地的工程力学材料力学答案详解-第十章
大学《工程力学》课后习题解答-精品
大学《工程力学》课后习题解答-精品2020-12-12【关键字】情况、条件、动力、空间、主动、整体、平衡、建立、研究、合力、位置、安全、工程、方式、作用、结构、水平、关系、分析、简化、倾斜、支持、方向、协调、推动(e)(c)(d)(e)’CD2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点(2) AC 与BC 2-3 水平力F A 和D 处的约束力。
解:(1) 取整体(2) 2-4 在简支梁,力的大小等于20KN ,如图所示。
若解:(1)(2)求出约束反力:2-6 如图所示结构由两弯杆ABC 和DE 构成。
构件重量不计,图中的长度单位为cm 。
已知F =200 N ,试求支座A 和E 的约束力。
解:(1) 取DE (2) 取ABC2-7 在四连杆机构ABCD 试求平衡时力F 1和F 2解:(1)取铰链B (2) 取铰链C 由前二式可得:F FF ADF2-9 三根不计重量的杆AB,AC,AD在A点用铰链连接,各杆与水平面的夹角分别为450,,450和600,如图所示。
试求在与O D平行的力F作用下,各杆所受的力。
已知F=0.6 kN。
解:(1)间汇交力系;(2)解得:AB、AC3-1 已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。
求在图a ,b ,c 三种情况下,支座A 和B 的约束力解:(a) (b) (c) 3-2 M ,试求A 和C解:(1) 取 (2) 取 3-3 Nm ,M 2解:(1)(2) 3-5 大小为AB 。
各杆 解:(1)(2)可知:(3) 研究OA 杆,受力分析,画受力图:列平衡方程:AB A3-7 O1和O2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F’1),(F2,F’2)如题图所示。
工程力学材料力学第四版北京科技大学及东北大学习题答案解析
工程力学材料力学第四版北京科技大学及东北大学习题答案解
析
工程力学材料力学 (北京科技大学与东北大学)
第一章轴向拉伸与压缩
1-1:用截面法求下列各杆指定截面的内力
解:
(a):N1=0,N2=N3=P
(b):N1=N2=2kN
(c):N1=P,N2=2P,N3= -P
(d):N1=-2P,N2=P
(e):N1= -50N,N2= -90N
(f):N1=0、896P,N2=-0、732P
注(轴向拉伸为正,压缩为负)
1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解: σ1=
2
1
1
850
4
P kN
S d
π
=
=35、3Mpa
σ2=
2
2
2
850
4
P kN
S d
π
=
=30、4MPa
∴σmax=35、3Mpa
1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:
下端螺孔截面:σ1=1
90
20.065*0.045P S =15、4Mpa 上端单螺孔截面:σ2=2P S =8、72MPa
上端双螺孔截面:σ3=
3P S =9、15Mpa ∴σmax =15、4Mpa。
材料力学第2版 课后习题答案 第10章 强度理论
解: t ≥
pD =
2[σ ]
3×106 ×1 2 × 300×106
= 0.01m = 1.0cm
2
9-8 铸铁圆柱形容器外直径D = 20 cm,壁厚t=2cm,受内压强p=4MPa,并在容器两端
受轴向压力P=200 kN作用,设 µ = 0.25 ,
许用拉应力[σ +]=25 MPa,(1)用第二强
论作强度校核。 解:
σ
4 xd
=
σ 2 + 3τ 2
σ
= 1202 + 3× 402 = 138MPa < [σ ]
τ
σ τ
题 9-3 图
所以安全。
9-4 某梁在平面弯曲下,已知危险截面上作用有弯矩M=50.9 kN ⋅ m ,剪力FS=134.6 kN,截面为No. 22b工字钢,[σ ]=160 MPa,试根据第三强度理对梁作主应力校核。
σ
m xd
=
σ
1
−
σ σ
+ b − b
σ3
= 1.027 −
256 × (−101.027)
625
=
42.4MPa
9-12 内径为d,壁厚为t的圆筒容器,内部盛有比重为γ ,高度为H的液体,竖直吊装如
图示。试按第三强度理论沿容器器壁的母线绘制圆筒的相当应力σ
3 xd
图(不计端部影响)。
解:
σ
y
=
πd2 4
应力校核。
70
(+)
(−) 30
( Q −图)
(−) 20
(−) 30
24.44 (+)
(M −图)
(−) 20
Wz
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第10章 组合受力与变形杆件的强度计算
解:危险截面在 A 处,其上之内力分量为: 弯矩: M y = FP1 a , M z = FP2 H 扭矩: M x = FP2 a 轴力: FNx = FP1 在截面上垂直与 M 方向的垂直线 ab 与圆环截 求得 M y 与 M z 的矢量和 M 过截面中心, 面边界交于 a、b 两点,这两点分别受最大拉应力和最大压应力。但由于轴向压力的作用,最 大压应力值大于最大拉应力值,故 b 点为危险点,其应力状态如图所示。 10-7 试求图 a 和 b 中所示之二杆横截面上最大正应力及其比值。 解: (a)为拉弯组合
7
y
y
A
O
0.795
B
14.526
+13.73MPa
z
(a)
O O
+14.43MPa
(b)
C
y
A
C
B B
y
A
O O
B
z
12.6mm
14.1mm
zC
−15.32MPa
16.55MPa
zC
z
(c)
(d)
习题 10-9 解图
∴
+ σ max
= 14.526 − 0.795 = 13.73 MPa
− σ max = −14.526 − 0.795 = −15.32 MPa
Ebh
由此得
2 FP 6e
e=
10-9
ε1 − ε 2 h × ε1 + ε 2 6
图中所示为承受纵向荷载的人骨受力简图。试:
1.假定骨骼为实心圆截面,确定横截面 B-B 上的应力分布; 2.假定骨骼中心部分(其直径为骨骼外直径的一半)由海绵状骨质所组成,忽略海绵状承受 应力的能力,确定横截面 B-B 上的应力分布;
工程力学作业10
第十章思考题10.1试举出能实现平面弯曲的几种情况。
等截面实体直梁发生平面弯曲的充分必要条件是什么?10.2 试说明纯弯曲和横力弯曲,中性轴与形心轴,弯曲刚度和弯曲截面系数等概念的区 别。
10.3 梁纯弯曲正应力公式一般也适用于横力弯曲梁的横截面上的正应力计算,其理由是 思考题10.4图 什么?10.4 图示的两种梁的截面中,z 轴为中性轴。
试问两截面的惯性矩和弯曲截面系 数是否可以按下列公式计算:12/12/3113h b bh I z -= 6/6/2112h b bh W z -=10.5 由两种材料组成的梁,其截面如图所示,试问两种材料粘合在一起和能无摩擦滑动两种情况下,在相同受载情况下的弯曲正应力是否相同?思考题10.5图10.6 几何形状和受载情况完全相同的钢梁和铝梁,其内力图是否相同?它们各对应点的弯曲应力是否相同?梁的挠曲线的曲率是否相同?10.7 一根圆木绕z 轴弯曲时,适当地在上下削去一层,在相同弯矩作用下反而降低了最大 正应力。
试说明其中道理。
10.8 船用钢缆由钢丝组合而成,在使用过程中常被弯曲甚至要打结。
在钢缆直径不变时,试问钢丝细些、根数多些好,还是钢丝粗些、根数少些好?为什么? 思考题10.7图10.9 在弯曲切应力公式中,为什么*z S 是部分截面对中性轴的静矩,z I 却是整个截面对中性轴的惯性矩?10.10 试举出需要考虑梁的切应力强度的几种情形。
10.11 由四根100×80×10不等边角钢焊成一体的梁,在纯弯曲时截面按图示四种形式组合。
试问哪一种截面梁强度最高,哪一种最低?思考题10.11图 思考题1012图10.12 屋架梁常制成图示形状。
从材料力学角度看是否合理?为什么?10.13 图a 所示的钢梁和图b 所示的三角桁架材料相同,桁架两杆截面积之和 与钢梁截面积相等。
已知l =10h ,h =1.5b ,D =1.22b ,d =0.6D 。
材料力学习题册答案-第10章动载荷
第十章 动载荷、选择题1在用能量法计算冲击应力问题时,以下假设中(D )是不必要的。
A 冲击物的变形很小,可将其视为刚体;B 被冲击物的质量可以忽略,变形是线弹性的;C 冲击过程中只有应变能、势能和动能的变化,无其它能量损失;D 被冲击物只能是杆件。
2•在冲击应力和变形实用计算的能量法中,因不计被冲击物的质量,所以计算结果与实际 情况相比(D )。
A 冲击应力偏大,冲击变形偏小;B 冲击应力偏小,冲击变形偏大;C 冲击应力和冲击变形均偏大;D 冲击应力和冲击变形均偏小。
3.四种圆柱及其冲击载荷情况如图所示,柱C 上端有一橡胶垫。
其中柱( 大动应力最大。
IW、计算题1重量为P 的重物从高度H 处自由下落到钢质曲拐上, 试按第三强度准则写出危险点的相 当应力。
D )内的最解:在C 点作用静载荷P 时,BC 段产生弯曲变形, AB 段产生弯扭组合变形, C 点的静位 移:Pa 3Pl 3 Palstf C f B AB aa 3EI BC 3EI AB GI PAB ’ L 2HK d 1 JV sth 3d 4 d 4式中, I BC, I AB I PAB 12b 64 32危险点在A 截面的上下端,静应力为:.M 2 T 2 P a 2 l 2r3 W Z W Z弹簧支座,重量为 P 250 N 的重物从高度H 50 mm 自由下落到梁的中点C 处。
若铝 合金的弹性模量 E 70 GPa ,试求冲击时梁内的最大正应力。
解:在C 点作用静载荷P 时,AB 梁为静不定问题,变形协调条件为梁中点变形等于弹簧变 形,故有:式中,W Zd 3 32则动应力为:d K d r3 K d P . a 2I 2W Z2、图示横截面为b h 75mm 25mm 的铝合金简支梁,在跨中增加一刚度 K 18 kN/m 的代入数值可计算出:由结构对称,可知R A R B 50 N(资料素材和资料部分来自网络,供参考。
工程力学材料力学答案-第十章
10-1试计算图示各梁指定截面(标有细线者)的剪力与弯矩。
解:(a)(1) 取A +截面左段研究,其受力如图;由平衡关系求内力0SA A F F M ++==(2) 求C 截面内力;取C 截面左段研究,其受力如图;由平衡关系求内力2SC C Fl F F M ==(3) 求B -截面内力截开B -截面,研究左段,其受力如图;由平衡关系求内力SB B F F M Fl ==qB(d)(b)A(a)SA+M A+SCM CASBM B(b)(1) 求A 、B 处约束反力eA B M R R l==(2) 求A +截面内力;取A +截面左段研究,其受力如图;eSA A A e M F R M M l++=-=-= (3) 求C 截面内力;取C 截面左段研究,其受力如图;22e e SC A A e A M Ml F R M M R l +=-=-=-⨯= (4) 求B 截面内力;取B 截面右段研究,其受力如图;0eSB B B M F R M l=-=-= (c)(1) 求A 、B 处约束反力eM A+M CB R BMBA B Fb FaR R a b a b==++ (2) 求A +截面内力;取A +截面左段研究,其受力如图;0SA A A FbF R M a b++===+ (3) 求C -截面内力;取C -截面左段研究,其受力如图;SC A C A Fb FabF R M R a a b a b--===⨯=++ (4) 求C +截面内力;取C +截面右段研究,其受力如图;SC B C B Fa FabF R M R b a b a b++=-=-=⨯=++ (5) 求B -截面内力;取B -截面右段研究,其受力如图;0SB B B FaF R M a b--=-=-=+ (d)(1) 求A +截面内力取A +截面右段研究,其受力如图;A RSA+M A+ RA SC-M C- B R BM C+B R B M qBM233 22248SA A l ql l l ql F q M q ++=⨯==-⨯⨯=-(3) 求C -截面内力;取C -截面右段研究,其受力如图;222248SC C l ql l l ql F q M q --=⨯==-⨯⨯=-(4) 求C +截面内力;取C +截面右段研究,其受力如图;222248SC C l ql l l ql F q M q ++=⨯==-⨯⨯=-(5) 求B -截面内力;取B -截面右段研究,其受力如图;0 0SB B F M --==10-2.试建立图示各梁的剪力与弯矩方程,并画剪力与弯矩图。
《材料力学》第十章课后习题答案
在解题前要认真审题,明确题目要求和解题方向 ,避免出现理解偏差或误解题意的情况。同时, 在解题过程中要细心计算,注意检查计算过程和 结果是否正确。
05 知识点拓展与延伸
相关概念深入理解
材料的力学性能
材料在受到外力作用时,其变形、 破坏以及抵抗变形的能力,包括
弹性、塑性、强度、韧性等。
应力与应变
错误原因剖析
学习态度不认真
部分学生平时学习态度不认真,对课 堂知识掌握不扎实,导致在解题时无 法正确运用所学知识。
缺乏练习
部分学生平时缺乏练习,对解题方法 和技巧不熟悉,导致在考试时无法熟 练应对各种问题。
思维能力不足
部分学生思维能力较弱,无法灵活运 用所学知识解决实际问题。
粗心大意
部分学生在解题过程中粗心大意,忽 略了一些关键信息或步骤,导致解题 错误。
《材料力学》第十章课后习题答案
contents
目录
• 第十章课后习题概览 • 习题解答方法与技巧 • 典型习题详解 • 易错习题剖析及避免方法 • 知识点拓展与延伸 • 自我检测与提高建议
01 第十章课后习题概览
习题类型与数量
选择题
共10道,涵盖基本概念和理论 应用。
填空题
共5道,考查对知识点的理解和 记忆。
典型选择题解析
题目:下列关于剪切应力的说法中, 错误的是?
B. 剪切应力与材料的剪切模量成正比。
A. 剪切应力是相邻两部分材料发生相 对错动时的阻力。
典型选择题解析
C. 剪切应力只存在于受扭转的 杆件中。
D. 剪切应力的方向与材料错动 的方向垂直。
解析:正确答案是C。剪切应力 不仅存在于受扭转的杆件中,还 存在于受剪切的梁、板等构件中。
清华出版社工程力学答案-第10章应力状态与强度理论及其工程应用
eBook工程力学习题详细解答教师用书(第10章)2011-10-1范 钦 珊 教 育 教 学 工 作 室FAN Qin-Shan ,s Education & Teaching Studio习题10-1 习题10-2 习题10-3 习题10-4 习题10-5 习题10-6 习题10-7 习题10-8 习题10-9 习题10-10 习题10-11 习题10-12(a)(a1)x ′习题10-1a 解图工程力学习题详细解答之十第10章 应力状态与强度理论及其工程应用10-1 木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。
试求:1.面内平行于木纹方向的剪应力; 2.垂直于木纹方向的正应力。
(a )题 解:1.平行于木纹方向的剪应力:6.0))15(2cos(0))15(2sin(2)6.1(4=°−×⋅+°−×−−−=′′y x τMPa 2.垂直于木纹方向的正应力:84.30))15(2cos(2)6.1(42)6.1(4−=+°−×−−−+−+−=′x σMPa(b )题 解:(a) 1.25 MPa(b)习题10-1图100 MPa60ºABCσxxyτ1.平行于木纹方向的剪应力:08.1))15(2cos(25.1−=°−×−=′′y x τMPa2.垂直于木纹方向的正应力:625.0))15(2sin()25.1(−=°−×−−=′x σMPa10-2 层合板构件中微元受力如图所示,各层板之间用胶粘接,接缝方向如图中所示。
若已知胶层剪应力不得超过1MPa 。
试分析是否满足这一要求。
解:2(1)sin(2(60))0.5cos(2(60)) 1.552θτ−−=×−°+⋅×−°=−MPa || 1.55MPa 1θτ=>MPa ,不满足。
材料力学第十章课后习题答案
第10章 疲劳强度的概念思考题10-1 什么是交变应力?举例说明。
答 随时间作周期性变化的应力称交变应力。
如下图所示的圆轴以角速度ω匀速转动,轴上一点A 的位置随时间变化,从A 到A ′,再到A ′′,再到A ′′′,又到A 处,如此循环往复。
轴上该点的正应力A σ也从0到,再到0,再到,又到0,产生拉压应力循环。
该点的应力即为交变应力。
+max σ−max σ10-2 疲劳失效有何特点?疲劳失效与静载失效有什么区别?疲劳失效时其断口分成几个区域?是如何形成的?答 (1)疲劳失效时的应力σ远低于危险应力u σ(静载荷下的强度指标);需要经过一定的应力循环次数;构件(即使是塑性很好的材料)破坏前和破坏时无显著的塑性变形,呈现脆性断裂破坏特征。
(2)疲劳失效的最大工作应力σ远低于危险应力u σ;静载失效的最大工作应力σ为危险应力u σ。
(3)疲劳失效时其断口分成2个区域:光滑区域和颗粒状粗糙区域。
(4)构件在微观上,其内部组织是不均匀的。
在足够大的交变应力下,金属中受力较大或强度较弱的晶粒与晶界上将出现滑移带。
随着应力变化次数的增加,滑移加剧,滑移带开裂形成微观裂纹,简称“微裂纹”。
另外,构件内部初始缺陷或表面刻痕以及应力集中处,都可能最先产生微裂纹。
这些微裂纹便是疲劳失效的起源,简称“疲劳源”。
微裂纹随着应力交变次数的继续增加而不断扩展,形成了裸眼可见的宏观裂纹。
在裂纹的扩展过程中,由于应力交替变化,裂纹两表面的材料时而互相挤压、时而分离,这样就形成了断口表面的光滑区。
宏观裂纹继续扩展,致使构件的承载截面不断被削弱,类似在构件上形成尖锐的“切口”。
这种切口造成的应力集中,使局部区域内的应力达到很大数值。
最终在较低的应力水平下,由于累积损伤,致使构件在某一次载荷作用时突然断裂。
断口表面的颗粒状区域就是这种突然断裂造成的,所以疲劳失效的过程可以理解为裂纹产生、扩展直至构件断裂的一个过程。
10-3 什么是对称循环?什么是脉冲循环? 答 对称循环是指最大应力与最小应力大小相等,正负号相反的应力循环。
工程力学 第10章 位移分析 习题及解析
习题10-1图(a) 习题10-2图(a)工程力学(工程静力学与材料力学)习题与解答第10章 杆件横截面的位移分析10-1 直径d = 36mm 的钢杆ABC 与铜杆CD 在C 处连接,杆受力如图所示。
若不考虑杆的自重,试: 1.求C 、D 二截面的铅垂位移;2.令F P1 = 0,设AC 段长度为l 1,杆全长为l ,杆的总伸长EA lF l 2P =∆,写出E 的表达式。
知识点:拉压杆件的变形与位移 难度:一般 解答:(1)4π)(4π)(2sN 2sN d E l F d E l F u u BC BC AB AB A C ++=947.236π41020030001010020001015002333=⨯⨯⨯⨯⨯+⨯⨯+=mm286.536π101054250010100947.24π)(2332cN =⨯⨯⨯⨯⨯⨯+=+=d E l F u u CD CD C D mm(2)AE l lF A E l F l l l EA l F CD AC c 12P s 12P 2P )(-+=∆+∆=∆=cs 11E E E ηη-+= sc sc )1(E E E E E ηη-+= 令l l 1=η10-2 承受自重和集中载荷作用的柱如图所示,其横截面积沿高度方向按P0e)(0F xA A x A ρ=变化,其中ρ为材料的比重。
试作下列量的变化曲线: 1.轴力)(N x F x ; 2.应力)(x x σ; 3.位移)(x u 。
知识点:拉压杆件的变形与位移 难度:一般 解答:(1)0=∑ξ,0d )()d (N N N =-++F A F F ξξρ习题10-3图 N F(a) x x (b) ξρξξρξρd ed )(d P00N F A A A F -=-=ξρξρd ed P0N P0)(-N F A xx F F A F ⎰⎰-=P0P0e)e()(P P P P N F xA F xA F F F F x F ρρ-=---=(2)0P 0P N P0P 0e e )()()(A FA F x A x F x F xA F xA -=-==ρρσ (3)⎰⎰⎰⎰-=-==P 0P N P0P0ee )(d )(d EAdxF dx EA F x EA xx F u F xA F xA ρρC EA x F u +-=0P ,当0|==l x u 。
【工程力学 课后习题及答案全解】第10章应力状态分析习题解
10-13 关于弹性体受力后某一方向的应力与应变关系, 有如下论述,试选择哪一种是正确的。
cos(2× (−15°)) + 0
=
−3.84
MPa
(b)切应力
τ x′y′ = −1.25 cos(2× (−15°)) = −1.08 MPa 正应力
σ x′ = −(−1.25) sin(2× (−15°)) = −0.625 MPa
10-2 结构中某点处的应力状态为两种应力状态的叠加结果。试求叠加后所得应力状
1 2
=
200 + 2
40
±
1 2
⎪⎩σ 3 = −90MPa
(200 − 40)2
+ 4 × (−150)2
=
⎧290MPa ⎩⎨− 50MPa
τ max
= σ1
−σ3 2
=
290 − (−90) 2
= 190 MPa
10-5 图示外径为 300mm 的钢管由厚度为 8mm 的钢带沿 20°角的螺旋线卷曲焊接而
解:(1)图
a: σ x
=
FP πDδ
=
250 ×10 3 π× (300 − 8)
×
8
= 34.07 MPa(压)
— 47 —
σ x′
=
−34.07 2
+
−34.07 2
cos(2× 20°)
=
−30.09
MPa
τ
x′y′
=
−34.07 2
sin(2
×
20°)
=
−10.95
MPa
(2)图
b: σ x
3 + cos 2θ 2
工程力学材料力学部分课后习题详解
2-1 求下列结构中指定杆内的应力。
已知(a)图中杆的横截面面积A 1=A 2=1150mm 2; 解:(1)分析整体,作示力图∑=0)(i BF M:CB 041088=××−×A F AF N1F N2(c)40kN A F =(2)取部分分析,示力图见(b )∑=0)(i CF M:02442.22=×+×−×q F F A N2(404402)36.36kN 2.2N F ×−×==3262236.361031.62MPa 115010N F A σ−×===×(3)分析铰E ,示力图见(c )∑=0ix F :0sin 12=−βN N F F1240.65kN N N F F == 3161137.961035.3MPa 115010N F A σ−×===×2-2 求下列各杆内的最大正应力。
(3)图(c)为变截面拉杆,上段AB 的横截面积为40mm 2,下段BC 的横截面积为30mm 2,杆材料的ρg =78kN/m 3。
解:1.作轴力图,BC 段最大轴力在B 处6N 120.530107812.0kN B F −=+×××AB 段最大轴力在A 处6N 12(0.5300.540)107812.0kN A F −=+×+×××3N 2612.010400MPa 30mm3010B B F σ−−×===× 3N 2612.010300MPa 40mm 4010AA F σ−−×===×杆件最大正应力为400MPa ,发生在B 截面。
EDF BF AF CxF N2(b)A120B120F NC2-4 一直径为15mm ,标距为200mm 的合金钢杆,比例极限内进行拉伸试验,当轴向荷载从零缓慢地增加58.4kN 时,杆伸长了0.9mm ,直径缩小了0.022mm ,确定材料的弹性模量E 、泊松比µ。
工程力学课后习题答案
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。
在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。
然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tanα≈α)。
如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。
题2-4图 作BD 两节点的受力图 联合解得:kN F F F A80100tan 2=≈=α 2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。
浙江工业大学材料力学第10章答案
10.1 一端固定一端铰支的工字形截面细长压杆,已知弹性模量GPa 208=E ,截面尺寸200mm×100mm ×7mm ,杆长m l 10=,试确定压杆的临界压力。
解:4337.16796532121869312200100mm I x =⨯-⨯=4332.11719831271861210072mm I y =⨯+⨯=因为x y I I <,故y I I =()()kN N l EI F cr 1.49101.49100007.02.117198310208323222=⨯=⨯⨯⨯⨯==πμπ10.2 两端固定的圆截面钢质压杆,直径为50mm ,受轴向压力F 作用。
已知GPa 210=E 和MPa 200=p σ,试确定能够使用欧拉公式的最短压杆长度l 。
解:8.10120010210505.044322=⨯⨯==≥⨯⨯===πσπλμμλp p E l d l i l可得:mm l 2545≥10.3 截面为矩形h b ⨯的压杆,两端用柱销联接(在y x -平面内弯曲时,可视为两端铰支;在zx -平面内弯曲时,可视为两端固定)。
已知GPa 200=E ,MPa 200=p σ,试求:(1)当mm 30=b ,mm50=h 时,压杆的临界压力;(2)若使压杆在两个平面(y x -和z x -面)内失稳的可能性相同时,求b 和h 的比值。
解:43331250012503012mm bh I z =⨯==,1=z μ,故()()kNN l EI F z z cr 1171011723001312500102003232221=⨯=⨯⨯⨯⨯==πμπ43311250012305012mm hb I y =⨯==,5.0=y μ,故()()kN N l EI F y y cr 1681016823005.0112500102003232222=⨯=⨯⨯⨯⨯==πμπ故kN F cr 117=。
(完整版)工程力学课后详细答案
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
材料力学第六版答案第10章
第十章组合变形的强度计算10-1图示为了梁的各种截面形状,设横向力P的作用线如图示虚线位置,试问哪些为了平面弯曲哪些为了斜弯曲并指出截面上危险点的位置O(a) (b) (c) (d)斜弯曲平面弯曲平面弯曲斜弯曲斜弯曲弯扭组合平面弯曲斜弯曲“x〞为了危险点位置.10-2矩形截面木制简支梁AE 在跨度中点 C 承受一与垂直方向成 =15.的集中力P=10 kN 作用如图示,木材的弹性模量E 1.0 104MPa .试确定①截面上中性轴的解:P y Pcos 10 cos15 9.66 KNP z Psin 10 sin 152.59KN___3750 cm 3W y一_ 3 一 7.25 1031.94甘MPa中性轴:tan 1- tan J y1104tan ------------ tan 155625 25.47f yPyK 339.66 10 348EJ z___ 9 _ 4_ 848 10 10 101020.5434 10 2m位置;②危险截面上的最大正应力;③C 点的总挠度的大小和方向.J z3也竺104 cm 412 W z3310 cmJy1235625 3cmP y l 9.66 3z max44P z l 2.59 3y max44M zmaxM y max103 750 10 61039.84 W y7.25 KN-MM 1.94 KN-MM maxW zf . 0.54342 0.25920.602 cm10-3矩形截面木材悬臂梁受力如图示,P1 = 800 N , P2 = 1600 N . [b ]=10MPa,弹性模量E= 10GPa 设梁截面的宽度 b 与高度h 之比为了1: 2 截面尺寸;②求自由端总挠度的大小和方向.解:(I) M zmaxP 2 1 1.6 KN M ymaxP 0 21.6 KNf zP z l 3 33 2.59 10 348EJ y__一 9_ __ 848 10 105625 10_ 20.259 10 mW zbh 2_2b(2b)2b 33W ybh 2 2b 3材料许用应力O ①试选择梁的方向 中性轴: 25.47max b = 9 cm(II ) ftan M zmax M y maxW z W Y,h = 18 cmP I23 23EJ yf z 1.95匚0.30531.6 102 a-3b31.6 1013bP2 13P2 133EJ z 2EJ z81.11.9710 106._ 210 m 1.97 cm10-4简支梁的受力及横截面尺寸如图示.钢材的许用应力]=160 MPa,试确定梁危险截面中性轴的方向与校核此梁的强度.P=14kN题10-4图解:J z32d4 bh312 321044 6312909.7484cm中性轴:d32bh312 321046 4312949.748 4cmtan 1里tanJ ytan909.748 x _---------- t an 45949.74843.77(mm 的等边角钢,假设 P =25kN,试求最大弯矩截面上 A 、宙日C 点的弯曲正应力.z 10 sin 43.77 6.918 cm y10 cos43.77 7.221cmMmax14 1 14 KNmM y Mmaxcos 45 9.9M zMmaxsin 45 9.9危险点:9.9max103 6.918 10 9.9 8949.748 102107.221 10150.69 MPa8909.748 10J y0 1180.04cm4JZ044554.55cmW z0 322.06cm 3 W y0146.55cm 3pl M max25 KN 4 M y M z M cos45 M zM yA — y A— J zOJ y °146.2MPaM zM yC —V AzJZ OJ y °解: mZ AA 17.68 KN m3317.68 10141.42 10.一 84554.55 1036.42 MPa3317.68 1060.95 1041180.04 1010-5图示简支梁的截面为了精品资料,欢迎大家下载!317.68 103----------------- 8 80.47 10 120.561180.04 1010-6旋臂 式吊车 梁为了16号工字钢,尺寸 如下图,允许 吊重[]=160MPa .试校核吊车梁的强度.解:B 点:No16 工字钢:A 26.1cm 2, J z 1130cm 4H 10-6 图H N H HP 1.08 1.941.94 1.940.8 15.57 KN1.94 - 15.57 37.76 KN 0.8max337.76 10310 1.08 10 A W 26.1 10141 1091.1MPa 压M y L BMPaP =10kN ,材料的,W z 141cm 3[P ],并作危险截面上的应力分布图,指出最大应力发生在哪一点 解:N = P2A 2.5 10 25cm 2N MA WP 120 106?1 60 10 225 10 4 41.667 10d,♦府制I题 10-72M max 60P 10 2, W.22.5 1026_____ 341.667 cm8108N 8.108KN10-8 悬重构架如下图,立柱AB系用No25a的工字钢制成.许用应力[]=160 MPa ③列式表示顶点B的水平位移.解:'一图(II ) max_ _ _3M 20 103W 48.5 10 4153.42MPa一_360 103 6------------------------- 6 153.42 10 Pa401.883 10(III) f B P 9 P 6 --------- 3 9 63EJ 6EJ 117PEJ在构架C点承受载荷A 20kN.①绘立柱AB的内力图;②找出危险截面,校核立柱强度;—图精品资料,欢迎大家下载!B面为了20cm 30cm 的矩形.试求其危险截面上的最大正应力.解: R A 25 2.4/3.6 16.6667 KNN = 25 KN0 10-9 IH10-9图示起重结构,A 及B 处可作皎链支承看待, G D 与E 均用销钉连结.AB 柱的截M max 25 1 03 2.4i^^^x16.667 2.4 10320 KN mA 0.2 0.3 0.06 M 26 0.2 0.32 W ----- 0.003M 2杆的总重 P 及倾角 .试确定自A 点至由于杆自重产生最3斗~ 7.0830.003M Pa10-10有一等直实心圆杆, 其B 端为了皎支承,A 端靠在光滑 的竖直墙面上(摩擦力可略如图示.杆长L,杆截面直径d,N M A W325 10 0.06K 10-8 ffl240c EDm精品资料,欢迎大家下载!大压应力的横截面之距离 S .解:设杆的自重为了 q (N/M) 轴向分量:q sin 横向分量: q cos R A q l cos 2sin1 ql cot在S 截面:NR A cos sin M(s)(R A sin2(qd dscos q sin1 2q cot sinl_ 28 cot 0 l _ 2i tanIql cot cos q 2 S 21 2qsin1ql cot sin cos sincos sin10-11某厂房柱子,受到吊车梁的铅垂轮压 P= 220 kN,屋架传给柱顶的水平力 Q =8 kN ,及风载荷 q= 1kN/m 的作用.P 力作用线离柱的轴线距离 e=,柱子底部截面为了矩形,尺寸为了 试计算柱子底部危险点的应力. N P 220 KN … 1 9 52M max 220 0.4 8 9.5 57.129 2N M 220 103 57.129 103 6A W 1 0.3 0.3 12解: KN m 0.41 1.876MPa2s1q cos S 2■ lO'll RP=22QkN度.解:P Peb A bh26 103一 - _ 3 _ _ 26 6 103 6 10 2_ 42 3 102 32 10 6130 106 Pa 130MPa尺寸单位十mm期10-12图LW 一, ■ ■:A 10-13 图10-13轮船上救生艇的吊杆尺寸及受力情况如图示, 图中载荷班包含救生艇自重及被解:N 18 KNM 18 1.5 27 KN mN M 318 103_ _ 3 27 103A WW 10 4Q160. 7 5救人员重量在内.试求其固定端A-A截面上的最大应力.MPa3210-14正方形截面拉杆受拉力P= 90kN作用,a = 5cm,如在杆的根部挖去1 /4如图示.试求杆内最大拉应力之值.解:2 .2a ——a2形心位置:e --------------2—— 1.179 cm3 a4a 2 2J z 2 a e12 122 2a ——a2364.6 4cm解:1 旦 6Pe E E bh bh 2211 P 6Pe ~ 2- EE bh bh1 2P E bh 1 12Pe E bh 12Pe bh2 6 2P h bhP Pe (V e )90 103maxA —J —3 52 10 4322 5(90 1031.179 10 2)( ------------- 1.179) 10364.6 10 825.72 106Pa 25.72MPa10-15承受偏心拉伸的矩形截面杆如图示, 今用电测法测得该杆上、下两侧面的纵向应变1和2.试证明偏心距e 在与应变1, 2在弹性范围内满足以下关系式10-16图示正方形截面折杆: 外力P 通过A 和B 截面的形心.假设P= 10kN,正方形 截面边长a =60 mm .试求杆内横截面上的最大正应力.解: BC 杆C 截面:AC 杆C 截面:cos8KNM (P cos )0.6 10 0.8——0.6 4.8KN m1N6Mmax3 A a 3N P sin 10 10 M (P cos )0.63 016KN 110 08 0.6 4.8KN m1 max36 1034103------ . ----- 135 106Pa 135MPa 216 10iV10-17试确定图示T字形截面的核心边界.图中y、z两轴为了截面形心主惯轴.解:e yz.i z e zz.i za z a z zi y 60 403 340 9012 1260 40 一 - 一一290 40 458.33cmz .i z _ _ _340 603122302 (40 60)_ _ _ 390 40312_ 2202 (40 90) 60 40 90 40(4)(5)2800cm800e ye ye ze ze ye z2040800cm a z60458.3345458.334580013.33 cm108458.334510.18510.1857.410.185cmcma ze ye ye z 0e y 7.4e z 10.185解:y z y 1 J y 10-18材料为了灰铸铁 HT15— 33的压力机框架如图示.许用拉应力 []=30MPa 许用压应力[]=80 MPa .试校核框架立柱的强度. (2 10) 1 (2 6) 5 (2 5) 9 ------- ------ ------ ------- ------ ---- 4.05cm10 5.95cm 10 23 12(2 ____ 4487.9cmMZ 2T y M z_____Z1云2 A 42cm 10) 3.052312 1042 10 42.86 1062.893 2 6 0.952 12 210 4.05 10 487.9 10 8322.89 10 5.95 108487.9 10已J 10 4.9521226.85MPa32.38MPa10-19电动机功率 4,转速n =800r/m .皮带轮直径 A 250mm 重量 E 700N,皮带拉fig 10-19 图力为了T i, T2 (T i = 2T2),轴的外伸端长L=120mm轴材料的许用应力[ 100MPa试按第四强度理论设计电动机轴的直径d.解:M n T1 T2 D 竺9.55 N n 9.55 8830.1054 KN800T2 2 0.1054 0.843KN0.252 2 3?2cos45 G 3T2 cos45, 3.3 84370023 3432xd3064N3.064KNR l 3.064 0.12M 2 0.75M n2W z2 2M 0.75M n3 3.79 323------------- 3.38cm0.368KN m,'0.3682 0.75 0.10542 106100 1060.379 1010-20直径为了60cm的两个相同皮带轮,n= 100 r /m时传递功率N=, C轮上皮带是水[]=80MPa,试平的,D轮上是铅垂方向的.皮带拉力T2= kN , T1>T2,设轴材料许用应力® 10^20 图根据第三强度理论选择轴的直径,皮带轮的自重略去不计.M B T 1 T 20.25 5.343 0.25 1.336KN m_ 22M D .1.4252 0.4452 1.493KN m一 2_ _ 2 - 226 M D M n . 1.49320.7032 106320.63cm 解:M n R 色 5 0.15 0.75KN mN 7.36M n 9.559.55 —n 100T 1_ D _ T 2 M n20.7029KN m1.52 0.70290.63.843KN80 106 d 3 32W z 3 32 20.635.95cm10-21图示钢制圆轴上有两个齿轮,齿轮 C 上作用着铅垂切向力 P = 5kN,齿轮D 上作解用着水平切向力 P 2 = 10 kN .假设] :=100 MPa,齿轮C 的节圆直径 d C =30cm 齿轮D 的节圆直径d D= 15cmo 试用第四强度理论选择轴的直径..1.1252 0.187序0.75 0.752 1063 v13125cm3100 106ch 3 32W z 32 13.1255.11cmW z 2 .0.56252 0.3752 0.75 0.752 1 06100 106____ 39.375cm34.57 cm10-22某型水轮机主轴的示意图如下图. 水轮机的输出功率为了NH 37500kW 转速n= 150r /作轴向推力R = 4800kN,转轮重W= 390kN;主轴的内径d= 34cm,外径 A 75cm,自重W=285kN.主轴材料为了45钢,其许用应力为了[]=80 MPa.试按第四强度理论校核主轴的强度.解:37500M n 9.55 2387.5KN m150N P y W c W 4800 390 285 5475KNd23 N 5475 10 15.6A 0.351.2 3 2.15.62 3 30.12 54.4MPa10-23图为了某精密磨床砂轮轴的示意图.电动机功率 4 3 kW转子转速n= 1400 r/m,转子重量Q= 101NL砂轮直径D= 250 mm砂轮重量Q= 275 kN.磨削力P y: P z3:1, 砂轮轴直径d= 50m,材料为了轴承钢,[]=60MPa (1)试用单元体表示出危险点的应力解:M n9.55N9.55 0.02046 KN m 20.46N mn 1400DP z M n2P z 2M n 2 20.46163.68NW pD2 d20.7520.342 2------------------ 0.351m2£l a41630~^ 1 0.4534 0.0793m316M nw p32387.5 100.079330.1MPaxd4题10-23图状态,并求出主应力和最大剪应力;( 2)试用第三强度理论校核轴的强度.砂轮P y 3P z 491.04N显然:P y 、P z 、Q i 和Q 2相较均可以忽略不计. 故 M 275 1000 0.13 35750N m11 ax35750 35750 32 - 2913MPa 0.05解:m-m M n P 0.17 50 0.17 8.5KN mM P(160 90) 10 3 12.5KN mn-n: M n P 90 10 3 4.5KN m7KN mmax题10«24图及臂矩形截面 32 .. M n 2 M 2xd 33d328.52 12.52 1060.12389.1MPa10-24曲柄臂尺寸如图示,假设 P= 50 kN, [ : = 90 MPa,试按第三强度理论对 mmn - n 截面进行校核.h 150 a 0.2492.14(b 700.793虹 0 794^__ ab 2h0.249 15 72 10,26.6672 4 19.422 47.11MPa10-25图示传动轴左端伞形齿轮C 上所受的轴向力 R=kN ,周向力P 2=,径向力 R=.右端齿轮D 上所受的周向力P 2' 144.9kN ,径向力P 3' 52.8kN ,假设d =8cm, [ ]=300MPa, 试按第四强度理论对轴进行校核.M W Z7 103 7 15226.667MPa10解:19.42MPaxd 3M max12.17162 N M max_24.43522316.5 10312.95KN m 312.59 103maxA W z20.082 一一30.083432M n M p3.283 257.63 260.92MPa4xd3.913 103 —0.083 1638.92MPa260.922 3 38.922 269.48MPa10-26正方形截面的半圆形杆,一端固定一端自由,作用力垂直干半圆平面.其受力和尺寸如下图.试按第三强度理论求 B 、C 截面上危险点的相当应力.以上资料仅供参考,如有侵权,留言删除!B 0_l /\l t 7cxl t n cxl r cxl CXI e p xS I A I CXI r:OL9E LD寸£君.6008 N pxE 09L 9ln r co 80CXI .0%艺SIAI 91000OL9L9IO 乜cxll .o osdlAI寸寸寸05SIAI9N §E N X CXI O CXI Ob-E Nxz.0 BO10, 6 64 133.3 10 135.6 10 Pa 135.6MPa36 10 4以上资料仅供参考,如有侵权,留言删除!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10-1 试计算图示各梁指定截面(标有细线者)的剪力与弯矩。
解:(a)
(1) 取A +截面左段研究,其受力如图;
由平衡关系求内力
q
B
(d)
(b)
A
(a)
SA+
M A+
0SA A F F M ++==
(2) 求C 截面内力;
取C 截面左段研究,其受力如图;
由平衡关系求内力
2
SC C Fl F F M ==
(3) 求B -截面内力
截开B -截面,研究左段,其受力如图;
由平衡关系求内力
SB B F F M Fl ==
(b)
(1) 求A 、B 处约束反力
SC
M C
A
SB
M B
e
A B M R R l
==
(2) 求A +截面内力;
取A +截面左段研究,其受力如图;
e
SA A A e M F R M M l
++=-=-
= (3) 求C 截面内力;
取C 截面左段研究,其受力如图;
22
e e SC A A e A M M
l F R M M R l +=-=-
=-⨯=
e
M A+
M C
(4) 求B 截面内力;
取B 截面右段研究,其受力如图;
0e
SB B B M F R M l
=-=-
= (c)
(1) 求A 、B 处约束反力
A B Fb Fa
R R a b a b
=
=
++ (2) 求A +截面内力;
取A +截面左段研究,其受力如图;
B R
B
M
B
A R SA+
M A+
0SA A A Fb
F R M a b
++==
=+ (3) 求C -截面内力;
取C -截面左段研究,其受力如图;
SC A C A Fb Fab
F R M R a a b a b
--==
=⨯=
++ (4) 求C +截面内力;
取C +截面右段研究,其受力如图;
SC B C B Fa Fab
F R M R b a b a b
++=-=-
=⨯=
++ (5) 求B -截面内力;
取B -截面右段研究,其受力如图;
R
A SC-
M C- B R B
M C+
B R B
M
0SB B B Fa
F R M a b
--=-=-
=+ (d)
(1) 求A +截面内力
取A +截面右段研究,其受力如图;
2
33 22248
SA A l ql l l ql F q M q +
+=⨯==-⨯⨯=-
(3) 求C -截面内力;
取C -截面右段研究,其受力如图;
2
22248
SC C l ql l l ql F q M q -
-=⨯==-⨯⨯=-
(4) 求C +截面内力;
取C +截面右段研究,其受力如图;
q
B
M
q
B
M
2
22248
SC C l ql l l ql F q M q +
+=⨯==-⨯⨯=-
(5) 求B -截面内力;
取B -截面右段研究,其受力如图;
0 0SB B F M --==
10-2.试建立图示各梁的剪力与弯矩方程,并画剪力与弯矩图。
解:(c)
(1) 求约束反力
q
B
M B
M B-
B
q
A
2A C R F R F ==
(2) 列剪力方程与弯矩方程
11111 (0/2) (0/2)S F F x l M Fx x l =-=-≤≤p p
()21221 (/2) (/2)S F F l x l M F l x l x l ==--≤≤p p
(3) 画剪力图与弯矩图
(d)
x
F S
M
x
q
A
(1) 列剪力方程与弯矩方程
() (0)44S ql l
F qx q x x l =
-=-p p 21 (0)42
ql q
M x x x l =-≤p
(2) 画剪力图与弯矩图
10-3 图示简支梁,载荷F 可按四种方式作用于梁上,试分别画弯矩图,并从强度方面考
M
ql x
F S
虑,指出何种加载方式最好。
解:各梁约束处的反力均为F /2,弯矩图如下:
M
M
M
M
由各梁弯矩图知:(d)种加载方式使梁中的最大弯矩呈最小,故最大弯曲正应力最小,从强度方面考虑,此种加载方式最佳。
10-5 图示各梁,试利用剪力、弯矩与载荷集度的关系画剪力与弯矩图。
q
B
(b)
(c)
(d)
q
q (a)
解:(a)
(1) 求约束力;
2B B R F M Fl ==
(2) 画剪力图和弯矩图;
B x
F S
x
M
(b)
(1) 求约束力;
0 0A A R M ==
(2) 画剪力图和弯矩图;
(c)
(1) 求约束力;
B
M A
x
F S
x M
4
A B ql R R ==
(2) 画剪力图和弯矩图; (d)
(1) 求约束力;
x
F S
x
M
95 88
A B ql ql
R R =
=
(2) 画剪力图和弯矩图; (e)
(1) 求约束力;
x
F S
x
M
B
4
A B ql R R ==
(2) 画剪力图和弯矩图; (f)
(1) 求约束力;
F S
M
q
510 99
A B ql ql
R R =
=
(2) 画剪力图和弯矩图;
F S
x
M。