初中数学-《一元一次方程》全章复习知识讲解
一元一次方程-中考数学一轮复习考点专题复习大全(全国通用)
考向09 一元一次方程【考点梳理】1.一元一次方程的一般式:ax+b=0(x 是未知数,a 、b 是常数,且a ≠0).2.一元一次方程解法的一般步骤:整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… 得到方程的解.3.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.【题型探究】题型一:一元一次方程定义1.(2021·全国·九年级专题练习)关于x 的一元一次方程2224a x m --+=的解为1x =,则a m +的值为( )A .9B .8C .7D .52.(2022·广东·九年级专题练习)已知关于x 的方程()()22426k x k x k -+-=+是一元一次方程,则方程的解为( )A .-2B .2C .-6D .-13.(2019·福建漳州·校联考中考模拟)若x =2是关于x 的一元一次方程ax -2=b 的解,则3b -6a +2的值是( ).A .-8B .-4C .8D .4题型二:一元一次方程方程的解法4.(2022·贵州黔西·统考中考真题)小明解方程12123x x +--=的步骤如下:解:方程两边同乘6,得()()31122x x +-=-①去括号,得33122x x +-=-②移项,得32231x x -=--+③合并同类项,得4x =-④以上解题步骤中,开始出错的一步是( )A .①B .②C .③D .④5.(2023·河北·九年级专题练习)解方程221123x x --=-,嘉琪写出了以下过程:①去分母,得3(2)62(21)x x -=--;②去括号,得36642x x -=--;③移项、合并同类项,得710x =;④系数化为1,得107x =,开始出错的一步是( ) A .① B .② C .③ D .④6.(2022·重庆南岸·统考一模)解一元一次方程()()11151753x x +=--的过程如下. 解:去分母,得()()3151557x x +=--. ①去括号,得3451557x x +=-+. ②移项、合并同类项,得823x =-. ③化未知数系数为1,得823x =-. ④ 以上步骤中,开始出错的一步是( )A .①B .②C .③D .④题型三:配套 工程和销售问题7.(2022·广西南宁·南宁二中校考三模)用200张彩纸制作圆柱,每张彩纸可制作圆柱侧面20个或底面60个,一个圆柱侧面与两个底面组成一个圆柱.为使制作的圆柱侧面和底面正好配套,设把x 张彩纸制作圆柱侧面,则方程可列为( )A .6020(200)x x =-B .20260(200)x x =⨯-C .26020(200)x x ⨯=-D .22060(200)x x ⨯=-8.(2021·新疆乌鲁木齐·乌鲁木齐市第六十八中学校考三模)某工程甲单独完成要25天,乙单独完成要20天.若乙先单独干10天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .101012025x ++=B .101012520x ++=C .101012520x -+=D .101012520x -+= 9.(2022·贵州遵义·统考二模)如图为某披萨店的公告.某会员购买一个榴莲披萨付款83.6元,则一个榴莲披萨调价前的原价为()A .72.2元B .78元C .80元D .96.8元题型四:比赛 积分和数字问题10.(2022·贵州铜仁·统考中考真题)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .1711.(2022·福建·模拟预测)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.设该店有x 间客房,则所列方程为( )A .7x-7=9x+9B .7x +9=9x+7C .7x +7=9x ﹣9D .7x-7=9x ﹣912.(2022·湖南长沙·模拟预测)《九章算术》一书中记载了一道题:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、物价各几何?题意是:有若干人一起买鸡,如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.则买鸡的人数和鸡的价钱各是( )A .8人,61文B .9人,70文C .10人,79文D .11人,110文题型五:几何 和差倍和水电问题13.(2022·江苏南通·统考模拟预测)如图,矩形ABCD 中,8cm AB =,4cm BC =,动点E 和F 同时从点A 出发,点E 以每秒2cm 的速度沿A D →的方向运动,到达点D 时停止,点F 以每秒4cm 的速度沿A B C D →→→的方向运动,到达点D 时停止.设点F 运动x (秒)时,AEF △的面积为()2cm y ,则y 关于x 的函数的图象大致为( )A .B .C .D .14.(2022·福建南平·统考模拟预测)中国一本著名数学文献《九章算术》,书中出现了一个“共买鸡问题”,原文是:今有共买鸡,人出九,盈十一;人出六,不足十六,问人数、物价各几何?其题意是:有若干人一起买鸡,如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.问买鸡的人数、鸡的价钱各是多少?设买鸡的人数为x ,则下面符合题意的方程是( )A .9+11616x x =-B .9+61611x x =+C .9+11616x x =+D .911616x x =+-15.(2018·四川绵阳·校联考中考模拟)滴滴快车是一种便捷的出行工具,计价规则如下表: 计费项目里程费 时长费 远途费 单价 1.8元/公里 0.3元/分钟 0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A .10分钟B .13分钟C .15分钟D .19分钟题型六:行程 比例和行程问题16.(2022·重庆璧山·统考一模)小明和爸爸从家里出发,沿同一路线到图书馆,小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店买水花费了5分钟,从商店出来后,爸爸的骑车速度比他之前的骑车速度增加60米/分钟,结果与小明同时到达图书馆.小明和爸爸两人离开家的路程s (米)与小明出发的时间t (分钟)之间的函数图像如图所示,则下列说法错误的是( )A .17a =B .小明的速度是150米/分钟C .爸爸从家到商店的速度是200米/分钟D .9t =时,爸爸追上小明17.(2023·福建泉州·泉州五中校考三模)明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注: 明代时 1 斤=16 两,故有“半斤八两”这个成语).设总共有 x 个人,根据题意所列方程正确的是( )A .7x - 4 = 9x +8B .7x +4 = 9x -8C .4879x x +-=D .4879x x -+= 18.(2019·湖北荆州·统考一模)在如图所示的2018年1月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( )A .23B .51C .65D .75题型七:一元一次方程的综合19.(2019·重庆·统考中考真题)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .6 20.(2020·江苏盐城·统考中考真题)把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .621.(2022·湖北宜昌·统考中考真题)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值; (3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【必刷基础】一、 单选题22.(2022·重庆沙坪坝·统考一模)若关于x 的方程25x a +=的解是2x =,则a 的值为( )A .9-B .9C .1-D .123.(2022·辽宁营口·统考中考真题)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( )A .24015015012x x +=⨯B .24015024012x x -=⨯C .24015024012x x +=⨯D .24015015012x x -=⨯24.(2022·江苏苏州·统考中考真题)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x步才能追上,根据题意可列出的方程是()A.60100100x x=-B.60100100x x=+C.10010060x x=+D.10010060x x=-25.(2022·云南昆明·云南师范大学实验中学校考三模)若整数a使关于x的方程21x a+=的解为负数,且使关于的不等式组()122113x axx⎧-->⎪⎪⎨+⎪-≥⎪⎩无解,则所有满足条件的整数a的值之和是()A.6 B.7 C.9 D.1026.(2022·湖南长沙·长沙市湘郡培粹实验中学校考三模)周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,张老师和8个学生跳舞……依次下去,一直到何老师,他和参加跳舞的所有学生跳过舞,这个晚会上参加跳舞的学生人数是()A.15 B.14 C.13 D.1227.(2022·山东济宁·济宁市第十三中学校考一模)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只;(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入-投入总成本).28.(2022·宁夏吴忠·校考一模)2020年,一场突如其来的疫情席卷全国,给人民生命、财产造成巨大损失,但英勇的中国人民不畏艰难,众志成城,最终取得了抗击疫情的阶段性胜利,疫情防控初期,某药店库存医用外科口罩10000副,进价2元/副,由于市民疯狂抢购,量价齐升,5天销售一空,通过5天的销售情况进行统计,得到数据如下:(1)求该药店这5天销售口罩的平均利润.(2)通过对上面表格分析,发现销售量y (副)与单价x (元/副)存在函数关系,求y 与x 的函数关系式.(3)该药店购进第二批口罩20000副,进价2.5元/副,虽然畅销,但被物价部门限价,每副口罩销售价为m 元,销售一半后,该药店响应国家号召,将剩余口罩全部捐献给了抗疫定点医院,若在两批口罩销售中,药店不亏也不赚,则m 的值是多少?【必刷培优】一、单选题29.(2022·云南德宏·统考模拟预测)若关于x 的方程()6324x k -=-的解为非负整数,且关于x 的不等式组()23432x x k x x ⎧-+≤-⎪⎨-≤⎪⎩无解,则符合条件的整数k 的值可以为( ) A .0 B .3 C .4 D .630.(2023·全国·九年级专题练习)解方程2233522x x x x x--+=--,以下去分母正确的是( ) A .22335x x x ---=B .22335x x x --+=C .()223352x x x x ---=-D .()223352x x x x --+=-31.(2022·广西钦州·统考模拟预测)《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有人共买鹅,人出九,盈十一;人出六,不足十六,人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.设买鹅的人数有x 人,可列方程为( )A .911616x x -=-B .911616x x -=+C .911616x x +=+D .911616x x +=-32.(2022·河北·统考二模)数学实践活动课上,陈老师准备了一张边长为a 和两张边长为()b a b >的正方形纸片如图1、图2所示,将它们无重叠的摆放在矩形ABCD 内,矩形未被覆盖的部分用阴影表示,设左下阴影矩形的周长为1l ,右上阴影矩形的周长为2l .陈老师说,如果126l l -=,求a 或b 的值.下面是四位同学得出的结果,其中正确的是( )A .甲:6a =,4b =B .乙:6a =,b 的值不确定C .丙:a 的值不确定,3b =D .丁:a ,b 的值都不确二、填空题33.(2022·山东济南·山东师范大学第二附属中学校考模拟预测)已知224x x +=,且224120ax ax +-=,则22a a +的值为______.34.(2022·江苏扬州·校考二模)我国古代名著《九章算术》中有一问题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”假设经过x 天相逢,则可列方程为_____.35.(2022·重庆大渡口·重庆市第三十七中学校校考二模)青团是清明节的一道极具特色的美食,据调查,广受消费者喜欢的口味分别是:红豆青团、肉松青团、水果青团,故批发商大量采购红豆青团、肉松青团、水果青团,为了获得最大利润,批发商需要统计数据,更好地进货.3月份批发商统计销量后发现,红豆青团、肉松青团、水果青团销量之比为2:3:4,随着市场的扩大,预计4月份青团总销量将在3月份基础上有所增加,其中水果青团增加的销量占总增加的销量的15,则水果青团销量将达到4月份总销量的13,为使红豆青团、肉松青团4月份的销量相等,则4月份肉松青团还需要增加的销量与4月份总销量之比为_____________.36.(2022·四川攀枝花·统考中考真题)如果一元一次方程的解是一元一次不等式组的解.则称该一元一次方程为该一元一次不等式组的关联方程.若方程1103x -=是关于x 的不等式组2220x n n x -≤⎧⎨-<⎩的关联方程,则n 的取值范围是 ___________.37.(2022·北京西城·校考模拟预测)我校学生会正在策划一次儿童福利院的慰问活动.为了筹集到600元活动资金,学生会计划定制一批穿校服的毛绒小熊和带有校徽图案的钥匙扣,表格中有这两种商品的进价和售价.另外,若将一个小熊和一个钥匙扣组成一份套装出售,则将售价打九折.为了更好的制定进货方案,学生会利用抽样调查的方式统计了校内学生对商品购买意向的百分比情况(见表格),若按照这个百分比情况定制商品,至少定制小熊______个和钥匙扣______个,才能筹集到600元资金(即获得600元利润).38.(2022·广西·统考中考真题)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.三、解答题39.(2022·福建泉州·校考三模)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额.注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000(180%)60260⨯-+=(元).(1)购买一件标价为1600元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x 元(1250)x >的商品,那么该顾客获得的优惠额为多少?(用含有x 的代数式表示)(3)若顾客在该商场第一次购买一件标价x 元(1250)x >的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为______元.40.(2022·河北邯郸·校考三模)如图,数轴上a 、b 、c 三个数所对应的点分别为A 、B 、C ,已知b 是最小的正整数,且a 、c 满足2(6)20c a -++=.(1)①直接写出数a、c的值,;②求代数式222+-的值;a c ac(2)若将数轴折叠,使得点A与点C重合,求与点B重合的点表示的数;(3)请在数轴上确定一点D,使得AD=2BD,则D表示的数是.41.(2022·江苏镇江·统考中考真题)某地交警在一个路口对某个时段来往的车辆的车速进行监测,统计数据如下表:车速(km/h)40 41 42 43 44 45频数 6 8 15 a 3 2其中车速为40、43(单位:km/h)的车辆数分别占监测的车辆总数的12%、32%.(1)求出表格中a的值;(2)如果一辆汽车行驶的车速不超过40km/h的10%,就认定这辆车是安全行驶.若一年内在该时段通过此路口的车辆有20000辆,试估计其中安全行驶的车辆数.42.(2022·广西玉林·统考二模)疫情期间,消毒液、口罩成为了咱们的生活必需品.淘宝某医用器械药房推出2种口罩进行销售,医用一次性口罩2.5元/个,医用外科口翠3元/个.(1)某地某学校购进两种口罩25000个,共花费70000元,请问学校购买医用外科口罩多少个?(2)因为4月份疫情逐渐过去,但口罩的市场需求盘依旧旺盛,该药房决定用320000元再次购进一批口罩进行销售.医用一次性口罩100个/盒,每盒120元,医用外科口罩50个/盒,每盒100元.要求购进的医用外科口罩个数不超过医用一次性口罩的2.6倍,但不低于医用一次性口罩的1.9倍.若这批口罩全部销售完毕,为使获利最大,该药房应如何进货?最大获利为多少元?43.(2021·贵州遵义·校考模拟预测)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是______千米/小时;轿车的速度是______千米/小时.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)求货车出发多长时间两车相距90千米.参考答案:1.C【分析】先根据一元一次方程的定义可得出a 的值,再根据一元一次方程的解定义可求出m 的值,然后代入求值即可. 【详解】方程2224a x m --+=是关于x 的一元一次方程,21a ∴-=,解得3a =,∴方程为224x m -+=,又1x =是方程224x m -+=的解,2124m ∴⨯-+=,解得4m =,则347a m +=+=,故选:C .【点睛】本题考查了一元一次方程的定义、以及解定义,掌握理解一元一次方程的定义是解题关键.2.D【分析】利用一元一次方程的定义确定出k 的值,进而求出k 的值即可.【详解】解:∵方程()()22426k x k x k -+-=+是关于x 的一元一次方程,∴24020k k ⎧-=⎨-≠⎩, 解得:k =-2,方程为-4x =-2+6,解得:x =-1,故选:D .【点睛】此题考查了解一元一次方程,以及一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.3.B【分析】根据已知条件与两个方程的关系,可知2a- 2= b ,即可求出3b-6a 的值,整体代入求值即可.【详解】把x=2代入ax -2=b ,得2a- 2= b .所以3b-6a=-6.所以,3b -6a +2=-6+2=-4.故选B .【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.4.A【分析】按照解一元一次方程的一般步骤进行检查,即可得出答案.【详解】解:方程两边同乘6,得()()31622x x +-=-①∴开始出错的一步是①,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解决问题的关键.5.B【分析】解决此题应先去括号,再移项,移项时要注意符号的变化.【详解】在第②步,去括号得36642x x -=--,等式右边去括号时忘记变号,故选B .【点睛】解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1;在移项时要注意符号的变化,此题是形式较简单的一元一次方程.6.B【分析】检查解一元一次方程的解题过程,根据去分母,去括号,移项,合并同类项,系数华为1,找出出错的步骤,以及出错的原因.【详解】第②步出现错误,3451557x x +=-+. ②错误的原因是去括号时出现错误,应该改为:34515535x x +=-+.故选:B【点睛】此题考查了解一元一次方程,解方程去括号时,要注意不要漏乘括号里的每一项.7.D【分析】根据题意列出一元一次方程求解即可.【详解】解:设把x 张彩纸制作圆柱侧面,则有(200-x )张纸作圆柱底面,根据题意可得:22060(200)x x ⨯=-故选:D .【点睛】题目主要考查一元一次方程的应用,理解题意,列出方程是解题关键.8.D【分析】设甲、乙一共用x 天完成,根据题意,列出方程,即可求解.【详解】解:设甲、乙一共用x 天完成,根据题意得:101012520x -+=. 故选:D【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.9.C【分析】根据原价和售价的关系,列方程计算即可.【详解】解:设原价为x 元,由题意,得(1+10%)×95%·x =83.6,解得:x =80.故选:C .【点睛】此题考查了一元一次方程的应用—打折销售,解题的关键是确定等量关系列方程求解.10.B【分析】设小红答对的个数为x 个,根据抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分,列出方程求解即可.【详解】解:设小红答对的个数为x 个,由题意得()52070x x --=,解得15x =,故选B .【点睛】本题主要考查了一元一次方程的应用,正确理解题意是列出方程求解是解题的关键.11.C【分析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【详解】设该店有x 间客房,则7x+7=9x-9,故选:C.【点睛】本题考查了一元一次方程的应用,熟练掌握一元一次方程的解题方法是解题的关键.12.B【分析】买鸡的人数为x 人,根据“如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.”列出方程,即可求解.【详解】解:买鸡的人数为x 人,根据题意得:911616x x -=+ ,解得:9x = ,∴鸡的价钱为911991170x -=⨯-= ,答:买鸡的人数为9人,鸡的价钱为70文.故选:B【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.13.B【分析】由点的运动,可知点E 从点A 运动到点D ,用时2s ,点F 从点A 到点B ,用时2s ,从点B 运动到点C ,用时1s,从点C运动到点D,用时2s,y与x的函数图象分三段:①当0≤x≤2时,②当2<x≤3时,③当3<x≤5时,根据每种情况求出△AEF的面积.【详解】解:点E从点A运动到点D,用时2s,点F从点A到点B,用时2s,从点B运动到点C,用时1s,从点C 运动到点D,用时2s,∴y与x的函数图象分三段:①当0≤x≤2时,AE=2x,AF=4x,•2x•4x=4x2,∴y=12这一段函数图象为抛物线,且开口向上,由此可排除选项A和选项D;②当2<x≤3时,点F在线段BC上,AE=4,×4×8=16,此时y=12③当3<x≤5时,×4×(4+8+4−4x)=32−8x,由此可排除选项C.y=12故选:B.【点睛】本题考查了动点问题的函数图象,二次函数图象,三角形的面积,矩形的性质,根据题意理清动点的时间分段,并根据三角形的面积公式列出函数关系式是解题的关键,难度不大.14.D【分析】设买鸡的人数为x,根据鸡的价格不变,建立等量关系,列出相关方程即可.【详解】解:设买鸡的人数为x,则由题意有:-,=+x x911616故选:D.【点睛】本题考查了一元一次方程的实际应用,准确找到等量关系是解题的关键.15.D【分析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.16.D【分析】利用到商店时间+停留时间可确定A ,利用爸爸所用时间+2分与路程3300米可求小明速度可确定B ,利用设爸爸开始时车速为x 米/分,列方程求解即可确定C ,利用小明和爸爸行走路程一样,设t 分爸爸追上小明,列方程求解可知D .【详解】解:A .12517a +==,故A 正确,不合题意;B .小明的速度为330022150÷=米/分,故B 正确,不合题意;C .设爸爸开始时车速为x 米/分,()()1225603300x x -++=,解得200x =米/分,故爸爸从家到商店的速度为200米/分钟正确,不合题意;D .设y 分爸爸追上小明,()1502200y y +=,解得:6y =,故9t =时,爸爸追上小明,选项不正确,符合题意故选:D .【点睛】本题考查行程问题的函数图像,会看图像,能从中获取信息,掌握速度,时间与路程三者关系,把握基准时间是解题关键.17.B【分析】直接根据题中等量关系列方程即可.【详解】解:根据题意,7x +4 = 9x -8,故选:B .【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.18.B【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x ,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x ,因而这三个数的和一定是3的倍数.【详解】设中间的数是x ,则上面的数是x-7,下面的数是x+7,则这三个数的和是(x-7)+x+(x+7)=3x ,因而这三个数的和一定是3的倍数,则,这三个数的和都为3的倍数,观察只有51与75是3的倍数,但75÷3=25,25+7=32不符合题意,所以这三个数的和可能为51,故选B .。
《一元一次方程》全章复习与巩固(基础)知识讲解
《一元一次方程》全章复习与巩固(基础)知识讲解【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的概念1.在下列方程中①x 2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1B.2C.3D.4【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:①x 2+2x=1,最高次数是2次;②﹣3x=9,分母上含有字母,不是整式方程;③x=0,是一元一次方程;④3﹣=2,是一个等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B.【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.凡是分母中含有未知数的方程一定不是一元一次方程.举一反三:【变式】下列说法中正确的是().A.2a-a=a不是等式B.x2-2x-3是方程C.方程是等式D.等式是方程【答案】C2.若方程3(x-1)+8=2x+3与方程253x k x+-=的解相同,求k的值.【答案与解析】解:解方程3(x-1)+8=2x+3,得x=-2.将x=-2代入方程253x k x+-=中,得22253k-++=.解这个关于k的方程,得263k=.所以,k的值是263k=.【总结升华】由于两个方程的解相同,所以可以将其中一个方程的解代入另一个方程中,从而求得问题的答案.举一反三:【变式】当x=时,代数式2x+1与5x﹣8的值相等.【答案】3.解:根据题意得:2x+1=5x﹣8,∴2x﹣5x=﹣8﹣1,∴﹣3x=﹣9,∴x=3.类型二、一元一次方程的解法3.解方程2351 46y y+--=【思路点拨】通过方程的同解原理(去分母,去括号,合并同类项,系数化为1),一步一步将一个复杂的方程转化成与它同解的最简的方程,从而达到求解的目的.【答案与解析】解:去分母,得3(y+2)-2(3-5y)=12去括号,得3y+6-6+10y=12合并同类项,得13y=12未知数的系数化为1,得1213 y=【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.4.解方程:113(1)(1)2(1)(1)22x x x x+--=--+【思路点拨】本题按常规方法求解,比较繁锁,如能根据题目的特点,巧用“整体思维”,就能算得又快又对,起到事半功倍的效果.【答案与解析】解:113(1)(1)2(1)(1)22x x x x+++=-+-75(1)(1)22x x+=-7(1)5(1)x x+=-7755x x+=-212x=-x=-6【总结升华】直接去括号太繁琐,若将(x+1)及(x-1)看作一个整体,并移项合并同类项,解答十分巧妙,可免去去分母的步骤及简化去括号的过程.举一反三:【变式】解方程:278(x-4)-463(8-2x)-888(7x-28)=0【答案】解:原方程可化为278(x-4)+463×2(x-4)-888×7(x-4)=0(x-4)(278+463×2-888×7)=0x-4=0x=4类型三、一元一次方程的应用5.甲车从A地出发以60km/h的速度沿公路匀速行驶,0.5h后,乙车也从A地出发,以80km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.【答案与解析】解:设乙车出发后x小时追上甲车,依题意得60×0.5+60x=80x,解得x=1.5.答:乙车出发后1.5小时追上甲车.【总结升华】此题的等量关系为:甲前0.5h的行程+甲后来的行程=乙的行程.6.列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?【答案与解析】解:设每棵柏树苗的进价是x元,则每棵枣树苗的进价是(2x﹣5)元,根据题意,列方程得:200x=120(2x﹣5),解得:x=15.答:每棵柏树苗的进价是15元.【总结升华】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.举一反三:【变式】某文具店为促销X型计算器,优惠条件是一次购买不超过10个,每个38元,超过10个,超过部分每个让利2元(即每个36元),问李老师用812元共买了多少个?【答案】解:设李老师用812元共买了x个,依题意可得:⨯+⨯-=381036(10)812xx=解得:22答:李老师用812元共买了22个.。
一元一次方程所有知识点(超全)
一元一次方程所有知识点教案1.通过化简,只含有一个未知数,并且所含未知数的最高次数是1的整式方程,叫一元一次方程.通常形式是ax+b=0(a,b为常数,且a≠0).2.从一元一次方程的定义来看,判断一元一次方程的标准是:(1)整式方程;(2)只含有一个未知数;(3)未知数的最高次数是1.练4下列方程中,是一元一次方程的是()A.3x=2x B.3x﹣(4+3x)=2 C.x+y=1 D.x2+1=55.已知某方程是一元一次方程,求参数【例1】如果(3+m)x|m|﹣2-x=3-x是关于x的一元一次方程,则m的值为()A.2 B.3 C.3或﹣3 D.2或3总结:1.关于x的方程就是说在方程中x是未知数,其余的字母都看成已知数.2.一元一次方程中只有未知数的一次项,不存在二次项,所以如果有二次项,那么二次项系数为0.3.方程中必须含有未知数的一次项,即化简后一次项系数不为0.练1 若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0 B.x=3 C.x=﹣3 D.x=26.已知一元一次方程的解,求参数【例2】已知x=2是2x+a=5的解,则a的值为()A.1 B.32C.﹣1 D.23总结:虽然是关于x的方程,但含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.根据方程解的定义,把解代入到原方程,就可以得到关于a的一元一次方程.练2 如果x=﹣1是关于x的方程3x﹣2m=5的根,则m的值是()A.﹣4 B.﹣2 C.1 D.﹣17.利用等式的性质对等式进行变形【例1】以下等式变形不正确的是()A.由x=y,得到x+2=y+2 B.由2a﹣3=b﹣3,得到2a=bC.由m=n,得到2am=2an D.由am=an,得到m=n总结:1.等式可抽象为天平,当天平两边放相同质量的物体时,天平处于平衡状态;如果在天平的两边各加(或减)相同质量的物体,则天平仍然处于平衡状态.2.等式变形时,每一步必须符合等式的性质,否则等式就不成立.在运用性质时特别注意以下两点:(1)运用等式的性质1时,等式两边要同时加上(或减去)同一个数,即两边进行相同的运算;(2)运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母.练1.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平仍然平衡的有( )A .0个B .1个C .2个D .3个练2.等式1-43y =的两边同时 ,得到y =﹣12. 8.利用等式的性质解方程【例2】利用等式的性质解方程:(1)11618x = ; (2)5﹣x =7; (3)0.2x +5=7.总结:1. 一般来说,对于ax =b (x 是未知数,a ,b 是已知数,且a ≠0)形式的一元一次方程,在等式两边都除以a 即可求解.2. 当ax =b (x 是未知数,a ,b 是已知数,且a ≠0)中的系数a 是分数时,一般在等式两边都乘以它的倒数.3. 当ax =b (x 是未知数,a ,b 是已知数,且a ≠0)中的系数a 是小数时,可在等式两边都扩大相同的倍数,使小数化为整数,再在等式两边除以这个整数;或者直接把小数化为分数,再在等式两边都乘它的倒数.练3.下列利用等式的性质解方程中,正确的是( )A .由x ﹣5=6,得x =1B .由56x =,得56x = C .由﹣5x =10,得x =2 D .由x +3=4,得x =1练4.已知x +y +z =5,y +z =7,求x 的值,并说明根据等式的什么性质.五、课后小测一、选择题1.下列关于x 的式子一定是一元一次方程的有( )①ax +b =0(a ≠0);②ax =b ;③当a =﹣1时,方程15a +x 4+3a =1;④(a 2+1)x =1. A .1个 B .2个 C .3个 D .4个2.下列方程中是一元一次方程的是( )一、选择题 1.若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为( )A .-1B .0C .1D .132.已知关于x 的方程4x -3m =2的解是x =m,则m 的值时( )A .2B .-2C .1D .-13.小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y +12=12y ﹣.小明翻看了书后的答案,此方程的解是y =﹣53,则这个常数是( ) A .1 B .2 C .3 D .44.已知关于x 的方程ax ﹣8=20+a 的解是x =﹣3,则a 的值为( )A .﹣4B .﹣6C .﹣7D .﹣35.如果关于x 的方程13210m x+=是一元一次方程,则m 的值为( ) A .13B .3C .﹣3D .不存在 二、填空题6.已知方程232)1(2=-+-x x a 是关于x 的一元一次方程,则a =______.7.已知3x n ﹣1+5=0为一元一次方程,则n =______.8.已知(m ﹣1)x |m |=m +2n 是关于x 的一元一次方程,若n 是它的解,则n ﹣m =_______.9.若x =﹣2是关于x 的方程2x +m ﹣4=0的解,则m 的值为_______.三、解答题10.已知关于x 的方程(m ﹣4)x 2+(m ﹣2)x +3m ﹣1=0.求当m 为何值时,它是一元一次方程.11.若关于x 的方程(k ﹣1)x 2+kx ﹣6k =0是一元一次方程,求k 的值和方程的解.12.已知关于x 的方程3a ﹣x =2x +3的解为2,求代数式(﹣a )2﹣2a +1的值.11.王凯在解方程2x=5x时,在方程两边同时除以x,竟得到2=5,你知道他错在什么地方吗?12.a、b、c三个物体的重量如下图所示:回答下列问题:(1)a、b、c三个物体就单个而言哪个最重?(2)若天平一边放一些物体a,另一边放一些物体c,要使天平平衡,天平两边至少应该分别放几个物体a和物体c?13.下列方程的变形是否正确?为什么?(1)由3+x=5,得x=5+3.(2)由7x=﹣4,得x=7 -4.(3)由12y ,得y=2.(4)由3=x﹣2,得x=﹣2﹣3.六、小结二、学习目标:1.会合并同类项解一元一次方程;2.会移项解一元一次方程;3.会通过一元一次方程解决实际问题.二、知识回顾:1.等式性质1:等式两边加(减)同一个数(或式子),结果仍相等.如果a=b,那么a±c=b±c.2.等式性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.如果a=b,那么ac=bc.如果a=b(c≠0),那么a bc c=.四、知识梳理:1.合并同类项解一元一次方程合并同类项是指把多项式中的同类项合并成一项;而对一元一次方程方程合并同类项是指把含有未知数的项合成一项,把不含未知数的项合并成一项.(一般把含未知数的项移到等号的左边,常数项移到等号的右边).2.移项解一元一次方程移项是把等式一边的某项变号后移到另一边,其依据是等式性质1.如解方程3225x x-=+时,可在方程的两边先加2,再减2x,得32222522x x x x-+-=++-,即变形为3252x x-=+.与原方程相比较,这个变形过程可用下图来表示.运用移项可以把方程左边的项移到右边,也可以把方程右边的项移到左边,但要牢记:移项一定要变号!四、典例探究1.移项、合并同类项求方程的解【例1】解下列方程:(1)-2x—4x=-12+3×(-4);(2)-3x+5x+x=-15-(-6);(3)8844-=+xx解一元一次方程——移项与合并同类项19.解下列方程:(1)3x -5x =-6;(2)-2y +y 23=2×3-8;(3)6x =3x +6;(4)2x +7=5.20.解下列方程:(1)5x -2=-7x +8;(2)x x 513156+=-.21.已知图1和图2中的多边形的周长都是7,求他们的各边长.22.足球表面是由一些黑色的正五边形和白色的正六边形皮块组成,黑、白皮块的数目之比为3∶5,一个足球的表面积有32个皮块.请问,足球表面有黑、白皮块各多少块?23.3x-2x=m的解与3x+2x=7-2的解互为相反数,试求这两个方程的解及m的值.24.甲、乙二人在400米的环形跑道上练习赛跑,甲的平均速度是5.5米/秒,乙的平均速度是4.5米/秒.两人从同一地点,同时起跑,若同向而行,则甲、乙二人经过多少时间首次相遇?25.小丽在今年5月份上海世博会开幕后,在世博园里参观了4天.这四天各天的日期之和是86,那么你知道小丽在世博园里参观的日期吗?26.北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?27.如图是的一个长方形恰好分成六个正方形,其中有两个正方形的边长相等,如果最小的正方形的边长为3厘米,求这个长方形的面积.六、小结解一元一次方程——去括号三、学习目标:1.掌握去括号法则;2.探究通过“去括号”的方法解一元一次方程;3.善于用解方程的方法去解决实际问题.二、知识回顾:1.一元一次方程的解法我们学了哪几步?2.移项,合并同类项,系数化为1,要注意什么?①移项时要变号.(变成相反数).②合并同类项时,只是把同类项的系数相加作为所得项的系数,字母部分不变.③系数化为1,也就是说方程两边同时除以未知数前面的系数.3.还记得乘法分配律吗?用字母怎样表示?一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.字母表示:a(b+c)=ab+ac.五、知识梳理:1.去括号当方程中出现括号时,应该先去括号.法则:(1)括号前是“+”号,把括号和它前面的“+”号一起去掉,括号里各项都不变符号;(2)括号前是“-”号,把括号和它前面的“-”号一起去掉,括号里各项都改变符号.依据:去括号法则以及乘法的分配律.做法:一般是先去小括号,再去中括号,最后去大括号.2.解一元一次方程的一般步骤到目前为止解一元一次方程的一般步骤有:四、典例探究1.判断方程去括号后的关系式【例1】解方程2(x+3)﹣5(1﹣x)=3(x﹣1),去括号正确的是()A.2x+6﹣5+5x=3x﹣3 B.2x+3﹣5+x=3x﹣3C.2x+6﹣5﹣5x=3x﹣3 D.2x+3﹣5+x=3x﹣1总结:去括号时要注意:(1)括号前的数要乘括号内的每一项;(2)括号前面是正号,去括号后,括号内各项不变号;(3)括号前面是负号,去掉括号和负号时,括号内各项都要变号.练1.解方程2(x﹣1)﹣3=5时,去括号,得()A.2x+1﹣3=5 B.2x﹣2﹣3=5 C.2x+2﹣3=5 D.2x﹣1﹣3=5练2.方程12﹣(2x﹣4)=﹣(x﹣7)去括号得.2.解含括号的一元一次方程【例2】解方程:(1)2(3x﹣2)﹣(x﹣10)=4(3x﹣2)(2)34138+1 43242xx⎡⎤⎛⎫--=⎪⎢⎥⎝⎭⎣⎦.六、小结四、学习目标:1.掌握解一元一次方程中“去分母”的方法,并能解这种类型的方程;2.了解一元一次方程解法的一般步骤.二、知识回顾:1.等式性质2的内容是什么?等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子表示:如果a=b,那么ac=bc;如果a=b,c≠0,那么a bc c=.2.当方程中含有括号时,如何解一元一次方程?六、知识梳理:1.去分母目的:使方程中的各项均不含分母(或分母为1).方法:在方程两边都乘各分母的最小公倍数.依据:等式的性质2.注意事项:(1)去分母时容易漏乘不含分母的项.如将方程3123x x-=去分母时,错化为912x x-=.(2)去分母后,对于原来含有加减运算的分子漏加括号.如将方程1452xx--=去分母时,错化为8110x x--=.解一元一次方程——去分母2.解一元一次方程的一般步骤:四、典例探究1.对方程进行去分母变形【例1】解方程21101136x x++-=时,去分母正确的是()A.2x+1﹣(10x+1)=1 B.4x+1﹣10x+1=6C.4x+2﹣10x﹣1=6 D.2(2x+1)﹣(10x+1)=1总结:1.方程中含有分母时,一般先去分母,再做其他变形.2.去分母时,方程的两边同乘以各分母的最小公倍数就可以把分母去掉.3.去分母时应注意:(1)所选的乘数是方程中所有分母的最小公倍数;(2)用各分母的最小公倍数乘方程的两边时,不要漏乘方程中不含分母的项;(3)去掉分母后,分数线也同时去掉,分子上的多项式要用括号括起来.练1.下列解方程去分母正确的是()A.由1132x x--=,得2x﹣1=3﹣3xB.由232124x x---=-,得2(x﹣2)﹣3x﹣2=﹣4C.由131236y y yy+-=--,得3y+3=2y﹣3y+1﹣6yD.由44153y y+-=,得12y﹣1=5y+20练2.解方程15143x xx+-=-时,去分母得()A.4(x+1)=x﹣3(5x﹣1)B.x+1=12x﹣(5x﹣1)。
初一数学一元一次方程知识点
初一数学一元一次方程知识点初一数学一元一次方程知识点 1一、目标与要求1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。
二、重点从实际问题中寻找相等关系;建立列方程解决实际问题的思想方法,学会合并同类项,会解ax+bx=c类型的一元一次方程。
三、难点从实际问题中寻找相等关系;分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。
四、知识框架五、知识点、概念总结1、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。
3、条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。
4、等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5、合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
6、移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7、一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a。
人教版七年级上册第三章一元一次方程全章小结复习说课稿
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.理论讲解:以简明扼要的语言讲解一元一次方程的定义、一般形式,让学生明确学习目标。
2.案例分析:通过具体实例,演示一元一次方程的解法,让学生在实际操作中理解并掌握解法步骤。
2.生生互动:通过小组合作学习,学生之间将进行讨论、交流和分工合作,共同解决实际问题。在小组活动中,我会设置明确的任务和评价标准,确保每个学生都能参与到互动中来。
3.课堂讨论:组织全班范围的讨论,让学生分享各自小组的解题过程和答案,鼓励他们相互提问、质疑和补充,以提高课堂氛围和学生思维的深度。
四、教学过程设计
2.情境教学法:将一元一次方程的知识点融入到生活情境中,让学生在具体情境中感受数学的应用价值。这种方法的理论依据是情境学习理论,认为知识需要在真实情境中通过活动和实践来获得。
3.分组合作学习法:将学生分成小组,鼓励他们在小组内进行讨论、交流和合作解决问题。这种教学方法基于社会建构主义理论,强调学习是一个社会互动的过程。
3.教师评价:针对学生的表现,给予积极的评价和鼓励,同时指出需要改进的地方,并提供具体的建议。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一些基础的一元一次方程题目,目的是巩固课堂所学知识,提高解题技能。
2.提高作业:设计一些综合性的题目,让学生运用所学知识解决实际问题,培养他们的应用能力和创新思维。
4.游戏化学习:设计一些与一元一次方程相关的数学游戏,让学生在轻松愉快的氛围中学习,提高他们的学习积极性。
三、教学方法与手段
(一)教学策略
在本节课中,我将采用问题驱动法、情境教学法和分组合作学习法为主要教学方法。
一元一次方程知识点几何图形的初步(总复习)解析
第三章一元一次方程知识要点梳理一.元一次方程及解的概念1、一元一次方程的概念只含有一个未知数,并且未知数的次数都是1的方程叫做一元一次方程。
一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
2、方程的解使方程左右两边的值相等的未知数的值叫做方程的解注意:(1)一元一次方程必须满足的3个条件:只含有一个未知数;未知数的次数是1次;整式方程.(2)判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.二.方程变形——解方程的重要依据1、等式的基本性质(也叫做方程的同解原理)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
即:如果,那么;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
即:如果,那么;如果,那么2、分数的基本的性质分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)注:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为的形式:-=1.6。
方程的右边没有变化,这要与“去分母”区别开。
三.解一元一次方程的一般步骤1、解一元一次方程的基本思路通过对方程变形,把含有未知数的项归到方程的一边,把常数项归到方程的另一边,最终把方程“转化”成x=a的形式。
2、解一元一次方程的一般步骤是变形名称具体做法变形依据去分母在方程两边都乘以各分母的最小公倍数等式基本性质2去括号先去小括号,再去中括号,最后去大括号去括号法则、分配律等式基本性质1移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)合并同类项把方程化成ax=b(a≠0)的形式合并同类项法则系数化成1 在方程两边都除以未知数的系数a,得到方程等式基本性质2的解x=四.列一元一次方程解应用题的一般步骤1、列一元一次方程解应用题的一般步骤(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4)解方程.(5)检验,看方程的解是否符合题意.(6)写出答案.2、解应用题的书写格式:设→根据题意→解这个方程→答。
中考数学复习考点知识与题型专题讲解3--- 一元一次方程(解析版)
中考数学复习考点知识与题型专题讲解专题03一元一次方程【思维导图】【知识要点】知识点一一元一次方程的基础等式的概念:用等号表示相等关系的式子。
注意:1.等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等。
2.不能将等式和代数式概念混淆,等式含有等号,表示两个式子相等关系,而代数式不含等号,你只能作为等式的一边。
方程的概念:含有未知数的等式叫做方程。
特征:它含有未知数,同时又是—个等式。
一元一次方程的概念:只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
标准形式:ax+b=0(x为未知数,a、b是已知数且a≠0)【特征】1. 只含有一个未知数x2. 未知数x的次数都是13. 等式两边都是整式,分母中不含未知数。
方程的解的概念:能使方程中等号左右两边相等的未知数的值叫方程的解。
一元方程的解又叫根。
知识点二等式的性质(解一元一次方程的基础)等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。
表示为:如果a=b,则a±c=b±c等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
表示为:如果 a=b,那么ac = bc如果 a=b(c≠0),那么 =【注意事项】1.等式两边都要参加运算,并且是同一种运算。
2.等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
3.等式两边不能都除以0,即0不能作除数或分母.4.等式左右两边互换,所得结果仍是等式。
知识点三解一元一次方程合并同类项把若干能合并的式子的系数相加,字母和字母的指数不变,起到化简的作用。
移项把等式一边的某项变号后移到另一边,叫做移项。
(依据:等式的性质1)去括号括号前负号时,去掉括号时里面各项应变号。
去分母在方程的两边都乘以各自分母的最小公倍数。
去分母时不要漏乘不含分母的项。
当分母中含有小数时,先将小数化成整数。
解一元一次方程的基本步骤:知识点四实际问题与一元一次方程用方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解;验:考虑求出的解是否具有实际意义;答:实际问题的答案.【考查题型】考查题型一 一元一次方程概念的应用【解题思路】关键是根据一元一次方程的概念和其解的概念解答.典例1.(2021·四川中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8 C .5 D .4【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1, 可得:a-2=1,2+m=4, 解得:a=3,m=2, 所以a+m=3+2=5, 故选:C .变式1-1.(2021·内蒙古中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____. 【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,2m 11∴﹣=,即m 1=或m 0=,方程为x 20﹣=或x 20--=, 解得:x 2=或x 2=-, 当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为:x=2或x=-2或x=-3.变式1-2.(2021·四川南充市·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为() A .9 B .8C .5D .4【答案】C【分析】根据一元一次方程的概念和其解的概念解答即可.【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选C . 考查题型二 解一元一次方程【解题思路】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.典例2.(2021·重庆中考真题)解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-【答案】D【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .变式2-1.(2021·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是(). A .1- B .1 C .0 D .2【答案】C【分析】根据题目中给出的新定义运算规则进行运算即可求解. 【详解】解:由题意知:2211☆=+-=+x x x , 又21x =☆, ∴11x +=, ∴0x =. 故选:C .变式2-2.(2021·四川凉山彝族自治州·中考真题)解方程:221123x x x ---=- 【答案】27x =【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解. 【详解】解:221123x x x ---=- ()()6326221x x x --=--636642x x x -+=-+ 634662x x x -+=-+ 72x =27x =考查题型三 配套问题和工程问题【配套问题解题关键】配套问题的物品之间具有一定的数量关系,依次作为列方程的依据.【工程问题解题关键】常把总工作量看做1,并利用“工作量=人均效率×人数×时间”的关系考虑问题典例3.(2021·哈尔滨市模拟)某车间有27名工人,每个工人每天生产64个螺母或者22个螺栓,每个螺栓配套两个螺母,若分配x个工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程中正确的是()A.22x=64(27﹣x)B.2×22x=64(27﹣x)C.64x=22(27﹣x)D.2×64x=22(27﹣x)【答案】B【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺母数量=2倍的螺栓数量,可得出方程.【详解】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母64个或螺栓22个,∴可得2×22x=64(27﹣x).故选:B.变式3-1.(2021·黑哈尔滨市二模)某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使生产的螺钉和螺母刚好配套,若设x名工人生产螺钉,依题意列方程为()A.1200x=2000(22﹣x)B.1200x=2×2000(22﹣x)C.1200(22﹣x)=2000x D.2×1200x=2000(22﹣x)【答案】D【分析】首先根据题目中已经设出每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,由1个螺钉需要配2个螺母,可知螺母的个数是螺钉个数的2倍,从而得出等量关系,就可以列出方程.【详解】解:设每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x),即2×1200x=2000(22-x),故选D.变式3-2.(2021·山西阳泉市模拟)在中国数学名著《九章算术》中,有这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十. 问家数、牛价各几何?”大意是:几家人凑钱合伙买牛,如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱. 问共有多少人家,每头牛的价钱是多少元?若设有x户人家,则可列方程为()A.1902703303079x x+=-B.1902703303079x x-=+C.7190927033030x x⨯⨯+=-D.7190927033030x x⨯⨯-=+【答案】A【分析】根据“如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱”,可得每头牛的价钱是1903307x+或270309x-,即可得出关于x的方程.【详解】解:∵如果每7家共出190元,那么还缺少330元钱,∴每头牛的价钱是1903307x+;∵如果每9家共出270元,又多了30元钱,∴每头牛的价钱又可以表示为270309x-,∴可列方程为:19027033030 79x x+=-,故选A.变式3-3.(2021·广西南宁市一模)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.120350506x x+-=+B.350506x x-=+C.120350506x x+-=+D.120350650x x+-=+【答案】C【分析】关系式为:零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3,把相关数值代入即可求解. 【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:12035050+6x x +-= 故选C .变式3-4.(2021·浙江杭州市·中考真题)已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x xB .327230x xB .C .233072x xD .323072x x【答案】D【分析】先设男生x 人,根据题意可得323072x x .【详解】男生x 人,则女生有(30-x)人,由题意得:323072x x,故选D.变式3-5.(2021·哈尔滨市模拟)甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是() A .1(96)723x x -=-B .196723x x ⨯-=-C .1(96)723x x +=-D .196(72)3x x +=-【答案】C【分析】根据等量关系:乙队调动后的人数=13甲队调动后的人数,列出一元一次方程即可. 【详解】设应从乙队调x 人到甲队,此时甲队有(96+x )人,乙队有(72-x )人, 根据题意可得:13(96+x )=72-x .故选C . 考查题型四 销售盈亏问题 销售金额=售价×数量利润= 商品售价-商品进价利润率=(利润÷商品进价)×100%现售价 = 标价×折扣售价 = 进价×(1+利润率)典例4.(2021·长沙市一模)随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180 B.170 C.160 D.150【答案】A【分析】设该超市该品牌粽子的标价为x元,则售价为80%x元,根据等量关系:利润=售价﹣进价列出方程,解出即可.【详解】解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.变式4-1.(2021·广东深圳市模拟)某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元【答案】C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C变式4-2.(2021·长沙市二模)中国总理李克强2021年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40% B.20% C.60% D.30%【答案】B【分析】设该小商品的利润率为x,根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设该小商品的利润率为x,依题意,得:10×(1+100%)×0.6﹣10=10x,解得:x=0.2=20%.故选:B.考查题型五比赛积分问题比赛总场数=胜场数+负场数+平场数比赛总积分=胜场积分+负场积分+平场积分典例5.(2021·大庆市模拟)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【答案】B【分析】解答此题可设该队获胜x场,则负了(6-x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【详解】设该队获胜x场,则负了(6-x)场.根据题意得3x+(6-x)=12,解得x=3.经检验x=3符合题意.故该队获胜3场.故选B.变式5-1.(2021·武汉市模拟)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道B.18道C.19道D.20道【答案】C【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.变式5-2.(2021·广东深圳市模拟)在2018﹣2021赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74【答案】C【分析】根据题意分析,可以设曼城队一共胜了x场,则平了(30-x-4)场,找出等量关系:总积分=3×获胜场数+1×踢平场数,即可得出关于x的一元一次方程,此题得解.【详解】设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.考查题型六方案选择问题结合实际,分情况讨论,给出合理建议。
七年级数学上册一元一次方程重点
七年级数学上册一元一次方程重点
一元一次方程是初中数学的重要内容,也是解方程的基础。
下面是七年级数学上册中关于一元一次方程的重点内容:
1. 方程的概念:方程是用等号连接的含有未知数的代数式。
一元一次方程指只含有一个未知数,并且该未知数的最高次数为1的方程。
2. 解一元一次方程的基本方法:通过逆运算的方式将方程变形,使得未知数单独出现在等号的一边,从而求得未知数的值。
3. 消元法:当方程中存在多个未知数时,可以利用加减消元和倍加倍减消元的方法,将方程化简为只含有一个未知数的一元一次方程,然后进行解方程。
4. 方程的解的判定:解方程时需要注意方程是否有解,以及解的唯一性。
如果一个方程没有解,我们称其为无解方程;如果一个方程有无限多个解,我们称其为恒等方程;如果一个方程只有一个解,我们称其为一般方程。
5. 方程的应用:一元一次方程在实际生活中有很多应用,例如物品的定价、速度与时间之间的关系等。
通过解方程可以求解这些实际问
题。
初中一元一次方程知识点归纳
初中一元一次方程知识点归纳
初中一元一次方程知识点归纳如下:
1. 一元一次方程的定义:一元一次方程是指方程中只有一个变量,且变量的最高次数为1的方程。
2. 方程的基本形式:一元一次方程的基本形式为ax+b=0,其
中a和b是已知实数,且a≠0。
3. 解方程的步骤:解一元一次方程的步骤主要包括去括号、合并同类项、移项、合并同类项、化简等。
4. 解方程的性质:一元一次方程的解具有唯一性,即要么无解,要么有唯一解。
5. 方程的解表示形式:一元一次方程的解有三种表示形式,即唯一解、无解和无穷多解。
6. 解方程的方法:解一元一次方程的方法主要包括正向代入、逆向代入、等式交换等。
7. 使用方程解实际问题:一元一次方程可以应用于实际问题中,通过建立方程并解方程可以求解实际问题。
8. 方程的应用领域:一元一次方程在代数、几何、物理等领域中都有广泛的应用。
9. 方程的相关概念:一元一次方程与方程的根、方程的系数、方程的次数等相关概念有着密切的联系。
10. 方程的扩展:一元一次方程是一元线性方程的特殊情况,线性方程还有更高次数的形式,如二次方程、三次方程等。
一元一次方程讲解
(一)知识要点:1.一元一次方程的概念:只含有一个未知数,并且未知数的次数是1,系数不为0的方程叫做一元一次方程。
一元一次方程的标准形式是:ax+b=0 (其中x是未知数,a,b是已知数,且a≠0),它的解是x=- 。
我们判断一个方程是不是一元一次方程要看它化简后的最简形式是不是标准形式ax+b=0 (a≠0)。
例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程。
2.解一元一次方程的一般步骤:(1)方程含有分母时要先去分母,使过程简便,具体做法为:在方程的两边都乘以各分母的最小公倍数。
要注意不要漏掉不含分母的项,如方程 x+ =3,去分母得10x+3=3就错了,因为方程右边忘记乘以6,造成错误。
(2)去括号:按照去括号法则先去小括号,再去中括号,最后去大括号。
特别注意括号前是负号时,去掉负号和括号,括号里的各项都要变号。
括号前有数字因数时要注意使用分配律。
(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边。
注意移项要变号。
(4)合并项:把方程化成最简形式ax=b (a≠0)。
(5)把未知数的系数化成1:在方程两边都除以未知数的系数a,得到方程的解x= 。
解方程时上述步骤有些可能用不到,并且也不一定按照上述顺序,要根据方程的具体形式灵活安排求解步骤。
(二)例题:例1.解方程 (x-5)=3- (x-5)分析:按常规此方程应先去分母,去括号,但发现方程左右两边都含有x-5项,所以可以把它们看作一个整体,移项,合并,使运算简便。
解:移项得: (x-5)+ (x-5)=3合并得:x-5=3∴ x=8。
例2.解方程2x- = -解:因为方程含有分母,应先去分母。
去分母:12x-3(x+1)=8-2(x+2) (注意每一项都要乘以6)去括号:12x-3x-3=8-2x-4 (注意分配律及去括号法则)移项:12x-3x+2x=8-4+3合并:11x=7系数化成1:x= 。
一元一次方程基础知识详解
一元一次方程目录一、方程的意义二、一元一次方程的解法三、实际问题与一元一次方程(一)四、实际问题与一元一次方程(二)五、《一元一次方程》全章复习与巩固一、方程的意义基础知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2.正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3.理解并掌握等式的两个基本性质.【要点梳理】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么(c为一个数或一个式子).等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2)等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3)等式的性质2中等式两边都除以同一个数时,这个除数不能为零.《初中数学典型题思路分析》价格及说明1.全套资料共7册14本(七上—九下+综合共7册);每册分解析版和原题版两本;有和教材同步的多个版本可选。
七年级上期末复习《第三章一元一次方程》知识点+易错题(含答案)
2019年七年级数学上册期末复习一元一次方程知识点+易错题一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
人教版七年级数学上册 第五章 一元一次方程知识归纳与题型突破(单元复习 8类题型清单)
1第五章一元一次方程知识归纳与题型突破(题型清单)01思维导图02知识速记一、基本概念1、等式的概念:含有等号,表示相等关系的式子2、方程的概念:含有未知数的等式3、一元一次方程的概念:(1)只含有1个未知数;(2)未知数的最高次数为1次;(3)等式两边都是整式.二、等式的性质若b a =,则c b c a +=+、c b c a -=-、bc ac =、cbc a =.特别注意:等式两边须同时乘以或除以一个不为0的数.三、解一元一次方程1、去分母(不漏乘不含分母的项,去分母应加括号)2、去括号(带着符号计算,不要漏乘)3、移项(移项要变号;未知数移到左边,常数移到右边;先后顺序不重要)4、合并同类项5、系数化为1(系数不能为0,若未知数的系数含有字母则需要讨论)四、列方程解应用题的步骤①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x )③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)五、一元一次方程的应用(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度).03题型归纳题型一判断是否是一元一次方程例题:(24-25七年级上·全国·单元测试)下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个巩固训练1.(23-24七年级下·全国·期中)下列各式中,属于一元一次方程的是()A .6518x y -=B .242715x x =+-C .438x x+=D .94x x-=2.(23-24七年级上·全国·单元测试)在方程①231325x +=,②=0,③235x y +=,④3120x+=中,一元一次方程共有()A .1个B .2个C .3个D .4个3.(23-24七年级上·全国·单元测试)①12x x -=;②0.31x ≤;③243x x -=;④512x x =-;⑤6x =;⑥20x y +=.其中一元一次方程的个数是()A .2B .3C .4D .5题型二根据一元一次方程的定义求参数的值例题:(24-25七年级上·黑龙江哈尔滨·阶段练习)已知1320m x --=是关于x 的一元一次方程,则m 的值是.巩固训练1.(23-24七年级上·全国·单元测试)若()1246a a x--+=-是关于x 的一元一次方程,则a =.2.(23-24七年级上·河南漯河·期中)已知关于x 的方程()||233m m x m --+=是一元一次方程,则m 的值为.3.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mx m x -+--=是一元一次方程,则m 的值为.题型三已知一元一次方程的解求参数的值例题:(23-24七年级下·全国·期中)关于x 的一元一次方程213mx x -=-有解,则m 的值为.巩固训练1.(23-24七年级上·浙江金华·期末)已知3x =是方程26ax a -=-+的解,则a =.2.(23-24七年级下·四川宜宾·期中)整式ax b +的值随着x 的取值的变化而变化,下表是当x 取不同的值时对应的整式的值:x 1-0123ax b+8-4-048则关于x 的方程8ax b +=的解是.3.(23-24七年级上·浙江·期末)若关于x 的方程30ax +=的解为2x =,则方程()130a x -+=的解为.题型四列一元一次方程例题:(23-24六年级下·全国·单元测试)设某数为x ,如果某数的2倍比它的相反数大1,那么列方程是.巩固训练1.(23-24七年级上·福建福州·期末)“x 的5倍与2的和等于x 的13与4的差”,用等式表示为2.(2024·湖南益阳·模拟预测)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人车各几何?译文为:今有若干人乘车,每3人共乘一车,刚好每车坐满后还剩余2辆车没人坐;若每2人共乘一车,最终剩余9个人无车可乘只能步行,问共有多少人,多少辆车?设共有x 辆车,则可列方程.3.(2023·吉林长春·模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,其大意为:今有若干人住店,若每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,设店中共有x 间房,可列方程为.题型五等式的基本性质例题:(23-24七年级上·天津·期中)下列说法错误的是()A .若22x y -=-,则x y =B .若25x x =,则5x =C .若a b =,则66a b -=-D .若2211a bc c =++,则a b =巩固训练1.(23-24七年级下·广西南宁·开学考试)下列是根据等式的性质进行变形,正确的是()A .若x y =,则33x y -=+B .若a b =,则32a b =C .若22x y=,则x y =D .若ax ay =,则x y=2.(23-24七年级上·安徽·单元测试)下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c +=-B .如果23x x =,则3x =C .如果a b =,则22a bc c =D .如果22a b c c =,则a b =3.(22-23七年级上·山东济南·阶段练习)下列变形正确的是()A .4532x x -=+变形得4325x x -=-+B .211332x x -=+变形得4633x x -=+C .3(1)2(3)x x -=+变形得3126x x -=+D .32x =变形得23x =4.(2024·贵州贵阳·一模)用“□”“△”“○”表示三种不同的物体,现用天平称了两次,情况如图所示.设a ,b ,c 均为正数,则能正确表示天平从左到右变化过程的等式变形为()A .如果a c b c +=+,那么a b =B .如果a b =,那么a c b c +=+C .如果22a b =,那么a b=D .如果a b =,那么22a b=题型六解一元一次方程巩固训练题型七解一元一次方程中的错解复原问题巩固训练(2)仿照上例解方程:0.2 0.3x+题型八用一元一次方程解决实际问题例题:(2024上·辽宁大连·七年级统考期末)某车间生产一批螺钉和螺母,由一个人操作机器做需要200h完成.现计划由一部分人先做4h,然后增加5人与他们一起做6h,完成这项工作.假设这些人的工作效率相同.(1)求具体应先安排多少人工作?(2)在增加5人一起工作后,若每人每天使用机器可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母成为一个完整的产品,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?(3)若该车间有10台A型和11台B型机器可以生产这种产品,每台A型机器比B型机器一天多生产1个产品.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,且每箱装的产品数相同.某天有6台A型机器和m台B型机器同时开工,请问一天生产的产品能否恰好装满29箱.若能,请计算出m的值;若不能,请说明理由.巩固训练1.(2024上·甘肃酒泉·七年级统考期末)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)请用含x的代数式分别表示学校在甲、乙两家店购物所付的费用;(2)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)小亮家—年缴纳水费1180元,则小亮家这一年用水多少立方米?(3)小红家去年和今年共用水520立方米,共缴纳水费2950元,并且今年的用水量超过去年的用水量,则小红家今年和去年各用水多少立方米?第五章一元一次方程知识归纳与题型突破(题型清单)01思维导图02知识速记一、基本概念1、等式的概念:含有等号,表示相等关系的式子2、方程的概念:含有未知数的等式3、一元一次方程的概念:(1)只含有1个未知数;(2)未知数的最高次数为1次;(3)等式两边都是整式.二、等式的性质若b a =,则c b c a +=+、c b c a -=-、bc ac =、cbc a =.特别注意:等式两边须同时乘以或除以一个不为0的数.三、解一元一次方程1、去分母(不漏乘不含分母的项,去分母应加括号)2、去括号(带着符号计算,不要漏乘)3、移项(移项要变号;未知数移到左边,常数移到右边;先后顺序不重要)4、合并同类项5、系数化为1(系数不能为0,若未知数的系数含有字母则需要讨论)四、列方程解应用题的步骤①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x )③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)五、一元一次方程的应用(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度).03题型归纳题型一判断是否是一元一次方程例题:(24-25七年级上·全国·单元测试)下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个【答案】A【知识点】一元一次方程的定义【分析】本题考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键.根据一元一次方程的定义进行判定.【详解】解:①是二元一次方程,不符合题意;②是一元二次方程,不符合题意;③是一元一次方程,符合题意;④是分式方程,不符合题意;⑤是代数式,不是方程,不符合题意.故选:A .巩固训练1.(23-24七年级下·全国·期中)下列各式中,属于一元一次方程的是()A .6518x y -=B .242715x x =+-C .438x x+=D .94x x-=2.(23-24七年级上·全国·单元测试)在方程①231325x +=,②=0,③235x y +=,④120x+=中,一元一次方程共有()A .1个B .2个C .3个D .4个【答案】A【知识点】一元一次方程的定义3.(23-24七年级上·全国·单元测试)①2x x -=;②0.31x ≤;③243x x -=;④512x x =-;⑤6x =;⑥20x y +=.其中一元一次方程的个数是()A .2B .3C .4D .5题型二根据一元一次方程的定义求参数的值例题:(24-25七年级上·黑龙江哈尔滨·阶段练习)已知1320m x --=是关于x 的一元一次方程,则m 的值是.【答案】2【知识点】一元一次方程的定义【分析】本题考查了一元一次方程的概念,根据一元一次方程的定义得到11m -=,求出m 即可.【详解】解:根据题意得:11m -=,解得:2m =,故答案为:2.巩固训练1.(23-24七年级上·全国·单元测试)若()1246a a x --+=-是关于x 的一元一次方程,则a =.2.(23-24七年级上·河南漯河·期中)已知关于x 的方程()||233m m x m --+=是一元一次方程,则m 的值为.故答案为:13.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mx m x -+--=是一元一次方程,则m 的值为.【答案】1或0【知识点】一元一次方程的定义【分析】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.根据一元一次方程的一般形式即可判定有3种情况,分别讨论①当0m ≠且10m -≠时,②当0m =且10m -≠时,③当10m -=时是否满足该方程为一元一次方程即可.【详解】解: 关于x 的方程()21120m mxm x -+--=是一元一次方程,可考虑三种情况,①当0m ≠且10m -≠时,即0m ≠且1m ≠,则211m -=,解得:1m =,此时1m ≠,故排除;②当0m =且10m -≠时,即0m =且1m ≠,∴0m =,符合条件;③当10m -=即1m =时,211m -=,符合条件;综上:m 的值为1或0,故答案为:1或0.题型三已知一元一次方程的解求参数的值例题:(23-24七年级下·全国·期中)关于x 的一元一次方程213mx x -=-有解,则m 的值为.1.(23-24七年级上·浙江金华·期末)已知3x =是方程26ax a -=-+的解,则a =.【答案】2【知识点】方程的解【分析】本题考查了方程解的定义,使方程的左右两边相等的未知数的值,叫做方程的解.将3x =代入原方程,可得出关于a 的一元一次方程,解之即可得出a 的值.【详解】解:将3x =代入原方程得326a a -=-+,解得:2a =,∴a 的值为2.故答案为:2.2.(23-24七年级下·四川宜宾·期中)整式ax b +的值随着x 的取值的变化而变化,下表是当x 取不同的值时对应的整式的值:x 1-0123ax b+8-4-048则关于x 的方程8ax b +=的解是.【答案】3x =【知识点】方程的解【分析】此题考查了方程的解,根据表格中的数据求解即可.【详解】根据题意可得,当3x =时,8ax b +=∴关于x 的方程8ax b +=的解是3x =.故答案为:3x =.3.(23-24七年级上·浙江·期末)若关于x 的方程30ax +=的解为2x =,则方程()130a x -+=的解为.题型四列一元一次方程例题:(23-24六年级下·全国·单元测试)设某数为x ,如果某数的2倍比它的相反数大1,那么列方程是.【答案】21x x =-+【知识点】列方程【分析】本题主要考查了一元一次方程的应用,数x 的2倍为2x ,相反数为x -,据此根据题意列出方程即可.【详解】解:由题意得,21x x =-+,故答案为:21x x =-+.巩固训练1.(23-24七年级上·福建福州·期末)“x 的5倍与2的和等于x 的13与4的差”,用等式表示为2.(2024·湖南益阳·模拟预测)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人车各几何?译文为:今有若干人乘车,每3人共乘一车,刚好每车坐满后还剩余2辆车没人坐;若每2人共乘一车,最终剩余9个人无车可乘只能步行,问共有多少人,多少辆车?设共有x 辆车,则可列方程.【答案】()3229x x -=+【知识点】古代问题(一元一次方程的应用)【分析】本题考查了由实际问题抽象出一元一次方程.根据人数不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:依题意,得:()3229x x -=+.故答案为:()3229x x -=+.3.(2023·吉林长春·模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,其大意为:今有若干人住店,若每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,设店中共有x 间房,可列方程为.【答案】()7791x x +=-【知识点】古代问题(一元一次方程的应用)【分析】本题考查一元一次方程的应用,理清题中的等量关系是解题的关键.由等量关系“一房七客多七客,一房九客一房空”,即可列出一元一次方程即可.【详解】解: 每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,∴客人可表示为()77x +个,也可表示为()91x -个,()7791x x ∴+=-,故答案为:()7791x x +=-.题型五等式的基本性质例题:(23-24七年级上·天津·期中)下列说法错误的是()A .若22x y -=-,则x y =B .若25x x =,则5x =C .若a b =,则66a b -=-D .若2211a bc c =++,则a b =【答案】B1.(23-24七年级下·广西南宁·开学考试)下列是根据等式的性质进行变形,正确的是()A .若x y =,则33x y -=+B .若a b =,则32a b =C .若22x y=,则x y =D .若ax ay =,则x y=2.(23-24七年级上·安徽·单元测试)下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c+=-B .如果23x x =,则3x =C .如果a b =,则22a b c c =D .如果22a b c c =,则a b =3.(22-23七年级上·山东济南·阶段练习)下列变形正确的是()A .4532x x -=+变形得4325x x -=-+B .211332x x -=+变形得4633x x -=+C .3(1)2(3)x x -=+变形得3126x x -=+D .32x =变形得23x =4.(2024·贵州贵阳·一模)用“□”“△”“○”表示三种不同的物体,现用天平称了两次,情况如图所示.设a ,b ,c 均为正数,则能正确表示天平从左到右变化过程的等式变形为()A .如果a c b c +=+,那么a b=B .如果a b =,那么a c b c +=+C .如果22a b =,那么a b=D .如果a b =,那么22a b=【答案】A【知识点】等式的性质【分析】本题考查等式的性质,根据天平两端相等即可求得答案.【详解】解:由图形可得如果a c b c +=+,那么a b =,故选:A .题型六解一元一次方程例题1:解方程:(1)25433x x -=-;(2)576132x x -=-+.【答案】(1)35x =(2)415x =【分析】()1方程移项合并,把x 系数化为1,即可求解;()2方程移项合并,把x 系数化为1,即可求解.【详解】(1)移项,得24353x x -+=-,合并同类项,得1023x -=-,系数化为1,得35x =.(2)移项,得756123x x -+=-,合并同类项,得5223x -=-,系数化为1,得415x =.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.例题2:解方程:(1)5(1)2(31)41---=-x x x ;(2)23(1)12(10.5)-+=-+x x .题型七解一元一次方程中的错解复原问题巩固训练(2)仿照上例解方程:0.2 0.3x+【答案】(1)③④①②(2)3x=-题型八用一元一次方程解决实际问题1.(2024上·甘肃酒泉·七年级统考期末)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.答:小红家去年和今年用水分别为245立方米、275立方米.。
一元一次方程基础知识详解
一元一次方程目录一、方程的意义二、一元一次方程的解法三、实际问题与一元一次方程(一)四、实际问题与一元一次方程(二)五、《一元一次方程》全章复习与巩固一、方程的意义基础知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2.正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3.理解并掌握等式的两个基本性质.【要点梳理】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么(c为一个数或一个式子).等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2)等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3)等式的性质2中等式两边都除以同一个数时,这个除数不能为零.二、一元一次方程的解法基础知识讲解【要点梳理】要点一、解一元一次方程的一般步骤变形名称具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项(2)不要弄错符号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项(1)移项要变号(2)不要丢项要变号)合并同类项把方程化成ax=b(a≠0)的形式字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解b x a=.不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2)去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-.2.含字母的一元一次方程此类方程一般先化为最简形式ax=b,再分三种情况分类讨论:(1)当a≠0时,b x a=;(2)当a=0,b=0时,x 为任意有理数;(3)当a=0,b≠0时,方程无解.三、实际问题与一元一次方程(一)基础知识讲解【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系:路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.要点三、常见列方程解应用题的几种类型5.利润问题(1)=100% 利润利润率进价(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.6.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1217.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b,则这个两位数可以表示为10b+a .8.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.《初中数学典型题思路分析》价格及说明四、实际问题与一元一次方程(二)基础知识讲解【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点三、常见列方程解应用题的几种类型1.利润问题(1)=100% 利润利润率进价(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.2.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1213.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b,则这个两位数可以表示为10b+a .4.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.五、《一元一次方程》全章复习与巩固【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bx a=(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.。
初中数学一元一次方程知识点
初中数学一元一次方程知识点初中数学中,一元一次方程是必修内容之一。
掌握一元一次方程的相关知识点,有助于学好初中数学并打牢数学基础。
下面将就一元一次方程的定义、解法、应用举例等方面进行详细讲解。
一、一元一次方程的定义一元一次方程是指只包含一个未知数的方程,并且该未知数的次数最高是一次。
一元一次方程可以表示成a×x+b=c的形式,其中a、b、c为已知数,x为未知数。
例如,下列式子都是一元一次方程:3x+5=112y-4=8-y-4z=-20其中,x、y、z均为未知数。
二、一元一次方程的解法1.通过逆运算求解逆运算指的是对等式两侧同时进行同一操作的过程。
逆运算通常用于解决包含未知数的方程,以求得未知数的值。
例如:对于方程3x+5=11,可以通过减去5的过程,使得等式左侧只剩下3x,等式右侧则为6,即3x=6。
此时,进一步通过分解因式的方法得到x=2,也就是所求的未知数的值。
2.化整求解某些一元一次方程无法直接进行逆运算求解,需要通过化整的方式来进行计算,让方程式更容易求解。
化整的过程包括分离式子、通分和整理等步骤。
其中,通分是将等式两侧的分母相同化为通分,从而使分母被约掉,变为分子相等的形式。
例如:对于方程2x/3+1/4=3x/5-5/6,可以通过通分操作将等式两侧的分母化为60,从而可以得到120x+15=180x-50。
进一步进行计算,最终得到未知数x的值为x=65/3。
三、一元一次方程的应用举例1.算路程在日常生活中,使用一元一次方程可以帮助我们求解行程和时间之间的关系。
例如:假设一辆车从A点出发,以每小时50公里的速度向B点行驶,行程为400公里,那么需要多长时间才能到达B点?由于距离等于速度乘以时间,因此可以设时间为x小时,则有50x=400,解得x=8。
因此,该辆车需要8小时才能到达B 点。
2.商场打折商场在促销活动时会对商品做出打折优惠,通过一元一次方程可以计算出折扣后的商品价格。
第五章一元一次方程知识点总结和例题讲解
一元一次方程知识点及题型一、方程的有关概念1.方程: 含有未知数的等式就叫做方程.2.一元一次方程: 只含有一个未知数(元)x, 未知数x的指数都是1(次), 这样的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值, 叫做方程的解.注:.方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程....方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质三、移项法则: 把等式一边的某项变号后移到另一边, 叫做移项.四、去括号法则五、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边, 其他项都移到方程的另一边, 移项要变号)4.合并(把方程化成a...(a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=).六. 列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数, 列出方程:设出未知数后, 表示出有关的含字母的式子, •然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程, 求出未知数的值.(5)检验, 写答案:检验所求出的未知数的值是否是方程的解, •是否符合实际, 写出答案【基础及提高】一. 选择题1.下列各式中, 是方程的个数为()(1)﹣4A.1个B.2个C.3个D.4个﹣3=﹣7;(2)3x﹣5=2x+1;(3)2x+6;(4)x﹣y=v;(4)a+b>3;(5)a2+a﹣6=0.A.如果ac=bc, 那么a=b B.如果, 那么a=b2. 下列说法正确的是()C.如果a=b, 那么D.如果, 那么x=﹣2y 3. 若关A.x=0B.x=3C.x=﹣3D.x=22﹣m+3=0是一元一次方程, 则这个方程的解是()4. 方程(m+1)x|m|+1=0是关于x 的一元一次方程, 则m()A.m=±1B.m=1C.m=﹣1D.m≠﹣15. 若关于x的方程nxn﹣1+n﹣4=0是一元一A.x=﹣1B.x=1C.x=﹣4D.x=4程的解是()A.1B.9C.0D.4 6. 已知x=3是关于x的方程x+m=2x﹣1的解,则(m+1)2的值是()7. 已知A.4B.3C.2D.1 x=﹣6是方程2x﹣6=ax的解, 则代数式的值是()8. 设A.B.C.D.﹣P=2x﹣1,Q=4﹣3x,则5P﹣6Q=7时,x的值应为()9. 服装A.总体上是赚了B.总体上是赔了店同时销售两种商品, 销售价都是100元,结果一种赔了20%, 另一种赚了20%, 那么在这次销售中,该服装店()C.总体上不赔不赚D.没法判断是赚了还是赔了10. 如图是一个长方形试管架, 在a cm长的木条上钻了4个圆孔, 每个孔的直径为2cm, 则x等于()A.cm B.cm C. cm D. cmA.k≠3B.k=﹣2C.k=﹣4D.k=211. 关于x的方程(k﹣3)x﹣1=0的解是x=﹣1, 那么k的值是()12. 江苏卫视《一站到底》栏目中, 有一期的题目如图, 两个天平都保持平衡, 则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.513. 已知A.1B.1或3C.3D.2或3方程2x+k=5的解为正整数, 则k所能取的正整数值为()A.B.3C.8D.9 14. 小芳同学解关于x的一元一次方程﹣时,发现有个数模糊看不清楚,聪明的小芳翻看了书后的答案, 知道3. 于是她很快补上了这个数. 她补的这个数是()A.B.C.D.15. 若代数式3x﹣7和6x+13互为相反数, 则x的值为()A.2个B.3个C.4个D.5个16. 按下面的程序计算, 若开始输入的值x为结果为656, 则满足条件的x的不同值最多有()二. 填空题17.一件衣服先按成本提高50%标价, 再以8折(标价的80%)出售, 结果获利28元. 若设这件衣服的成本是x元, 根据题意, 可得到的方程是_________ .18.图1是边长为30cm的正方形纸板, 裁掉阴影部分后将其折叠成如图2所示的长方体盒子, 已知该长方体的宽是高的2倍, 则它的体积是_________ cm3.19.已知及的值相等时, x= _________ .20.若x=﹣1是关于x方程ax+b=1的根, 则代数式(a﹣b)2011的值是_________ .21.某人用24000元买进甲、乙两种股票, 在甲股票升值15%, 乙股票下跌10%时卖出, 共获利1350元, 则此人买甲股票的钱比买乙股票的钱多_________ 元.22如果要由等式m﹙a+1﹚=x﹙a+1﹚得到m=x, 需要满足的条件是_________ .23. 关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程, 则方程的解为_________ .24. 关于x的方程(m+2)x=6解为自然数, 当m为整数时, 则m的值为_________ .25.已知m+n=2008(m﹣n), 则= _________ .三计算题解方程: (1)3(x﹣1)﹣2(2x+1)=12;(2)(3). (4)﹣=.(5). (6)(7). (8)﹣=3.(9)(10)四. 解答题1.若x=2是方程ax-1=3的解, 求a的值2. 方程x+2=5及方程ax-3=9的解相等求a的值3. m为何值时, 关于m的方程的解是的解的2倍?4. 已知, 是方程的解, 求代数式的值.5. 一家商店将某种服装按进价提高40%后标价, 又以8折优惠卖出, 结果每件仍获利15元, 这种服装每件的进价是多少?6. 一批货物, 甲把原价降低10元卖出, 用售价的10%做积累, 乙把原价降低20元, 用售价的20%做积累, 若两种积累一样多, 则这批货物的原售价是多少?7. 某商店开张, 为了吸引顾客, 所有商品一律按八折优惠出售, 已知某种皮鞋进价60元一双, 八折出售后商家获利润率为40%, 问这种皮鞋标价是多少元?优惠价是多少元?8. 某蔬菜公司收购到某种蔬菜140吨, 准备加工上市销售. 该公司的加工能力是: 每天可以精加工6吨或粗加工16吨, 现计划用15天完成加工任务, 该公司应安排几天精加工, 几天粗加工?9.今年“六•一”儿童节, 张红用8.8元钱购买了甲、乙两种礼物, 甲礼物每件1.2元, 乙礼物每件0.8元, 其中甲礼物比乙礼物少1件, 问甲、乙两种礼物各买了多少件?10.小明和小东两人练习跑步, 都从甲地出发跑到乙地, 小明每分钟跑250米, 小东每分钟跑200米, 小明让小东先出发3分钟之后再出发, 结果两人同时到达乙地, 求甲、乙两地之间的路程是多少米?11. 某船从A地顺流而下到达B地, 然后逆流返回, 到达A.B两地之间的C地, 一共航行了7小时, 已知此船在静水中的速度为8千米/时, 水流速度为2千米/时。
七年级数学上册一元一次方程章节知识点归纳复习
一元一次方程章节知识点归纳复习1.定义:方程与一元一次方程含有未知数的叫方程,方程必须具备两个条件:第一是等式,第二是含有未知数。
方程中只含有一个未知数,且未知数的次数都是1的整式方程叫做一元一次方程。
题判断一元一次方程,确定一元一次方程中字母的值。
2.方程的解与解方程使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!解方程就是求出使方程中左右两边均相等的未知数的值,是过程。
3.等式的性质(1):等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;(2):等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.解方程的过程就是把方程逐步化为x=a(常数)的形式,等式的性质是重要的转化依据。
4.解方程(1)合并同类项与移项合并时牢记:同类项的系数相加,字母连同指数不变,系数为负数时要注意符号。
(2)移项(移项要变号)移项就是把等式一边的某项变号后移到另一边。
一般把方程转化为含有未知数的在方程的左边,常数在方程的右边。
注意与加法交换律不一样。
移项是把某些项从方程的一边移到另一边,移动要变号,而加法交换律只是加数之间交换位置,改变的只是顺序不改变符号。
(3)去括号与去分母去括号法则与整式去括号法则相同:括号外的因数是整数时,去括号后原括号内各项的符号与原来的符号相同。
括号外的因数是负数时,去括号内后,原括号内各项的符号与原来的符号相反。
去分数:先把分式化成整式再计算。
应注意各项都要乘以各分母的最小公倍数,不要漏乘分母的项,如果分子是一个多项式,去分母时要将分子作为一个整体加上括号。
当分母是小数时,要先利用分母的基本性质把小数转化成整数,然后再去分母。
(4)一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几5.列方程(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.(1)x的20%与10的差的一半等于-2.(2)某数与2的差的绝对值加上1等于2.(3)某数的6倍比它的二分之一多9(4)某班同学有50名同学,准备集体去看电影,电影票中有15元和20元的,买电影票共花去880元,问这种电影票应各买几张。
人教版七年级上册数学:第三章《一元一次方程》全章复习与巩固(提高)知识讲解(含答案)
《一元一次方程》全章复习与巩固(提高)知识讲解【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】要点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.要点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 要点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.要点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x的一次项系数5-3m≠0,m的值必须同时符合这两个条件.举一反三:【高清课堂:一元一次方程复习393349 等式和方程例3】【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】已知|x+1|+(y+2x)2=0,则y x=________.【答案】1类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【高清课堂:一元一次方程复习 393349 解方程例1(2)】 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+ 当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 .【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】 解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?【答案与解析】解:设四座车租x 辆,十一座车租70411x -辆,依题意得: 7047060601110492011x x -⨯++⨯⨯= 解得:x =1,704611x -= 答:公司租用的四座车和十一座车分别是1辆和6辆。
《一元一次方程及其解法》 知识清单
《一元一次方程及其解法》知识清单一、一元一次方程的定义一元一次方程是指只含有一个未知数,并且未知数的最高次数是 1 的整式方程。
一般形式为:$ax + b = 0$(其中$a$,$b$为常数,且$a \neq 0$)。
例如:$2x + 3 = 7$,$05x 1 = 2$等都是一元一次方程。
需要注意的是,方程必须是等式,并且等式两边都是整式。
二、一元一次方程的解使一元一次方程左右两边相等的未知数的值,叫做一元一次方程的解。
例如,对于方程$2x + 3 = 7$,当$x = 2$时,方程左边$= 2×2 +3 = 7$,方程右边$= 7$,因为左边等于右边,所以$x = 2$是方程$2x + 3 = 7$的解。
三、一元一次方程的解法解一元一次方程的一般步骤如下:1、去分母如果方程中有分母,要根据等式的性质,在方程两边同时乘以各分母的最小公倍数,去掉分母。
例如,方程$\frac{x}{2} +\frac{x}{3} = 1$,分母 2 和 3 的最小公倍数是 6,方程两边同时乘以 6,得到:$6×\frac{x}{2} + 6×\frac{x}{3} = 6×1$$3x + 2x = 6$2、去括号如果方程中有括号,要先去括号。
去括号时,要遵循乘法分配律,用括号外的数乘以括号内的每一项。
例如,方程$2(x + 3) = 5x 1$,去括号得到:$2x + 6 = 5x 1$3、移项把含有未知数的项移到方程的一边,常数项移到方程的另一边。
移项时要注意变号。
例如,方程$3x + 5 = 7x 9$,移项得到:$3x 7x =-9 5$$-4x =-14$4、合并同类项将方程中的同类项进行合并,化简方程。
例如,上面得到的$-4x =-14$,合并同类项得到:$-4x =-14$5、系数化为 1在方程两边同时除以未知数的系数,得到方程的解。
例如,$-4x =-14$,两边同时除以$-4$得到:$x =\frac{7}{2}$四、实际问题中的一元一次方程一元一次方程在实际生活中有广泛的应用,例如行程问题、工程问题、销售问题等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学-《一元一次方程》全章复习知识讲解【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】要点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.要点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.要点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bxa(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.要点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程, 所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x 的一次项系数5-3m ≠0,m 的值必须同时符合这两个条件. 举一反三: 【高清课堂:一元一次方程复习等式和方程例3】【变式】下面方程变形中,错在哪里:(1)方程2x=2y 两边都减去x+y ,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y). 方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x x x -+=+,去分母,得3(3-7x)=2(2x+1)+2x ,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】已知|x+1|+(y+2x)2=0,则y x=________.【答案】1类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z z z +---++=- 【答案】解:把方程两边含有分母的项化整为零,得 267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【高清课堂:一元一次方程复习解方程例1(2)】【变式2】解方程:0.10.050.20.05500.20.54x x +--+=. 【答案】解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 . 【答案】1; 9或3.类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】 解:设李伟从家到火车站的路程为y 千米,则有: 151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?【答案与解析】解:设四座车租x 辆,十一座车租70411x -辆,依题意得:7047060601110492011x x -⨯++⨯⨯= 解得:x =1,704611x -= 答:公司租用的四座车和十一座车分别是1辆和6辆。
【总结升华】解答本题需从“公司职工正好坐满每辆车且总费用刚好为4920元”中挖掘两个等量关系构建方程求解。
举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【答案】解:设售货员最低可以打x 折出售此商品,得:40002000(120%)x =+解得:0.6x =答:售货员最低可以打六折出售此商品.。