六年级奥数训练-圆柱和圆锥

合集下载

六年级 圆柱和圆锥的奥数题

六年级   圆柱和圆锥的奥数题

圆柱与圆锥练习一、填空。

1、把一个圆柱体削成一个最大的圆锥体,削去部分的体积是40立方厘米,问原来圆柱的体积是()立方厘米。

2、正方形木块的棱长是10厘米,将其加工成一个最大的圆柱形木块,圆柱形木块的体积是()立方厘米。

3、一个圆柱的高是5厘米,侧面展开是一个长为31.4厘米的长方形。

这个圆柱的体积是()厘米。

4、一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱的体积最大是()立方厘米。

5、一个圆柱削成一个最大的圆锥后,削去本分的体积比圆锥体积多30立方厘米,则原来圆柱的体积是()立方厘米。

二、解决问题。

1、把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长为5厘米的正方体铁块,熔铸成一个底面直径为10厘米的圆锥形铁块。

求圆锥形铁块的高。

2、在一只底面直径是30厘米的圆柱形木桶里,有一个直径为10厘米的圆柱形钢材浸没在水里,当钢材从桶里取出来时,桶里的水下降了3厘米。

这段钢材长为多少?3、圆柱形容器A 和B 的深度相等,底面半径分别为3厘米和4厘米把A 容器装满水,然后把水倒入B 容器,水深比B 容器的高的四分之三少1.2厘米。

B 容器的深度是多少厘米?4、用铁皮做一个如下图所示空心零件(单位:厘米),需用铁皮多少平方厘米?2724 45、一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米。

在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块,这时水面高多少厘米?6、一个底面半径是10厘米的圆柱形玻璃杯中,装有10厘米深的水。

将一个底面半径4厘米、高6厘米的圆锥形铅锤放入杯子中,杯中的水面上升了多少厘米?7、有一个底面直径为20厘米的圆柱形容器里,盛有一些水。

把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升0.3厘米,铅锤的高是多少厘米?8、把一个底面直径为2厘米、高为6厘米的圆柱形钢材熔铸成一个圆锥体,这个圆锥的底面积是15平方厘米,它的高是多少厘米?。

小学奥数4-5-3 圆柱与圆锥.专项练习

小学奥数4-5-3 圆柱与圆锥.专项练习

板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)1【例 2】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?例题精讲圆柱与圆锥【例 3】(希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【例 4】如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【例 5】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【例 6】一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积2008cm,则这个圆柱体木棒的侧面积是之和比圆柱体的表面积大2cm.(π取3.14)________2【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(π3=)【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【例 8】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【例 9】输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?【例 10】一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)(单位:厘米)【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【巩固】一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm.把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm.酒瓶的容积是多少?(π取3)253015【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3)5cm【例 11】(希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【例 12】有两个棱长为8厘米的正方体盒子,A盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A盒注满水,把A盒的水倒入B盒,使B盒也注满水,问A盒余下的水是多少立方厘米?【例 13】兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【例 14】一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【例 15】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【例16】一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【例17】一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【例18】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?【例19】一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放人容器中.求这时容器的水深是多少厘米?【例20】如图11-7,有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米.那么,圆锥体积与圆柱体积的比是多少?【例21】一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米?【例22】(”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水升.【例23】如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【例 24】张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改用长3米宽2米的长方形苇席围成容积最大的圆柱形的粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍?【例 25】(仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是平方米.【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长?【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【例26】(人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.板块二旋转问题【例 27】如图,ABC是直角三角形,AB、AC的长分别是3和4.将ABC∆绕AC旋转一周,求ABC∆扫出的立体图形的体积.(π 3.14=)CB A4 3【例 28】已知直角三角形的三条边长分别为3cm,4cm,5cm,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?(π取3.14)【巩固】如图,直角三角形如果以BC边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB为轴旋转一周,那么所形成的几何体的体积是多少?ABC【例 29】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3) A BA B【巩固】(华杯赛决赛试题)如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD相交O .图中的阴影部分以CD 为轴旋转一周,则阴影部分扫出的立体的体积是多少立方厘米?B【例 30】 如图,从正方形ABCD 上截去长方形DEFG ,其中AB=1厘米,DE=12厘米,DG=13厘米。

六年级数学圆柱和圆锥各种类型训练题(含图形公式)

六年级数学圆柱和圆锥各种类型训练题(含图形公式)

六年级数学圆柱和圆锥各种类型训练题(含图形公式)题型一:圆柱和圆锥的体积1.一个圆锥的体积是76立方厘米,底面积是19平方厘米,求这个圆锥的高。

2.一个圆锥体的体积是12立方分米,底面积是3平方分米,求它的高。

3.一个圆锥的体积是40立方米,高是6米,底面积是多少平方米?4.一个圆锥体的底面半径是2米,体积是25.12立方米,求这个圆锥的高。

5.一种压路机滚筒是圆柱体,它的底面直径1米,长1.5米,如果它转5圈,一共压路多少平方米?6.制作一节圆柱形通风管,长50厘米,底面直径是20厘米,至少需要铁皮多少平方厘米?7.已知一个圆锥体的底面周长是18.84厘米,高是3厘米,求它的体积。

8.一个圆锥体底面周长是12.56厘米,体积是37.68立方厘米,求它的高。

9.一个圆柱的侧面积是37.68平方厘米,底面半径是2厘米,求它的体积。

10.一个圆柱形水池,它的容积是64立方米,底面积是12平方米,当水面高1/8米时,水池中放了多少水?11.如图,这个杯子能否装下500毫升的牛奶?12.一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米,如果把它捏成同样高的圆锥,求这个圆锥的底面积。

13.一个圆锥形沙堆,高是1.5米,底面半径是4米,每立方米沙约重1.7吨,求这堆沙的重量。

14.一个圆锥形谷堆的底面周长是12.56米,高是3米,每立方米稻谷重500千克,求这堆稻谷的重量。

15.一个圆锥体建筑物,高120分米,体积是94.2立方米,求这个建筑物的底面积。

16.学校门口一个圆锥形沙堆,底面周长是6.28米,高是10米,求这堆沙的体积。

个高度为10厘米的圆锥形木块,剩下的部分是一个长方体,长和宽分别为(。

)厘米和(。

)厘米,求这个长方体的高。

12.题目:一段直径为20cm的圆柱形钢材,截下一段制成底面直径为60cm,高为120cm的圆锥形零件,问要截下多长的钢材?解析:根据圆锥的体积公式,$V=\frac{1}{3}\pi r^2h$,代入已知条件,$V=\frac{1}{3}\pi 30^2\times 120=.73$,再根据圆柱的体积公式,$V=\pi r^2h$,代入已知条件,$V=\pi10^2\times h=100\pi h$,两式相减得到截下的长度为$113.1$厘米。

(完整版)六年级奥数培优----圆柱和圆锥表面积

(完整版)六年级奥数培优----圆柱和圆锥表面积

六年级下册------圆柱和圆锥圆柱和圆锥----外表积例1、一个圆柱体木块,底面半径是6厘米,高是10厘米,现将它截成两个圆柱体小木块,那么外表积要增加多少平方厘米?练习1、一个圆柱体木头,底面半径是8厘米,高是230厘米,现将它截成两段圆柱体小木头,那么外表积要增加多少平方厘米?练习2、把一根直径20厘米的圆柱形木头锯成3段,外表积要增加多少?例2、一个圆柱体,高减少2厘米,外表积就减少了18.84平方厘米,求这个圆柱的底面积是多少?练习1、一个圆柱体,高减少4厘米,外表积就减少75.36平方厘米,求这个圆柱体的底面积?练习2、一根长2米的圆柱形木头,截去2分米长的一段圆柱形小木块后,外表积减少了12.56平方分米,那么原来这根木头的体积是多少?例3、如下列图高是10厘米,底面半径分别是3厘米和6厘米的两个圆柱组成的几何体,求这个物体的外表积? 练习1、高都是2分米,底面半径分别是2分米和5分米的两个圆柱组成的几何体,求这个物体的外表积练习2、如图由高是1米,底面半径分别是0.5米,1米和1.5米的三个圆柱组成的几何体,求这个物体的体积?例4、如图,在一个边长为4厘米的正方体的前后左右上下各面的中心位置挖去一个底面半径为1厘米,深1.5厘米的圆柱,求它的外表积?练习1、在一个长为4厘米的正方体的前后左右上下各面的中心位置各挖去一个底面半径为1厘米,高为1厘米的圆柱,求它的外表积?练习2、在一个边长为3厘米的大立方体的顶部中央挖去一个边长为1厘米的小正方体,求挖去后这个物体的外表积?例5、一个圆柱体的外表积和长方形的面积相等,长方形的长等于圆柱体的底面周长,长方形的面积是251.2平方厘米,圆柱体的底面半径是2厘米,圆柱体的高是多少?练习1、一个圆柱体的外表积和长方形的面积相等,长方形的长等于圆柱体的底面周长,长方形的面积是50.24平方厘米,圆柱体的底面半径是1,厘米,圆柱体的高是多少厘米?练习2、一个圆柱的外表积是314平方厘米,这个圆柱的底面半径是高的14,这个圆的侧面积是多少?例6、一段圆柱体木料,如果截成两个小圆柱体,它的外表积增加6.28平方厘米,如果沿着直径劈成两个半圆柱体,它的外表积将增加80平方厘米,求原圆柱体的外表积?练习1、一个圆柱体,如果沿着直径劈成两个半圆柱体,它的外表积将增加200平方厘米,如果截成两个小圆柱体,它的外表积增加25.2平方厘米,求原圆柱体的外表积?练习2、一个圆柱体,如果截成两个小圆柱体,它的外表积增加了12.56平方厘米,如果沿着直径劈成两个半圆柱体,它的外表积将增加100平方厘米,求圆柱体的外表积?例7、设计一个圆锥形的烟囱帽,底面的半径是40厘米,高是30厘米,需要材料多少平方厘米?练习1、将一块半径为10厘米的圆形铁片去掉14圆后,做成一个圆锥形的烟筒帽,此烟筒帽的底面半径是多少厘米?。

六年级圆柱和圆锥的奥数拓展

六年级圆柱和圆锥的奥数拓展

圆柱和圆锥的综合练习1、一个圆柱,侧面展开后是一个边长9.42分米的正方形。

这个圆柱的底面直径是多少分米?2、一只圆柱性玻璃杯,内底面直径是8厘米,内装药水的深度是16厘米,恰好占整杯容量的45 。

这只玻璃杯最多能盛药水多少毫升?3、有两个底面半径相等的圆柱,高的比是2:5。

第二个圆柱的体积是175立方厘米,第二个圆柱的体积比第一个圆柱多多少立方厘米?4、一个圆柱和一个圆锥等底等高,体积相差6.28立方分米。

圆柱和圆锥的体积各是多少?5、东风化工厂有一个圆柱形油罐,从里面量的底面半径是4米,高是20米。

油罐内已注入占容积34 的石油。

如果每立方分米石油重700千克,这些石油重多少千克?6、一个无盖的圆柱形铁皮水桶,底面直径是30厘米,高是50厘米。

做这样一个水桶,至少需用铁皮多少平方厘米?最多能盛水多少升?(得数保留整数)7、把一个底面直径是16厘米、高是25厘米的圆柱形木块沿底面直径切开,分成形状、大小完全相同的两部分,它们的表面积比原来增加了多少平方厘米?8、一个圆锥形沙堆,高是1.8米,底面半径是5米,每立方米沙重1.7吨。

这堆沙约重多少吨?(得数保留整数)9、一堆小麦的体积为150立方米,将这堆小麦装入一个长方体仓库里这个仓库的底面为边长5米的正方形。

小麦所占空间与仓库剩余容积的比3:1,求这个仓库内部的高?10、一个圆锥与一个圆柱的底面积相等。

已知圆锥与圆柱的体积的比是 16 ,圆锥的高是4.8厘米,圆柱的高是多少厘米?11、一个圆柱体和一个长方体高相等,它们底面积的比是5:3。

已知圆柱的体积是80立方分米 ,长方体的体积比圆柱体少多少立方分米?12、把一个体积是282.6立方厘米的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥零件的高? 13、在一个直径是20厘米的圆柱形容器里,放入一个底面半径3里米的圆锥形铁块,全部浸没在水中,这是水面上升0.3厘米。

圆锥形铁块的高是多少厘米? 14、把一个底面半径是6厘米,高是10厘米的圆锥形容器灌满水,然后把水倒入一个底面半径是5厘米的圆柱形容器里,求圆柱形容器内水面的高度?15、做一种没有盖的圆柱形铁皮水桶,每个高3分米,底面直径2分米,投料时考虑到接头处和边角料要增加30%的用料。

13六年级奥数训练-圆柱和圆锥

13六年级奥数训练-圆柱和圆锥

小升初六年口奥数口柱与□口奥口口基□□1、把一个高3分米的口柱体底面平均分成若干个小扇形,然后把口柱体切开,拼成一个与它等底等高的近似口方体,表面口比原来增加了120平方厘米,求□柱体的体。

2、一根2m的口柱形木口,截去2分米的一段小口柱后,表面口减少了12.56平方分米,那么口根木原来的体□是多少?3、用一口口 6.28厘米、口3.14厘米的口皮做口柱形水桶的口面,另找一口皮做底。

□口做成的口桶的容口最大是多少?4、将一□□方形口皮,利用□中阴影的部分,口好制成一个油桶,求口个油桶的体口。

16.56cm5、将一□10cm、¥6cm、高8cm的口方体木口,切割成体尽可能大的□柱体木口,求口个口柱体木口的体。

6、一个底面口是10平方厘米的口柱,口面展开后是一个正方形,求口个□柱的口面口。

7、在一个正方体□盒中恰好能放入一个体口282.6立方厘米的口柱体卷口,求口个正方体的容口。

8、求下面口形的口面口和体口。

(口位:cm)..4369、小明新口了一支□含量54cm的牙膏,牙膏的口形出口的直径口6mm,他早晚各刷一次牙,每次口出的牙膏口口20mm,口支牙膏估口能用多少天?10、甲、乙两个体口相等的口柱,两个口柱的底面半径比口3:2乙比甲高255、一个口柱和一个□□的体口相等,□□高是口柱高的三分之二,求口□和□柱的底面口比是多少?6、一段□口高的比是5:4:3的口方体木材,棱口口和是96厘米,把它加工成一个最大的□□,□个□□的体□是多少?7、一个底面直径口20厘米的口柱形木桶里装有水,水中淹没着一个底面直径18厘米、高口20厘米的□□□□体。

当口口体取出后,桶内水面将降低多少?8、用直径口40厘米的口□□造口3米、口10分米、厚2厘米的口方形口板,口截取多口的一段口□?9、一个口柱与一个□□的体口相等,口柱的高与□□的高之比是4:9,□□的底面□是20平方厘米,口柱的底面口是多少平方厘米?10、一口柱形水桶内有一段口4厘米,口3厘米的口方体□口浸入水中,水面上升8厘米,如果把口方体口立,露出水面3厘米,口水面下降1.5厘米,求口方体口口的体口?11、如下口所示,□口形容器中装有5升水,水面高度正好是□口高度的一半,口个容器口能装多少升水?hh12、用一口6.28厘米、口3.14厘米的口皮做口柱形水桶的口面,另找一口皮做底。

圆柱与圆锥(奥数)

圆柱与圆锥(奥数)

---------------------------------------------------------------最新资料推荐------------------------------------------------------圆柱与圆锥(奥数)圆柱与圆锥 1. 求下图中图形按图中所示方向旋转一周后所形成的立体图形的体积。

(单位:厘米) 2.有内半径分别为 1 厘米和 4 厘米且深度相等的圆柱形容器 A 和 B,把 A 容器装满水,再倒入 B 容器里,水的深度比容器深度的43还低 3 厘米,容器的深度是多少厘米? 3.高都是 1 米,底面半径分别是 0.5 米、 1 米和1.5 米的三个圆柱组成的几何体如图,求这个物体的表面积。

4. 如图,一张扇形薄铁片,弧长 18.84 分米,它能够围成一个高 4 分米的圆锥,试求圆锥的容积。

(接缝处忽略不计) 5 如图,圆锥形容器中装有 3 升水,水面高度正好是圆锥子高度的一半,这个容器还能装多少升水? 6.埃及著名的胡夫胡夫金字塔为正四棱锥形,正方形底座边长为 230.4 米,塔高 146.7 米,假定建筑金字塔所用材料全部是石灰石,每立方米重 2700 千克,那么胡夫金字塔的总重量是多少千克? 0.8 1.5 0.5 1.2 h 7.一个底面半径是 6 厘米的圆锥体形金属铸件,放进棱长 15 厘米的正方形体一容器中的水中,这个铸件全部被水浸没,容器中的水面纟原来升高 1.2 厘米,求这个圆锥体的高(精确到 0.1 厘米) 8. 在圆锥中, AB 和 BC 长均为 10 厘米,底面周长为厘米,有一只小虫准备从 A 点1 / 3出发,沿着锥面爬到线段 BC,那么它爬行的最短距离是多少厘米?9. 一个长方体木块,长、宽、高分别是 6 厘米, 8 厘米, 10 厘米,把它加工成一个最大的圆锥体,这个圆锥体的体积是多少立方厘米? 10.两个同样材料做成的球 A 和 B,一个实心,一个空心, A 的直径为 7,重量为 22, B 的直径为 10.6,重量为33.3,问哪个球是实心球?(球体体积积) 11.将一根直径是 20 厘米,长 2 米的圆木,锯成截面为最大的正方形的方木,要锯去多少木料? 12.在底面半径是 10 厘米的圆柱形杯中,装有 7 厘米高的水,把一小块铁浸入水中,这时水上升到9 厘米,问这块铁的体积多大? 13 一根水管,内直径 20 厘米,水在管内的流速是每秒 4 米,每秒可以流过多少立方米的水?14.一个圆柱被挖掉一个圆锥,圆锥高是圆柱高的3为 6 厘米米,则剩余的体积是多少?(精确到 0.01) 2,底面半径为 2 厘米,圆柱高 15.有一个下面是圆柱体,上面是圆锥体的容器,圆柱体的高度是 10 厘米,圆锥体的高度是 6 厘米,容器内的液面度度是 7 厘米,当将这个容器倒过来放时,从圆锥的尖到液面的高是多少厘米? 16.有两个边长为 8 厘米的正方体盒子。

六年级奥林匹克数学学习习题圆柱及圆锥.doc

六年级奥林匹克数学学习习题圆柱及圆锥.doc

六年级圆柱与圆锥(3)容器为何多为圆柱形小虎是个很爱动脑筋的孩子,碰到问题老是打破砂锅问究竟。

学了圆柱体体积后,就想:为何搪瓷杯、热水瓶和小桶这些容器都要做成圆柱形?李老师没有直接回答这个问题,而是先让大家做一道题:一个正方形和一个圆的周长都是20厘米,问哪个面积比较大?小英算正方形面积:小灵算出圆的面积:2205525(平方厘米)44(202(平方厘米)。

)2314李老师说:“在周长相等的状况下,圆的面积比正方形的面积大。

”接着,李老师又写出一道题:“一个底面是正方形的长方体和一个圆柱体的底面周长都是20厘米,高都是 6厘米,哪个体积比较大?”小明举手回答:“长方体和圆柱的体积都等于底面积乘以高,长方体的底面积是25平方厘米,那么体积是25×6=150(立方厘米),圆柱的底面积是平方厘米,体积是×(立方厘米)。

所以一个长方体和一个圆柱,假如它们的底面周长和高分别相同,那么圆柱的体积比较大。

”李老师问:“若是这个长方体和圆柱都是容器,并且都是有盖的,那么它们的用料各是多少?”小芳说:“这又变成求它们的表面积的问题。

”说罢,很快算出长方体容口袋的表面积:25×2+20×6=170(平方厘米)。

接着,小灵也算出圆柱形容器的表面积:×2+20×(平方厘米)。

李老师看到同学们的计算很矫捷,就满意地说:“两个容器用料差不多,可是圆柱体容器的体积要大得多。

这就是很多容器都要做成圆柱形的原由。

”同学们听完老师的解说,都略有所思地址点头。

1.判断。

⑴半径为2米的圆柱体,它的底面周长和底面积相等。

()⑵求圆柱形水桶能装多少水,是求它的体积。

()专心爱心专心1⑶体积为1立方米的立体图形必定是棱长为1米的正方体。

()2.在一只底面半径为10厘米的圆柱形玻璃缸中有水深8厘米,要在瓶中放入长和宽都是8厘米,高15厘米的一块铁块。

假如把铁块横放在水中,水面上涨几厘米?(得数保存一位小数)兴盛广场挖一个半径10米、深米的圆柱形喷水池,并且在它的四周围上铁栅栏。

小学奥数--圆柱与圆锥-精选练习例题-含答案解析(附知识点拨及考点)

小学奥数--圆柱与圆锥-精选练习例题-含答案解析(附知识点拨及考点)

立体图形表面积 体积 圆柱h r222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱圆锥hr 22ππ360n S l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体 板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)11111.50.5【考点】圆柱与圆锥 【难度】3星 【题型】解答 【解析】 从上面看到图形是右上图,所以上下底面积和为22 3.14 1.514.13⨯⨯=(立方米),侧面积为2 3.14(0.51 1.5)118.84⨯⨯++⨯=(立方米),所以该物体的表面积是14.1318.8432.97+=(立方米).【答案】32.97【例 2】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?例题精讲圆柱与圆锥【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为266π10π()24π560π18π20π98π307.722⨯+⨯⨯+⨯=++==(平方厘米). 【答案】307.72【例 3】 (希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 当圆柱的高是12厘米时体积为210300π()122ππ⨯⨯=(立方厘米) 当圆柱的高是12厘米时体积为212360π()102ππ⨯⨯=(立方厘米).所以圆柱体的体积为300π立方厘米或360π立方厘米. 【答案】300π立方厘米或360π立方厘米【例 4】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 圆的直径为:()16.561 3.144÷+=(米),而油桶的高为2个直径长,即为:428(m)⨯=,故体积为100.48立方米.【答案】100.48立方米【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:2π1062.8⨯⨯=(厘米),原来的长方形的面积为:10462.81022056()()(平方厘米).⨯+⨯⨯=【答案】2056【例 5】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为12.562 6.28÷=厘米,底面半径为6.28 3.1421÷÷=厘米,所以原来的圆柱体的体积是2⨯⨯==(立方厘米).π188π25.12【答案】25.12【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.高缩短4厘米,表面积就减少50.24平方厘米.阴影部分的面积为圆柱体表面积减少部分,值是50.24平方厘米,所以底面周长是50.24412.56⨯=(平方厘米),两÷=(厘米),侧面积是:12.5612.56157.7536个底面积是:()2⨯÷÷⨯=(平方厘米).所以表面积为:3.1412.56 3.142225.12+=(平方厘米).157.753625.12182.8736【答案】182.8736【例 6】(两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱)体木棒的侧面积是________2cm.(π取3.14【考点】圆柱与圆锥【难度】3星【题型】解答第2题【解析】根据题意可知,切开后表面积增加的就是两个长方形纵切面.设圆柱体底面半径为r,高为h,那么切成的两部分比原来的圆柱题表面积大:2r h⨯=,所以,圆柱体侧面积为:502(cm)222008(cm)r h⨯⨯=,所以22⨯⨯⨯=⨯⨯=.r h2π2 3.145023152.56(cm)【答案】3152.56【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了=)40平方厘米,求圆柱体的体积.(π3【考点】圆柱与圆锥【难度】3星【题型】解答【解析】圆柱切开后表面积增加的是两个长方形的纵切面,长方形的长等于圆柱体的高为10厘米,宽为圆柱底面的直径,设为2r,则210240r=(厘米).圆柱体积为:r⨯⨯=,12⨯⨯=(立方厘米).π11030【答案】30【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【考点】圆柱与圆锥【难度】3星【题型】解答【解析】从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积.(法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为()2÷⨯=(厘米),所以增加的表面积为2421650.24 3.1424⨯⨯=(平方厘米);(法2)根据长方体的体积公式推导.增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为50.24立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为3.142 6.28⨯=厘米,所以侧面长方形的面积为50.24 6.288÷=平方厘米,所以增加的表面积为8216⨯=平方厘米.【答案】16【例 8】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【考点】圆柱与圆锥【难度】3星【题型】解答【解析】这是一个半圆柱体与长方体的组合图形,通过分割平移法可求得表面积和体积分别为:11768平方厘米,89120立方厘米.【答案】89120【例 9】输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】100毫升的吊瓶在正放时,液体在100毫升线下方,上方是空的,容积是多少不好算.但倒过来后,变成圆柱体,根据标示的格子就可以算出来.由于每分钟输2.5毫升,12分钟已输液2.51230⨯=(毫升),因此开始输液时液面应与50毫升的格线平齐,上面空的部分是50毫升的容积.所以整个吊瓶的容积是10050150+=(毫升).【答案】150【例 10】(”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)8(单位:厘米)4106【考点】圆柱与圆锥【难度】3星【题型】解答【解析】由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为6厘米的圆柱,空气部分构成高为1082-=厘米的圆柱,瓶子的容积为这两部分之和,所以瓶子的容积为:24π()(62) 3.1432100.482⨯⨯+=⨯=(立方厘米).【答案】100.48【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的623÷=倍.所以酒精的体积为326.4π62.17231⨯=+立方厘米,而62.172立方厘米62.172=毫升0.062172=升.【答案】0.062172【巩固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少?(π取3)253015【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 观察前后,酒瓶中酒的总量没变,即瓶中液体体积不变.当酒瓶倒过来时酒深25cm ,因为酒瓶深30cm ,这样所剩空间为高5cm 的圆柱,再加上原来15cm 高的酒即为酒瓶的容积. 酒的体积:101015π375π22⨯⨯= 瓶中剩余空间的体积1010(3025)π125π22-⨯⨯= 酒瓶容积:375π125π500π1500(ml)+==【答案】1500【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 由已知条件知,第二个图上部空白部分的高为752cm -=,从而水与空着的部分的比为4:22:1=,由图1知水的体积为104⨯,所以总的容积为()4022160÷⨯+=立方厘米.【答案】60【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3=)5cm【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥的高为x 厘米.由于两次放置瓶中空气部分的体积不变,有:()22215π611π6π63x x ⨯⨯=-⨯⨯+⨯⨯⨯,解得9x =, 所以容器的容积为:221π612π69540π16203V =⨯⨯+⨯⨯⨯==(立方厘米). 【答案】1620【例 11】 (希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 在水中的木块体积为55375⨯⨯=(立方厘米),拿出后水面下降的高度为7550 1.5÷=(厘米)【答案】1.5【例 12】 有两个棱长为8厘米的正方体盒子,A 盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B 盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A 盒注满水,把A 盒的水倒入B 盒,使B 盒也注满水,问A 盒余下的水是多少立方厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 将圆柱体分别放入A 盒、B 盒后,两个盒子的底面被圆柱体占据的部分面积相等,所以两个盒子的底面剩余部分面积也相等,那么两个盒子的剩余空间的体积是相等的,也就是说A 盒中装的水恰好可以注满B 盒而无剩余,所以A 盒余下的水是0立方厘米.【答案】A 盒余下的水是0立方厘米【例 13】 兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 最后拉出的面条直径是原先面棍的164,则截面积是原先面棍的2164,细面条的总长为:21.6646553.6⨯=(米).注意运用比例思想.【答案】6553.6【例 14】 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 因为18分钟水面升高:502030-=(厘米).所以圆柱中没有铁块的情形下水面升高20厘米需要的时间是:20181230⨯=(分钟),实际上只用了3分钟,说明容器底面没被长方体底面盖住的部分只占容器底面积的13:124=,所以长方体底面面积与容器底面面积之比为3:4. 【答案】3:4【例 15】 一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):808(8016)6406410⨯÷-=÷=(厘米);(法2):设水面上升了x 厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:8016(8)x x =+,解得:2x =,8210+=(厘米).(提问”圆柱高是15厘米”,和”高为12厘米的长方体铁块”这两个条件给的是否多余?)【答案】10【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 8010(8016)12.5⨯÷-=,因为12.512>,所以此时水已淹没过铁块,8010(8016)1232⨯--⨯=,32800.4÷=,所以现在水深为120.412.4+=厘米【答案】12.4【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 玻璃杯剩余部分的体积为80(1513)160⨯-=立方厘米,铁块体积为1612192⨯=立方厘米,因为160192<,所以水会溢出玻璃杯,所以现在水深就为玻璃杯的高度15厘米【总结】铁块放入玻璃杯会出现三种情况:①放入铁块后,水深不及铁块高;②放入铁块后,水深比铁块高但未溢出玻璃杯;③水有溢出玻璃杯.【说明】教师可以在此穿插一个关于阿基米德测量黄金头冠的体积的故事. 一天国王让工匠做了一顶黄金的头冠,不知道工匠有没有掺假,必须知道黄金头冠的体积是多少,可是又没有办法来测量.(如果知道体积,就可以称一下纯黄金相应体积的重量,再称一下黄金头冠的重量,就能知道是否掺假的结果了)于是,国王就把测量头冠体积的任务交给他的大臣阿基米德.(小朋友们,你们能帮阿基米德解决难题吗?)阿基米德苦思冥想不得其解,就连晚上沐浴时还在思考这个问题.当他坐进水桶里,看到水在往外满溢时,突然灵感迸发,大叫一声:”我找到方法了……”,就急忙跑出去告诉别人,大家看到了一个还光着身子的阿基米德.他的方法是:把水桶装满水,当把黄金头冠放进水桶,浸没在水中时,所收集的溢出来的水的体积正是头冠的体积.【答案】15【例 16】 一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 把放入铁块后的玻璃杯看作一个底面如右图的新容器,底面积是72—6×6=36(平方厘米).水的体积是72 2.5180⨯=(立方厘米).后来水面的高为180÷36=5(厘米).【答案】5【例 17】 一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 若圆柱体能完全浸入水中,则水深与容器底面面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:222515217517.72πππ⨯⨯+⨯⨯⨯=(厘米).它比圆柱体的高度要大,可见圆柱体可以完全浸入水中.于是所求的水深便是17.72厘米.【答案】17.72【例 18】 有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 两个圆柱直径的比是1:2,所以底面面积的比是1:4.铁块在两个杯中排开的水的体积相同,所以乙杯中水升高的高度应当是甲杯中下降的高度的14,即120.54⨯=(厘米). 【答案】0.5【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 根据题意可知,圆柱形钢材的体积等于桶里下降部分水的体积,因为钢材底面半径是水桶底面半径的520,即41,钢材底面积就是水桶底面积的161.根据体积一定,圆柱体的底面积与高成反比例可知,钢材的长是水面下降高度的16倍.6÷(520)2=96(厘米),(法2):3.14×202×6÷(3.14×52)=96(厘米). 【答案】96【例 19】 一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放人容器中.求这时容器的水深是多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 若铁圆柱体能完全浸入水中,则水深与容积底面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:22251521817.725πππ⨯⨯+⨯⨯=⨯(厘米);它比铁圆柱体的高度要小,那么铁圆柱体没有完全浸入水中.此时容器与铁圆柱组成一个类似于下图的立体图形.底面积为225221πππ-=,水的体积保持不变为2515315ππ⨯=.所以有水深为315617217ππ=(厘米),小于容器的高度20厘米,显然水没有溢出于是6177厘米即为所求的水深. 【答案】6177【例 20】 如图11-7,有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米.那么,圆锥体积与圆柱体积的比是多少?【关键词】华杯赛,初赛,3题【考点】圆柱与圆锥 【难度】3星 【题型】解答 【解析】 圆锥的体积是211624,33ππ⨯⨯⨯=,圆柱的体积是248128ππ⨯⨯=.所以,圆锥体积与圆柱体积的比是16:1281:243ππ=. 【答案】1:24【例 21】 一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米? 【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥形容器底面积为S ,圆柱体内水面的高为h ,根据题意有:1243S Sh ⨯⨯=,可得8h =厘米. 【答案】8【例 22】 (”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水 升.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 圆锥容器的底面积是现在装水时底面积的4倍,圆锥容器的高是现在装水时圆锥高的2倍,所以容器容积是水的体积的8倍,即508400⨯=升.【答案】400【例 23】 如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥容器的底面半径为r ,高为h ,则甲、乙容器中水面半径均为23r ,则有21π3V r h =容器,221228ππ33381V r h r h =⨯=乙水(),222112219πππ333381V r h r h r h =-⨯=甲水(),2219π198188π81r h V V r h ==甲水乙水,即甲容器中的水多,甲容器中的水是乙容器中水的198倍. 【答案】198倍【例 24】 张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改用长3米宽2米的长方形苇席围成容积最大的圆柱形的粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍? 【关键词】华杯赛,决赛,口试,23题【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 底面周长是3,半径是32π,2233()24πππ⨯=所以今年粮囤底面积是234π,高是2.同理,去年粮囤底面积是224π,高是1.2232(2)(1) 4.5.44ππ⨯÷⨯=因此,今年粮囤容积是去年粮囤容积的4.5倍.【答案】4.5【例 25】 (仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是 平方米.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 缠绕在一起时塑料薄膜的体积为:22208ππ1008400π22⎡⎤⎛⎫⎛⎫⨯-⨯⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(立方厘米),薄膜展开后为一个长方体,体积保持不变,而厚度为0.04厘米,所以薄膜展开后的面积为8400π0.04659400÷=平方厘米65.94=平方米.另解:也可以先求出展开后薄膜的长度,再求其面积.由于展开前后薄膜的侧面的面积不变,展开前为22208ππ84π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),展开后为一个长方形,宽为0.04厘米,所以长为84π0.046594÷=厘米,所以展开后薄膜的面积为6594100659400⨯=平方厘米65.94=平方米.【答案】65.94【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4 毫米,问:这卷纸展开后大约有多长?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 将这卷纸展开后,它的侧面可以近似的看成一个长方形,它的长度就等于面积除以宽.这里的宽就是纸的厚度,而面积就是一个圆环的面积. 因此,纸的长度 :()22 3.1410093.1410 3.1437143.50.040.04⨯-⨯-⨯≈≈==纸卷侧面积纸的厚度(厘米)所以,这卷纸展开后大约71.4米.【答案】71.4【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 卷在一起时铜版纸的横截面的面积为2218050ππ7475π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),如果将其展开,展开后横截面的面积不变,形状为一个长方形,宽为0.25毫米(即0.025厘米),所以长为7475π0.025938860÷=厘米9388.6=米.所以这卷铜版纸的总长是9388.6米. 本题也可设空心圆柱的高为h ,根据展开前后铜版纸的总体积不变进行求解,其中h 在计算过程将会消掉.【答案】9388.6米【例 26】 (人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 ⑴先求表面积.表面积可分为外侧表面积和内侧表面积.外侧为6个边长10厘米的正方形挖去4个边长4厘米的正方形及2个直径4厘米的圆,所以,外侧表面积为:210106444π225368π⨯⨯-⨯⨯-⨯⨯=-(平方厘米);内侧表面积则为右上图所示的立体图形的表面积,需要注意的是这个图形的上下两个圆形底面和前后左右4个正方形面不能计算在内,所以内侧表面积为:()24316244π22π232192328π24π22416π⨯⨯+⨯⨯-⨯+⨯⨯⨯=+-+=+(平方厘米),所以,总表面积为:22416π5368π7608π785.12++-=+=(平方厘米).⑵再求体积.计算体积时将挖空部分的立体图形取出,如右上图,只要求出这个几何体的体积,用原立方体的体积减去这个体积即可.挖出的几何体体积为:24434444π2321926424π25624π⨯⨯⨯+⨯⨯+⨯⨯⨯=++=+(立方厘米);所求几何体体积为:()10101025624π668.64⨯⨯-+=(立方厘米). 【答案】668.64板块二 旋转问题【例 27】 如图,ABC 是直角三角形,AB 、AC 的长分别是3和4.将ABC ∆绕AC 旋转一周,求ABC ∆扫出的立体图形的体积.(π 3.14=)CB A43【考点】旋转问题 【难度】3星 【题型】解答【解析】 如右上图所示,ABC ∆扫出的立体图形是一个圆锥,这个圆锥的底面半径为3,高为4,体积为:21π3412π37.683⨯⨯⨯==.【答案】37.68【例 28】 已知直角三角形的三条边长分别为3cm ,4cm ,5cm ,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?(π取3.14) 【考点】旋转问题 【难度】3星 【题型】解答【解析】 以3cm 的边为轴旋转一周所得到的是底面半径是4cm ,高是3cm 的圆锥体,体积为2313.144350.24(cm )3⨯⨯⨯= 以4cm 的边为轴旋转一周所得到的是底面半径是3cm ,高是4cm 的圆锥体,体积为2313.143437.68(cm )3⨯⨯⨯= 以5cm 的边为轴旋转一周所得到的是底面半径是斜边上的高345 2.4⨯÷=cm 的两个圆锥,高之和是5cm 的两个圆的组合体,体积为2313.14 2.4530.144(cm )3⨯⨯⨯=【答案】30.144【巩固】如图,直角三角形如果以BC 边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC 边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB 为轴旋转一周,那么所形成的几何体的体积是多少?ABC【考点】旋转问题 【难度】3星 【题型】解答【解析】 设BC a =,AC b =,那么以BC 边为轴旋转一周,所形成的圆锥的体积为2π3ab ,以AC 边为轴旋转一周,那么所形成的圆锥的体积为2π3a b ,由此可得到两条等式:224836ab a b ⎧=⎪⎨=⎪⎩,两条等式相除得到43b a =,将这条比例式再代入原来的方程中就能得到34a b =⎧⎨=⎩,根据勾股定理,直角三角形的斜边AB 的长度为5,那么斜边上的高为2.4.如果以AB 为轴旋转一周,那么所形成的几何体相当于两个底面相等的圆锥叠在一起,底面半径为2.4,高的和为5,所以体积是22.4π59.6π3⨯=.【答案】9.6π【例 29】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3)。

六年级下奥数专题圆柱圆锥

六年级下奥数专题圆柱圆锥

圆柱圆锥专题
例5、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。

如果将这个零件接触空气的部分
涂上防锈漆,那么一共要涂多少平方厘米?
例6、将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。

练习
1.如图是一顶帽子。

帽顶部分是圆柱形,用黑布做;帽沿部分是一个圆环,用白布做。

如果帽顶的半径、高与帽沿的宽都是a厘米,那么哪种颜色的布用得多?
2.一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。

当圆锥体取出后,桶内水面将降低多少?
3.用直径为40厘米的圆钢锻造长300厘米、宽100厘米、厚2厘米的长方形钢板,应截取多长的一段圆钢?
10、一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形。

量得圆柱底面的周长是62.8米,高2米,圆锥的高是1.2米。

这个粮囤能装稻谷多少立方米?如果每立方米稻谷重500千克,这个粮囤能装稻谷多少吨?(保留一位小数)
11、如图,将三角形以斜边为轴旋转一周,计算所得立体图形的体积。

(单位:厘米)
12、如图,想想办法,
你能否求出它的体积?( 单位:分米)
13、一个圆柱被挖掉一个圆锥,圆锥高是圆柱高的32
,底面半径为2厘米,圆柱高为6厘
米米,则剩余的体积是多少?(精确到0.01)。

六年级奥数.几何.圆柱与圆锥(AB级).学生版

六年级奥数.几何.圆柱与圆锥(AB级).学生版

立体图形 表面积体积圆柱222π2πS rh r =+=+圆柱侧面积个底面积2πV r h =圆柱圆锥22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体◆ 求表面积时要注意几点:一、有几个底面。

二、结果近似数,进一法、去尾法、四舍五入法.............。

三、单位是否统一。

◆ 圆柱与圆锥的关系等底等高的圆柱和圆锥:圆柱的体积是圆锥体积的3倍;等底等体积的圆柱和圆锥:圆锥的高是圆柱的高的3倍; 等高等体积的圆柱和圆锥:圆锥的底面积是圆柱的底面积的3倍板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)【例 2】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?hrh r1110.511.5知识框架例题精讲圆柱与圆锥有一个底面 无底面鱼缸、厨师帽、 烟囱、排水管、压路机【例 3】 (第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是立方厘米.(结果用π表示)【例 4】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【例 5】 把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【例 6】(2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱体木棒的侧面积是2cm.(π取3.14)【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(π3=)【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【例 8】右图是一个零件的直观图.下部是一个棱长为40的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【例 9】输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?4cm【例 10】 (2008年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是 立方厘米.(π取3.14)【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【巩固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少?(π取3)【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.(单位:厘米)253015【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3 )【例 11】 (第四届希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降厘米.【例 12】 有两个棱长为8厘米的正方体盒子,A 盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B 盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A 盒注满水,把A 盒的水倒入B 盒,使B 盒也注满水,问A 盒余下的水是多少立方厘米?【例 13】 兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【例 14】一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.5cm【巩固】有甲、乙两个圆柱形容器,甲容器的底面积是690 2,乙容器的底面积是230 2,甲容器中的水深36,现将其中一部分水倒入空着的乙容器中,使甲、乙两容器内的水深一样,则甲、乙容器中水深多少厘米?【巩固】甲乙两个圆柱形水杯,甲的底面半径3厘米,里面盛有高13厘米的水,乙圆柱底面半径2厘米,里面没有水,甲杯水倒入乙杯一部分,使两杯水面一样高,求现在乙杯水的高度。

圆柱与圆锥(奥数)

圆柱与圆锥(奥数)

圆柱与圆锥(奥数)一、圆柱与圆锥1.计算圆锥的体积。

【答案】解:3.14×2²×15×=3.14×4×5=62.8(dm³)【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式计算体积即可。

2.图“蒙古包”是由一个近似的圆柱形和一个近似的圆锥形组成,这个蒙古包的空间大约是多少立方米?【答案】解:3.14×(8÷2)2×2+3.14×(8÷2)2×1×=3.14×16×2+3.14×16×1×≈100.48+16.75=117.23(立方米)答:这个蒙古包所占的空间大约是117.23立方米。

【解析】【分析】这个蒙古包是由圆锥和圆柱组成,所以这个蒙古包的空间是圆锥的体积和圆柱的体积,圆柱的底面半径=底面直径÷2,圆柱的底面积=圆锥的底面积,所以圆柱的体积=πr2h,那么圆锥的体积=πr2h。

3.在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高1.5米.每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)【答案】解:圆锥的体积: ×[3.14×(4÷2)2]×1.5= ×1.5×12.56=6.28(立方米)这堆沙的吨数:1.7×6.28=10.676(吨)≈11(吨)答:这堆沙约重11吨。

【解析】【分析】这堆沙大约的重量=这堆沙的体积×每立方米大约的重量,其中这堆沙的体积=圆锥的体积=πr2h,得数要保留整数,就是把得出的数的十分位上的数进行“四舍五入”即可。

4.求圆柱体的表面积和体积.【答案】表面积:3.14×5×2×8+3.14×52×2=252.6+157=409.6(平方厘米)体积:3.14×52×8=3.14×25×8=628(立方厘米)答:圆柱的表面积是409.6平方厘米,体积是628立方厘米。

圆柱与圆锥(奥数)

圆柱与圆锥(奥数)

圆柱与圆锥(奥数)一、圆柱与圆锥1.将一根长16分米的圆柱形钢材截成三段较短的圆柱形,其表面积增加了24 平方分米,这根钢材原来的体积是多少?【答案】解:24÷4=6(平方分米)16×6=96(立方分米)答:这根钢材原来的体积是96立方分米。

【解析】【分析】将一根圆柱形钢材截成三段,增加了四个底面积,据此求出圆柱形钢材的底面积,再用底面积乘高即可求出这根钢材的体积。

2.下面各题只列综合算式或方程,不计算。

(1)四、五年级一共要栽220棵树。

四年级有3个班,每班栽28棵,剩下的分给五年级四个班,平均每班栽多少棵?(2)一种华为牌手机原价每部2580元,网上限时抢购每部1680元,网购每部手机降价百分之多少?(3)做一节底面直径为0.35m,长为3.5m的圆柱形通风管,需要多少平方米铁皮?【答案】(1)解:方法一:解:设平均每班栽x棵。

28×3+4x=220方法二:(220-28×3)÷4(2)解:(2580-1680)÷2580×100%(3)解:3.14×0.35×3.5【解析】【分析】(1)根据题意可知,此题可以用方程解答,设平均每班栽x棵,用四年级每班栽的棵数×四年级的班数+五年级每班栽的棵数×五年级的班数=四年级和五年级一共栽的总棵数,据此列方程;还可以用(四年级、五年级一共栽的棵数-四年级每班栽的棵数×四年级的班数)÷五年级的班数=五年级每班栽的棵数,据此列式解答;(2)根据题意可知,用(原价-现价)÷原价×100%=降价百分之几,据此列式解答;(3)圆柱形通风管没有上下底面,已知圆柱的底面直径和高,求圆柱的侧面积,用公式:圆柱的侧面积=底面周长×高,据此列式解答.3.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米=0.05米沙堆的底面半径:25.12÷(2×3.14)=25.12÷6.28=4(米)沙堆的体积: ×3.14×42×1.8=3.14×16×0.6=3.14×9.6=30.144(立方米)所铺沙子的长度:30.144÷(8×0.05)=30.144÷0.4=75.36(米).答:能铺75.36米。

(完整版)六年级数学圆柱圆锥练习试题和答案解析.docx

(完整版)六年级数学圆柱圆锥练习试题和答案解析.docx

范文 .范例 .参考(四)例 1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?圆柱圆锥底两个底面完全相同,都是圆一个底面,是圆形。

面形。

曲面,沿高剪开,展开后是曲面,沿顶点到底面圆周上的一条线侧面长方形。

段剪开,展开后是扇形。

两个底面之间的距离,有无高顶点到底面圆心的距离,只有一条。

数条。

例 2、求下面立体图形的底面周长和底面积。

半径 3 厘米直径10米例 3、判断:圆柱和圆锥都有无数条高。

例 4、(圆柱的侧面积)体育一个圆柱,底面直径是 5 厘米,高是12 厘米。

求它的侧面积。

例 6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30 厘米,高是50 厘米。

做这样一个水桶,至少需用铁皮6123 平方厘米。

例 7、(考点透视)一个圆柱的侧面积展开是一个边长15.7 厘米的正方形。

这个圆柱的表面积是多少平方厘米?例 8、(考点透视)一个圆柱形的游泳池,底面直径是10 米,高是 4 米。

在它的四周和底部涂水泥,每千克水泥可涂 5 平方米,共需多少千克水泥?例9、(考点透视)把一个底面半径是 2 分米,长是 9 分米的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分米?4、求下列圆柱体的侧面积(1)底面半径是 3 厘米,高是 4 厘米。

(3)底面周长是 12.56 厘米,高是 4 厘米。

5、求下列圆柱体的表面积(1)底面半径是 4 厘米,高是 6 厘米。

(3)底面周长是 25.12 厘米,高是 8 厘米。

6、用铁皮制作一个圆柱形烟囱,要求底面直径是 3 分米,高是 15 分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。

8、一个圆柱形蓄水池,底面周长是25.12 米,高是 4 米,将这个蓄水池四周及底部抹上水泥。

如果每平方米要用水泥20 千克,一共要用多少千克水泥?一、圆柱体积1、求下面各圆柱的体积。

六年级奥林匹克数学练习试卷圆柱与圆锥.doc

六年级奥林匹克数学练习试卷圆柱与圆锥.doc

六年级圆柱与圆锥(1)阿凡提智胜“小气鬼”阿凡提聪慧非常,什么困难都难不倒他。

一天,阿凡提骑着驴经过一个乡村,见4个年青人愁云满面地蹲在地上,便走到他们眼前。

此中的一个年青人一眼就认出了阿凡提,冲着别外三个人快乐地喊道:“你们看,阿凡提来了,我们有救了。

”这4个人分别是张三、李四、王五、赵六,阿凡提向他们问了然事情的经过。

本来,村中有一个地主,虽有钱但是他却特别小气,关于穷人更是爱财如命,于是村上的人就送给他一个外号——小气鬼。

张三、李四、王五、赵六4个人是从外处来这儿做工的,做了一年,快过年了,4人便向“小气鬼”要工钱回家过年。

“小气鬼”一听他们要来拿钱,几乎就像要他的命相同。

为了不付工钱,他想出了一条毒计,让他的儿子出了一道数学题:计划修一条长120米的水渫,前13天修了全长的4照这样的速度,修完这条沟渠还需多少天?4个人一定用4种不一样的方法来解答,解答正确给双份工钱,不然一分钱也不给。

这4个人都是贫苦人家,压根就没上过学,怎么会做这么难的题目呢?家中的妻儿老少正盼着他们把钱拿回家过年呢。

阿凡提听完,捋着山羊胡儿,笑着说:“不用急,我帮你们惩办这个小气鬼!”于是在每一个人的耳边说了几句,4人听了露出了笑脸,抬头挺胸地向“小气鬼”家走去。

人到了地主家要求先立下字据:假如他们用四种不一样的方法解出那道题,就要付双份的工钱,不然一分不给。

地主根本不信他们4个穷光蛋能解答出来,所以绝不踌躇地签上了自己的大名。

签完字据,张三说:“先求出修3天后余下的沟渠长度及每日修的长度,再求余下的1 1需几日修完。

列式是120×(1-)÷(120×÷3)=9(天)。

”4 4李四接着说:“先分别求出每日修的长度及修完整长需要的天数,再求出余下的需几专心爱心专心11天修完。

列式是:120÷(120×÷3)-3=9(天)。

”4王五说:“先分别求出修1米长沟渠用的天数及修3天后余下的沟渠长度,再求余下的长度需几日修完。

六年级奥数训练-圆柱和圆锥

六年级奥数训练-圆柱和圆锥

六年级奥数训练-圆柱和圆锥1、将高为3米的圆柱体底面平均分成若干个小扇形,然后将圆柱体切开,拼成一个与它等底等高的近似长方体,表面积比原来增加了120平方厘米。

求圆柱体的体积。

2、一根长2m的圆柱形木头,截去2分米的一段小圆柱后,表面积减少了12.56平方分米。

那么这根木头原来的体积是多少?3、一块长6.28厘米、宽3.14厘米的铁皮用来制作圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?4、将一块长方形铁皮,利用图中阴影的部分,刚好制成一个油桶。

求这个油桶的体积。

5、将一块长10cm、宽6cm、高8cm的长方体木块,切割成体积尽可能大的圆柱体木块。

求这个圆柱体木块的体积。

6、一个底面积为10平方厘米的圆柱体,侧面展开后是一个正方形。

求这个圆柱的侧面积。

7、在一个正方体纸盒中恰好能放入一个体积为282.6立方厘米的圆柱体卷纸。

求这个正方体的容积。

8、求下面图形的侧面积和体积。

(单位:cm)9、XXX新买了一支净含量54cm³的牙膏,牙膏的圆形出口的直径为6mm。

他早晚各刷一次牙,每次挤出的牙膏长约20mm。

这支牙膏估计能用多少天?10、甲、乙两个体积相等的圆柱,两个圆柱的底面半径比为3:2,乙比甲高25厘米。

求两个圆柱各高多少厘米?11、在一只底面半径为20cm,高为40cm的圆柱形玻璃瓶中,水深16厘米。

要在瓶中放入长和宽都是16cm,高30cm的一块长方体铁块,使其一面紧贴玻璃瓶底面。

如果把铁块横着放入玻璃瓶完全浸没水中,瓶中的水会升高多少cm?如果把铁块竖着放入玻璃瓶,瓶中的水将会升高多少cm?12、一个直角三角形的三边长度为3厘米,4厘米,5厘米,分别以这三条边为轴旋转一周形成的立体图形。

它们的体积各是多少?13、将一个圆柱体切开,拼成一个与它等底等高的长方体,这个长方体的表面积比圆柱体多20平方厘米。

若圆柱的底面周长是15厘米,圆柱的体积是多少立方厘米?14、甲乙两个圆柱体,底面积之比是2:3,甲中水深6厘米,乙中水深8厘米。

圆柱与圆锥(奥数)

圆柱与圆锥(奥数)

圆柱与圆锥(奥数)一、圆柱与圆锥1.一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm。

把瓶口塞紧后使其瓶口向下倒立,这时酒深25cm。

求酒瓶的容积。

【答案】解:3.14×(10÷2)2×[15+(30-25)]=1570(cm3)答:酒瓶的容积是1570 cm3。

【解析】【分析】酒瓶的容积相当于高15厘米的圆柱形酒的体积,和高是(30-25)厘米的圆柱形空气的体积,把这两部分体积相加就是酒瓶的容积。

2.计算圆柱的表面积。

【答案】解:3.14×(6÷2)²×2+3.14×6×10=3.14×18+3.14×60=56.52+188.4=244.92(cm³)【解析】【分析】圆柱的表面积是两个底面积加上侧面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。

3.工地上有一个圆锥形的沙堆,高是1.5米,底面半径是6米,每立方米的沙约重1.7吨。

这堆沙约重多少吨?(得数保留整吨数)【答案】解:3.14×6²×1.5××1.7=3.14×18×1.7=56.52×1.7≈96(吨)答:这堆沙约重96吨。

【解析】【分析】圆锥的体积=底面积×高×,先计算圆锥的体积,再乘每立方米沙的重量即可求出总重量。

4.计算圆锥的体积。

【答案】解:3.14×2²×15×=3.14×4×5=62.8(dm³)【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式计算体积即可。

5.一个圆锥形沙堆,占地面积是30平方米,高2.7米,每立方米沙重1.7吨。

如果用一辆载重8吨的汽车把这些沙子运走,至少需要运多少次?【答案】解:30×2.7× ×1.7÷8≈6(次)答:至少需要运6次。

六下 第三单元圆柱与圆锥提高题和奥数题(附答案)

六下 第三单元圆柱与圆锥提高题和奥数题(附答案)

六下第三单元圆柱与圆锥提高题和奥数题(附答案)板块一圆柱的认识例题1.选择哪些材料恰好能做成一个圆柱形的盒子?d=2cm d=3cm d=4cmA B C练习1.在下面的材料中,选择()能做成圆柱。

3号4号 5号A.1号、2号和3号B.1号、4号和5号C.1号、2号和4号例题2.一个圆柱的底面直径是6.28cm,高是4.5cm.如果沿底面直径垂直于底面把这个圆柱切成完全相同的两半,那么切面的面积是多少?练习2.(1)一个底面周长是9.42厘米,商是5厘米的圆柱,沿底面直径垂直于底面把它切割成两个半圆柱后,切面的面积一共是多少平方厘米?(2)把一个圆柱的侧面沿高展开后得到一个正方形,这个圆柱的商与底面直径的比是多少?例题3.一个圆柱形蛋糕盒的底面直径是20厘米,高是15厘米,用彩绳将它捆扎(如右图),打结处在圆心,打结部分长30厘米。

求所用彩绳的全长是多少厘米?练习3.一个圆柱形蛋糕用彩绳捆扎,如果打结部分用了35厘米,打结处在圆心,一共用了多长彩绳?板块二圆柱的表面积例题1.一块长方形的钢板,利用图中阴影部分刚好能做成一个圆柱形的带盖水桶(接头处忽略不计),求这个水桶的表面积。

练习 1.(1)如下图,有一张长方形铁皮,剪下两个圆及一个长方形,正好可以做成一个圆柱,这个圆柱的底面半径为10厘米,原来这张长方形铁皮的面积是多少平方厘米?(2)有一张长方形铁皮(尺寸如图所示),剪下阴影部分正好能围成一个圆柱,求圆柱的表面积是多少。

例题2.工人师傅要在一个零件(如右图)的表面涂一层防锈材料。

这个零件是由两个圆柱构成的,小圆柱的直径是4厘米,高是2厘米;大圆柱的直径是6厘米,高是5厘米。

这个零件涂防锈材料的面积是多少?练习2.用3个高都是2分米,底面半径分别为2分米、1分米和0.5分米的圆柱组成一个物体(如图),求该物体的表面积。

例题3.如图,是长为8,宽为4的长方形,以长方形的长为轴旋转一周。

求所形成的立体图形的表面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱与圆锥奥赛题基础练习
1、把一个高3分米的圆柱体底面平均分成若干个小扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,表面积比原来增加了120平方厘米,求圆柱体的体积。

2、一根长2m的圆柱形木头,截去2分米的一段小圆柱后,表面积减少了12.56平方分米,那么这根木头原来的体积是多少?
3、用一块长6.28厘米、宽3.14厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?
4、将一块长方形铁皮,利用图中阴影的部分,刚好制成一个油桶,求这个油桶的体积。

5、将一块长10cm、宽6cm、高8cm的长方体木块,切割成体积尽可能大的圆柱体木块,求这个圆柱体木块的体积。

6、一个底面积是10平方厘米的圆柱,侧面展开后是一个正方形,求这个圆柱的侧面积。

7、在一个正方体纸盒中恰好能放入一个体积为282.6立方厘米的圆柱体卷纸,求这个正方体的容积。

8、求下面图形的侧面积和体积。

(单位:cm)
9、小明新买了一支净含量54cm3的牙膏,牙膏的圆形出口的直径为6mm,他早晚各刷一次牙,每次挤出的牙膏长约20mm,这支牙膏估计能用多少天?
10、甲、乙两个体积相等的圆柱,两个圆柱的底面半径比为3:2,乙比甲高25
厘米,两个圆柱各高多少厘米?
11、在一只底面半径为20cm,高为40cm的圆柱形玻璃瓶中,水深16厘米,要在瓶中放入长和宽都是16cm.,高30cm的一块长方体铁块。

使其一面紧贴玻璃瓶底面。

如果把铁块横着放入玻璃瓶完全浸没水中,瓶中的水会升高多少cm?如果把铁块竖着放入玻璃瓶,瓶中的水将会升高多少cm?
12、一个直角三角形的三边长度为3厘米,4厘米,5厘米,分别以这三条边为轴旋转一周形成的立体图形。

它们的体积各是多少?
13、把一个圆柱体切开,拼成一个与它等底等高的长方体,这个长方体的表面积比圆柱体多20平方厘米,若圆柱的底面周长是15厘米,圆柱的体积是多少立方厘米?
14、甲乙两个圆柱体容器,底面积之比是2:3,甲中水深6厘米,乙中水深8厘米,现在往两个容器中加入同样多的水,直到两容器中的水深相等,求这时容器中水的高度是多少厘米?
15、一个圆柱与一个圆锥的体积相等,圆柱的高与圆锥的高之比是4:9,圆锥的底面积是20平方厘米,圆柱的底面积是多少平方厘米?
16、如下图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?
圆柱和圆锥
1、一个圆柱和与它等底等高的圆锥的体积之和是24平方分米。

圆柱和圆锥的体积分别是多少?
2、一个圆锥的体积比与它等底等高的圆柱的体积少6.28立方厘米,那么,这个圆柱的体积是多少立方厘米?
3、一个圆柱的底面周长是18.84厘米,沿着底面直径将它切成相等的两半,表面积增加了180平方厘米,原来这个圆柱的表面积和体积各是多少?
4、把一个半径为10厘米的圆锥形钢材浸没在一只底面半径是30厘米的圆柱形水桶里,当钢材从水桶中拿出,桶里的水面下降了1厘米。

这个圆锥形钢材的高是多少?
5、一个圆柱和一个圆锥的体积相等,圆锥高是圆柱高的三分之二,求圆锥和圆柱的底面积比是多少?
6、一段长宽高的比是5:4:3的长方体木材,棱长总和是96厘米,把它加工成一个最大的圆锥,这个圆锥的体积是多少?
7、一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。

当圆锥体取出后,桶内水面将降低多少?
8、用直径为40厘米的圆钢锻造长3米、宽10分米、厚2厘米的长方形钢板,应截取多长的一段圆钢?
9、一个圆柱与一个圆锥的体积相等,圆柱的高与圆锥的高之比是4:9,圆锥的底面积是20平方厘米,圆柱的底面积是多少平方厘米?
10、一圆柱形水桶内有一段长4厘米,宽3厘米的长方体铁块浸入水中,水面上升8厘米,如果把长方体竖立,露出水面3厘米,则水面下降1.5厘米,求长方体铁块的体积?
11、如下图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?
12、用一块长6.28厘米、宽3.14厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?
13、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。

现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见
下图)。

问:瓶内现有饮料多少立方分米?
14、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。

如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?
15、将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。

相关文档
最新文档