﹣2|=0,求3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}的值.【分析】先去括号、合并同类项,再根据非负数的性质求出a、b,最后代入化简后的整式求值.【解答】解:3ab2﹣{2a2b﹣[52﹣(6ab2﹣2a2b)]}=3ab2﹣[2a2b﹣(5ab2﹣6ab2+2a2b)]=3ab2﹣(2a2b﹣5ab2+6ab2﹣2a2b)=3ab2﹣2a2b+5ab2﹣6ab2+2a2b=2ab2.∵(a+3)2+|b﹣2|=0,又∵(a+3)2≥0,|b﹣2|≥0,∴a+3=0,b﹣2=0.∴a=﹣3,b=2.当a=﹣3,b=2时,原式=2×(﹣3)×22=2×(﹣3)×4=﹣24.【点评】本题考查了整式的化简﹣求值,掌握去括号法则、合并同类项法则、非负数的性质及有理数的混合运算是解决本题的关键.题型四先列式化简,再求值36.(2024春•莘县校级期末)已知A=2x2﹣x﹣1,B=3x2﹣2x﹣1,C=x2﹣2x,求A﹣(B﹣C)的值,其中x=―1 2.【分析】把A、B、C的式子代入A﹣(B﹣C)后,先去括号,合并同类项,把多项式化为最简形式后,把x=―12代入计算即可.【解答】解:∵A=2x2﹣x﹣1,B=3x2﹣2x﹣1,C=x2﹣2x,∴A﹣(B﹣C)=2x2﹣x﹣1﹣[3x2﹣2x﹣1﹣(x2﹣2x)]=2x2﹣x﹣1﹣(3x2﹣2x﹣1﹣x2+2x)=2x2﹣x﹣1﹣3x2+2x+1+x2﹣2x=﹣x,当x=―12时,原式=﹣(―12)=12.37.已知:A=x―12y+2,B=x﹣y﹣1.(1)化简A﹣2B;(2)若3y﹣2x的值为2,求A﹣2B的值.【分析】(1)把A、B表示的代数式代入A﹣2B中,计算求值即可;(2)利用等式的性质,变形已知,整体代入(1)的结果中求值即可.【解答】解:∵A=x―12y+2,B=x﹣y﹣1,∴A﹣2B=x―12y+2﹣2(x﹣y﹣1)=x―12y+2﹣2x+2y+2=﹣x+32y+4;(2)当3y﹣2x=2时,即﹣x+32y=1.=﹣x+32y+4=1+4=5.【点评】本题考查了整式的加减、整体代入的思想方法,掌握去括号、合并同类项法则是解决本题的关键.38.(2023秋•襄都区期末)已知多项式A=2a2+3ab﹣1,B=a2+ab,A﹣2B﹣C=0.(1)求多项式C.(2)当a=2,b=﹣3时,求多项式C的值.【分析】(1)直接由A﹣2B﹣C=0得到C=A﹣2B,再把A、B多项式代入求出结果;(2)将a=2,b=﹣3代入多项式C中,求值即可.【解答】解:(1)∵A﹣2B﹣C=0∴C=A﹣2B,∴C=2a2+3ab﹣1﹣2(a2+ab),整理得C=ab﹣1;(2)把a=2,b=﹣3代入ab﹣1中,得C=2×(﹣3)﹣1=﹣7.【点评】本题考查了整式的加减,关键运用代入法来解答.39.(2023秋•大丰区期末)已知A=2a2b﹣5ab2,B=a2b﹣2ab2﹣a.(1)求A﹣3B.(2)求当a=2,b=﹣1时,A﹣3B的值.【分析】(1)先把A、B表示的代数式代入,然后化简求值;(2)把a、b的值代入化简的代数式,计算得结果.【解答】解:(1)∵A=2a2b﹣5ab2,B=a2b﹣2ab2﹣a,∴A﹣3B=2a2b﹣5ab2﹣3(a2b﹣2ab2﹣a)=2a2b﹣5ab2﹣3a2b+6ab2+3a=﹣a2b+ab2+3a.(2)当a=2,b=﹣1时,A﹣3B=﹣22×(﹣1)+2×(﹣1)2+3×2=12.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.40.(2023秋•徐闻县期末)已知:M=4x2y﹣3xy2,N=3x2y﹣2xy2.(1)计算M﹣2N的值;(2)若单项式﹣2a1﹣2x b6与5a2b2﹣4y是同类项,求M﹣2N的值.【分析】(1)先去括号,然后合并同类项即可得到答案;(2)根据同类项的定义得到1﹣2x=2,2﹣4y=6,则x=―12,y=―1,据此代值计算即可.【解答】解(1)∵M=4x2y﹣3xy2,N=3x2y﹣2xy2,∴M﹣2N=4x2y﹣3xy2﹣2(3x2y﹣2xy2)=4x2y﹣3xy2﹣6x2y+4xy2=﹣2x2y+xy2;(2)∵单项式﹣2a1﹣2x b6与5a2b2﹣4y是同类项,∴1﹣2x=2,2﹣4y=6,∴x=―12,y=―1,∴M―2N=―2×(―12)2×(―+(―12)×(―1)2=12―12=0.【点评】本题主要考查了整式的化简求值,同类项的定义,熟知整式的加减计算法则是解题的关键.41.(2023秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=―27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab(2)当a=―27,b=3时,A﹣2(A﹣B)=7×(―27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2023秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a 2+2ab +7﹣6a 2+9ab +3=11ab +10.(2)当a ,b 互为倒数时,ab =1,2A ﹣(A +3B )=11ab +10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.题型五 利用与某字母无关求整式的值44.(2023秋•南昌期末)如果关于x 、y 的代数式(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 所取的值无关,试化简代数式a 3―2b 2―2(14a 3―3b 2),再求值.【分析】对关于x 、y 的代数式去括号,合并同类项,化简后根据其值与字母x 所取的值无关列式求出a ,b 的值,然后对所求代数式去括号,合并同类项,化简后把a 、b 的值代入计算即可.【解答】解:(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)=2x 2+ax ﹣y +6﹣2bx 2+3x ﹣5y +1=(2﹣2b )x 2+(a +3)x ﹣6y +7,∵代数式(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 所取的值无关,∴2﹣2b =0,a +3=0,解得:b =1,a =﹣3,a 3―2b 2―2(14a 3―3b 2) =a 3―2b 2―12a 3+6b 2 =12a 3+4b 2;当b =1,a =﹣3时,原式=12×(―3)3+4×12=―272+4=―192.【点评】此题主要考查了整式的加减﹣﹣化简求值,熟练掌握去括号法则和合并同类项法则是解题的关键.45.(2024春•萨尔图区校级期末)已知关于x的整式A=x2+mx+1,B=nx2+3x+2m(m,n为常数).若整式A+B的取值与x无关,求m﹣n的值.【分析】将A=x2+mx+1,B=nx2+3x+2m分别代入A+B中,合并得出最简结果,根据A+B的取值与x无关,求出n,m的值,从而进一步求出m﹣n的值.【解答】解:∵A=x2+mx+1,B=nx2+3x+2m,∴A+B=x2+mx+1+nx2+3x+2m=(1+n)x2+(m+3)x+1+2m,∵整式A+B的取值与x无关,∴1+n=0,m+3=0,解得:n=﹣1,m=﹣3,则m﹣n=﹣3﹣(﹣1)=﹣3+1=﹣2.【点评】本题主要考查了整式的加减法则,熟练掌握运算法则是解决本题的关键.46.(2023秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以y=2 5.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.47.(2023秋•黄石港区期末)已知:关于x的多项式2(mx2﹣x―72)+4x2+3nx的值与x的取值无关.(1)求m,n的值;(2)求3(2m2﹣3mn﹣5m﹣1)+6(﹣m2+mn﹣1)的值.【分析】(1)先去括号,再合并同类项即可化简,再根据多项式2(mx2―x―72)+4x2+3nx的值与x的取值无关得出2m+4=0,3n﹣2=0,进行计算即可求解;(2)先去括号,再合并同类项即可化简,再代入m=﹣2,n=23进行计算即可得出答案.【解答】解:(1)2(mx2―x―72)+4x2+3nx=2mx2﹣2x﹣7+4x2+3nx=(2m+4)x2+(3n﹣2)x﹣7,∵关于x的多项式2(mx2―x―72)+4x2+3nx的值与x的取值无关,∴2m+4=0,3n﹣2=0,∴m=﹣2,n=2 3;(2)由(1)得:m=﹣2,n=2 3,∴3(2m2﹣3mn﹣5m﹣1)+6(﹣m2+mn﹣1)=6m2﹣9mn﹣15m﹣3﹣6m2+6mn﹣6=﹣3mn﹣15m﹣9=―3×(―2)×23―15×(―2)―9=4+30﹣9=25.【点评】本题考查了整式的加减中的无关题型、整式的加减中的化简求值,熟练掌握整式的加减的运算法则是解此题的关键.48.(2023秋•金东区期末)已知A=﹣3a2+7ab﹣3a﹣1,B=a2﹣2ab+1;(1)当a=2,b=2024时,求A+3B的值.(2)若A+3B的值与a的取值无关,求b的值.【分析】(1)先去括号合并同类项,再代值计算即可解答;(2)根据已知可得含a项的系数为0,然后进行计算即可解答.【解答】解:(1)∵A=﹣3a2+7ab﹣3a﹣1,B=a2﹣2ab+1∴A+3B=﹣3a2+7ab﹣3a﹣1+3a2﹣6ab+3=ab﹣3a+2;把a=2,b=2024代入ab﹣3a+2,得ab﹣3a+2=2×2024﹣3×2+2=4044;(2)∵A+3B=ab﹣3a+2=(b﹣3)a+2,∵A+3B的值与a的值无关,∴b﹣3=0∴b=3.【点评】本题考查了整式的加减−化简求值,掌握整式的加减−化简方法是解题的关键.49.(2023秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2―12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=―1 2;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b =3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=―12时,原式=(﹣4)2×(―12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2023秋•邗江区校级期末)已知关于x的代数式2x2―12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2―12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2―12bx2﹣y+6=(2―12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2―12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2―12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。
化简求值题专练及参考答案
化简求值题专练及参考答案共9题,一次完成,要求:不错一题,不失一分.1. 先化简,再求值:44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x .2. 先化简,再求值:11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .3. 先化简,再求值:()()()()y x x y x y x y x --+-++522,其中12+=x ,12-=y .4. 先化简,再求值:⎪⎭⎫⎝⎛-÷-+-a b b a b ab a 1122222,其中15,15-=+=b a .5. 先化简,再求值:1211222++-÷⎪⎭⎫⎝⎛-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取.6. 先化简,再求值:1241142--÷⎪⎭⎫ ⎝⎛+-++a a a a a a ,然后从a <-2≤2的范围内选取一个合适的整数作为a 的值代入求值.7. 先化简,再求值:yx y x y xy x y x y x -+÷+-+--2222,其中25,25+=-=y x .8. 先化简,再求值:21212--÷⎪⎭⎫ ⎝⎛+-x x x x ,其中x 是方程022=-x x 的根.9. 先化简,再求值:x x x x x x -+-÷⎪⎭⎫ ⎝⎛+--11441122,其中x 满足022=-+x x .快速查阅答案1. 解:44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ()()xx x x x x x x x x 3223222212=-⋅-=--÷-+-+=当3=x 时 原式333=.2. 解:11112-÷⎪⎭⎫⎝⎛-+x x x ()()()()()xx x x x x x x x x x x -=--=-+⋅+-=-+÷+--=1111111111 当12+=x 时 原式2121-=--=.3. 解:()()()()y x x y x y x y x --+-++522xyxy x y x y xy x 9554422222=+--+++=当12+=x ,12-=y 时原式()()912129=-⨯+⨯=.4. 解:⎪⎭⎫⎝⎛-÷-+-a b b a b ab a 1122222 ()()ba ab b a abba b a b a -⋅-=-÷--=2222ab=当15,15-=+=b a 时 原式()()221521515=-=-+=.5. 解:1211222++-÷⎪⎭⎫⎝⎛-+x x x x x x()()()()()11111111222--=-+⋅+-=+-+÷+--=x x x x x x x x x x x x x x x解不等式组⎩⎨⎧<-≤-4121x x 得:1-≤25<x∵x 是该不等式组的整数解 ∴当2=x 时原式2122-=--=. 6. 解:1241142--÷⎪⎭⎫ ⎝⎛+-++a a a a a a ()()()()()()()()aa a a a a a a a a a a a a a a a 211221111212211112422-=--+⋅+-=--+⋅+---+= ∵a 为a <-2≤2的范围内的整数∴当2=a 时 原式412212=⨯-=. 7. 解:yx y x y xy x y x y x -+÷+-+--2222()yx y x y x y x y x +-⋅-+--=22yx yx y x -=---=112当25,25+=-=y x 时 原式4125251-=---=. 8. 解:21212--÷⎪⎭⎫ ⎝⎛+-x x x x ()()()()()111122121121222+-=-+-⋅--=--+÷-+-=x x x x x x x x x x x x x 解方程022=-x x 得:2,021==x x ∵02≠-x ∴2≠x ∴当0=x 时 原式11010-=+-=. 9. 解:x x x x x x -+-÷⎪⎭⎫ ⎝⎛+--11441122 ()()()1211211121121112222--=--⋅--=--÷⎥⎦⎤⎢⎣⎡----=x x x x x x x x x x x 解方程022=-+x x 得:2,121-==x x ∵01≠-x ∴1≠x ∴当2-=x 时原式()511221=--⨯-=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化简求值经典练习五十题一.选择题(共1小题)1.(2013秋?包河区期末)已知a﹣b=5,c+d=2,则(b+c)﹣(a﹣d)的值是()A.﹣3 B.3 C.﹣7 D.7二.解答题(共49小题)2.(2017秋?庐阳区校级期中)先化简,再求值:(1)化简:(2x2﹣+3x)﹣4(x﹣x2+)(2)化简:(3)先化简再求值:5(3a2b﹣ab2)﹣2(ab2+3a2b),其中a=,b=.3.(2017秋?包河区校级期中)先化简,再求值2x2y﹣2(xy2+2x2y)+2(x2y﹣3xy2),其中x=﹣,y=24.(2017秋?瑶海区期中)先化简,再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab2,其中a=﹣1,b=﹣2.5.(2017秋?巢湖市期中)先化简,再求值:﹣3[y﹣(3x2﹣3xy)]﹣[y+2(4x2﹣4xy)],其中x=﹣3,y=.5.(2017秋?柳州期中)先化简,再求值:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2),其中x=,y=﹣3.6.(2017秋?蜀山区校级期中)先化简,再求值:,其中a=﹣1,b=.7.(2017秋?安徽期中)先化简,再求值:3x2﹣[7x﹣(4x﹣2x2)];其中x=﹣2.8.(2015秋?淮安期末)先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.9.(2015秋?南雄市期末)已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.10.(2015秋?庐阳区期末)先化简,再求值:2x3+4x﹣(x+3x2+2x3),其中x=﹣1.11.(2015秋?淮北期末)先化简,再求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中,.12.(2015秋?包河区期末)先化简,再求值:2a2﹣[a2﹣(2a+4a2)+2(a2﹣2a)],其中a=﹣3.13.(2014秋?成县期末)化简求值:若(x+2)2+|y﹣1|=0,求4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.14.(2014秋?合肥期末)先化简,再求值:3a2b+(﹣2ab2+a2b)﹣2(a2b+2ab2),其中a=﹣2,b=﹣1.16.(2015秋?包河区期中)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=﹣2.17.(2015秋?包河区期中)理解与思考:在某次作业中有这样的一道题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”小明是这样来解的:原式=2a+2b+8a+4b=10a+6b把式子5a+3b=﹣4两边同乘以2,得10a+6b=﹣8.仿照小明的解题方法,完成下面的问题:(1)如果a2+a=0,则a2+a+2015=.(2)已知a﹣b=﹣3,求3(a﹣b)﹣5a+5b+5的值.(3)已知a2+2ab=﹣2,ab﹣b2=﹣4,求2a2+ab+b2的值.18.(2013秋?蜀山区校级期末)先化简,再求值(4x3﹣x2+5)+(5x2﹣x3﹣4),其中x=﹣2.19.(2013秋?寿县期末)先化简,再求值:2(3x3﹣2x+x2)﹣6(1+x+x3)﹣2(x+x2),其中x=.20.(2013秋?包河区期末)先化简,再求值:﹣ab2+(3ab2﹣a2b)﹣2(ab2﹣a2b),其中a=﹣,b=﹣9.21.(2014秋?合肥校级期中)先化简求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=,y=﹣1.22.(2014秋?包河区期中)先化简,再求值:﹣(x2+5x﹣4)+2(5x﹣4+2x2),其中,x=﹣2.23.(2012秋?包河区期末)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中x=﹣1,y=﹣2.24.(2012秋?蜀山区期末)若a=|b﹣1|,b是最大的负整数,化简并求代数式3a﹣[b﹣2(b﹣a)+2a]的值.25.(2012秋?靖江市期末)化简求值6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],其中x=4,y=﹣.26.(2013秋?包河区期中)先化简,再求值:(2a+5﹣3a2)+(2a2﹣5a)﹣2(3﹣2a),其中a=﹣2.27.(2011秋?瑶海区期末)化简并求值:3(x2﹣2xy)﹣[(﹣xy+y2)+(x2﹣2y2)],其中x,y的值见数轴表示:28.(2012秋?泸县期中)先化简,再求值(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2?3a)|,其中a=4;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),其中a=﹣3,b=﹣2.28.(2010?梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.30.(2010秋?长丰县校级期中)化简计算:(1)3a2﹣2a﹣a2+5a(2)(3)若单项式与﹣2x m y3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)31.(2010秋?包河区期中)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣xy2),其中:,y=﹣3.5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.33.(2007秋?淮北期中)先化简,再求值3a+abc﹣c2﹣3a+c2﹣c,其中a=﹣,b=2,c=﹣3.33.(2017秋?丰台区期末)先化简,再求值:5x2y+[7xy﹣2(3xy﹣2x2y)﹣xy],其中x=﹣1,y=﹣.34.(2017秋?惠山区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.35.(2017秋?翁牛特旗期末)先化简再求值:2(ab﹣a+b)﹣(3b+ab),其中2a+b=﹣5.4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣137.(2017秋?鄞州区期末)先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=338.(2017秋?埇桥区期末)先化简,再求值:2(x2y﹣y2)﹣(3x2y﹣2y2),其中x=﹣5,y=﹣.39.(2017秋?南平期末)先化简,再求值:(5x+y)﹣(3x+4y),其中x=,y=.40.(2016秋?武安市期末)求2x﹣[2(x+4)﹣3(x+2y)]﹣2y的值,其中.(8mn﹣3m2)﹣5mn﹣2(3mn﹣2m2),其中m=2,n=﹣.43.(2017春?广饶县校级期中)先化简,再求值:(1)2y2﹣6y﹣3y2+5y,其中y=﹣1.(2)8a2b+2(2a2b﹣3ab2)﹣3(4a2b﹣ab2),其中a=2,b=3.44.(2017秋?邗江区校级期中)有这样一道题:“计算(2x4﹣4x3y﹣2x2y2)﹣(x4﹣2x2y2+y3)+(﹣x4+4x3y﹣y3)的值,其中x=,y=﹣1.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,你能说明这是为什么吗?45.(2016秋?资中县期末)先化简,再求值:2(x2﹣xy)﹣(3x2﹣6xy),其中x=2,y=﹣1.46.(2017秋?雁塔区校级期中)先化简,再求值:(1)3(a2﹣ab)﹣(a2+3ab2﹣3ab)+6ab2,其中a=﹣1,b=2.(2)4x2﹣3(x2+2xy﹣y+2)+(﹣x2+6xy﹣y),其中x=2013,y=﹣1.46.(2017秋?黄冈期中)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x 的值无关,求代数式a2﹣2b+4ab的值.47.(2017秋?岑溪市期中)先化简下式,再求值,2(3a2b+ab2)﹣6(a2b+a)﹣2ab2﹣3b,其中a=,b=3.49.(2017秋?蚌埠期中)先化简再求值:求5xy2﹣[2x2y﹣(2x2y﹣3xy2)]的值.(其中x,y两数在数轴上对应的点如图所示).50.(2017秋?夏邑县期中)如图,一只蚂蚁从点A沿数轴向右爬行2个单位长度到达点B,点A表示的数n为﹣,设点B所表示的数为m.(1)求m的值;(2)对﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]化简,再求值.参考答案与试题解析一.选择题(共1小题)1.解:∵a﹣b=5,c+d=2,∴原式=b+c﹣a+d=﹣(a﹣b)+(c+d)=﹣5+2=﹣3,故选:A.二.解答题(共49小题)2.解:(1)原式=2x2﹣+3x﹣4x+4x2﹣2=6x2﹣x﹣;(2)原式=x﹣2x+y2+x﹣y2=y2;(3)原式=15a2b﹣5ab2﹣2ab2﹣6a2b=9a2b﹣7ab2,当a=﹣,b=时,原式=+=.3.解:当x=﹣,y=2时,原式=2x2y﹣2xy2﹣4x2y+2x2y﹣6y2=﹣2xy2﹣6y2=﹣2×(﹣)×4﹣6×4=2﹣24=﹣224.解:原式=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab2=4a2+2ab﹣ab2当a=﹣1,b=﹣2时,原式=4+4+4=12.5.解:原式=﹣3y+9x2﹣9xy﹣y﹣8x2+8xy=x2﹣xy﹣4y当x=﹣3,y=时,原式=9+1﹣=6.解:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2)=2xy﹣2xy+4x2y2+6xy﹣10x2y2=6xy﹣6x2y2,当x=,y=﹣3时,原式=﹣6﹣6=﹣12.7.解:原式=2a2﹣ab+2a2﹣8ab﹣ab=4a2﹣9ab,当a=﹣1,b=时,原式=4+3=7.8.解:原式=3x2﹣(7x﹣4x+2x2)=3x2﹣7x+4x﹣2x2=x2﹣3x当x=﹣2时,原式=(﹣2)2﹣3×(﹣2)=4﹣(﹣6)=10.9.解:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣2,b=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.10.解:∵(x+2)2+|y﹣|=0,∴x=﹣2,y=,则原式=5x2y﹣2x2y+xy2﹣2x2y+4﹣2xy2=x2y﹣xy2+4=2++4=6.11.解:原式=2x3+4x﹣x﹣3x2﹣2x3=3x﹣3x2,当x=﹣1时,原式=﹣3﹣3=﹣6.12.解:原式=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当,.13.解:原式=2a2﹣a2+2a+4a2﹣2a2+4a=3a2+6a,当a=﹣3时,原式=27﹣18=9.14.解:∵(x+2)2+|y﹣1|=0,∴x+2=0,y﹣1=0,即x=﹣2,y=1,则原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=﹣2,y=1时,原式=1﹣10=﹣9.15.解:原式=3a2b﹣2ab2+a2b﹣2a2b﹣4ab2=2a2b﹣6ab2,当a=﹣2,b=﹣1时,原式=2×4×(﹣1)﹣6×(﹣2)×1=4.16.解:原式=x﹣2x+y2﹣x+y2=﹣x+y2,当x=﹣2,y=﹣2时,原式=.17.解:(1)∵a2+a=0,∴原式=2015;故答案为:2015;(2)原式=3a﹣3b﹣5a+5b+5=﹣2(a﹣b)+5,当a﹣b=﹣3时,原式=6+5=11;(3)原式=(4a2+7ab+b2)=[4(a2+2ab)﹣(ab﹣b2)],当a2+2ab=﹣2,ab﹣b2=﹣4时,原式=×(﹣8+4)=﹣2.18.解:原式=4x3﹣x2+5+5x2﹣x3﹣4=3x3+4x2+1,当x=﹣2时,原式=﹣24+16+1=﹣7.19.解:原式=6x3﹣4x+2x2﹣6﹣6x﹣6x3﹣2x﹣2x2=﹣12x﹣6,当x=﹣,原式=﹣12×(﹣)﹣6=10﹣6=4;20.解:原式=﹣ab2+3ab2﹣a2b﹣2ab2+2a2b=a2b,当a=﹣,b=﹣9时,原式=×(﹣9)=﹣4.21.解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=,y=﹣1时,原式=﹣=﹣.22.解:原式=﹣x2﹣5x+4+10x﹣8+4x2=3x2+5x﹣4,当x=﹣2时,原式=12﹣10﹣4=﹣2.23.解:原式=(3x2y﹣xy2)﹣3(x2y﹣2xy2)=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当x=﹣1,y=﹣2时,原式=5xy2=5×(﹣1)×(﹣2)2=﹣20.24.解:∵最大的负整数为﹣1,∴b=﹣1,∴a=|﹣1﹣1|=2,原式=3a﹣b+2b﹣2a﹣2a=b﹣a,当a=2,b=﹣1时,原式=﹣1﹣2=﹣3.25.解:6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],=6x2﹣3xy2+4xy2﹣6﹣7x2,=﹣x2+xy2﹣6;当x=4,y=时,原式=﹣42+4×﹣6=﹣21.26.解:原式=2a+5﹣3a2+2a2﹣5a﹣6+4a=﹣a2+a﹣1,将a=﹣2代入,原式=﹣(﹣2)2+(﹣2)﹣1=﹣7.27.解:原式=3x2﹣6xy+xy+y2﹣x2+2y2=2x2﹣xy+y2,根据数轴上点的位置得:x=2,y=﹣1,则原式=8+11+1=20.28.解:(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2?3a)|,=5a2﹣|a2﹣2a+5a2﹣6a3|,=5a2﹣|6a2﹣2a﹣6a3|,=5a2﹣6a2+2a+6a3,=﹣a2+2a+6a3把a=4代入得:﹣16+8+384=376;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),=﹣2﹣2a+3b﹣1﹣3a﹣2b,=﹣5a+b﹣3把a=﹣3,b=﹣2.代入得:﹣5×(﹣3)+(﹣2)﹣3=10.29.解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).∵x=﹣2,∴原式=﹣16.30.解:(1)3a2﹣2a﹣a2+5a,=(3﹣1)a2+(5﹣2)a,=2a2+3a;(2)(﹣8x2+2x﹣4)﹣(x﹣1),=﹣2x2+x﹣1﹣x+,=﹣2x2﹣;(3)∵单项式与﹣2x m y3是同类项,∴m=2,n=3,(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)=m+3n﹣3mn+4m+2n﹣2mn=(1+4)m+(﹣3﹣2)mn+(3+2)n=5m﹣5mn+5n,当m=2,n=3时,原式=5×2﹣5×2×3+5×3=10﹣30+15=﹣5.31.解:(3x2y﹣xy2)﹣3(x2y﹣xy2),=3x2y﹣xy2﹣3x2y+3xy2,=2xy2;当x=,y=﹣3时,原式=2xy2=2××(﹣3)2=9.32.解:原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=33.解:原式=3a﹣3a+abc﹣c2+c2﹣c=abc﹣c,当a=﹣,b=2,c=﹣3时原式=abc﹣c=﹣×2×(﹣3)﹣(﹣3)=1+3=4.34.解:原式=5x2y+7xy﹣6xy+4x2y﹣xy=9x2y,当x=﹣1,y=﹣时,原式=﹣6.35.解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时原式=﹣6+4=﹣2.36.解:原式=ab﹣2a+2b﹣3b﹣ab=﹣2a﹣b=﹣(2a+b),当2a+b=﹣5时,原式=5.37.解:原式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2,当x=,y=﹣1 时,原式=6×()2×(﹣1)﹣6××(﹣1)2=﹣﹣3=﹣4.38.解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.39.解:原式=2x2y﹣2y2﹣3x2y+2y2=﹣x2y,当x=﹣5,y=﹣时,原式=.40.解:原式=5x+y﹣3x﹣4y=2x﹣3y,当x=,y=时,原式=2×﹣3×=1﹣2=﹣1.41.解:原式=2x﹣2x﹣8+3x+6y﹣2y=3x+4y﹣8,当x=,y=时,原式=1+2﹣8=﹣5.42.解:原式=8mn﹣3m2﹣5mn﹣6mn+4m2=m2﹣3mn,当m=2,n=﹣时,原式=4+2=6.43.解:(1)原式=﹣y2﹣y,当y=﹣1时,原式=﹣1+1=0;(2)原式=8a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣3ab2,当a=2,b=3时,原式=﹣54.44.解:原式=2x4﹣4x3y﹣2x2y2﹣x4+2x2y2﹣y3﹣x4+4x3y﹣y3=﹣2y3,当y=﹣1时,原式=2.故“x=”错抄成“x=﹣”,但他计算的结果也是正确的.45.解:原式=2x2﹣2xy﹣3x2+6xy=﹣x2+4xy,当x=2,y=﹣1时,原式=﹣4﹣8=﹣12.46.解:(1)原式=3a2﹣3ab﹣a2﹣3ab2+3ab+6ab2=2a2+3ab2,当a=﹣1,b=2时,原式=2﹣12=﹣10;(2)原式=4x2﹣3x2﹣6xy+3y﹣6﹣x2+6xy﹣y=2y﹣6,当y=﹣1时,原式=﹣2﹣6=﹣8.47.解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵代数式的值与x的值无关,∴2﹣2b=0,a+3=0,解得:a=﹣3,b=1,将a=﹣3,b=1代入得:原式=4.5﹣2﹣12=﹣9.5.48.解:原式=6a2b+2ab2﹣6a2b﹣6a﹣2ab2﹣3b=﹣6a﹣3b,当a=,b=3时,原式=﹣6×﹣3×3=﹣12.49.解:原式=5xy2﹣[2x2y﹣2x2y+3xy2]=5xy2﹣2x2y+2x2y﹣3xy2=2xy2,当x=2,y=﹣1时,原式=4.50.解:(1)m=﹣+2=;(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]=﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn=mn.当m=,n=﹣时,原式=×(﹣)=﹣.。