第七章线性变换总结篇(高等代数)
线性变换考研知识点总结
线性变换考研知识点总结一、线性变换的基本概念1.1 线性空间线性空间是指一个集合V,其上有两种运算:向量的加法和数乘,满足一定的性质,即:(1)对于任意u,v∈V,有u+v∈V;(2)对于任意k∈F(其中F是一个字段),有ku∈V;(3)满足加法交换律、结合律、分配律和单位元存在。
1.2 线性变换的定义设V和W是两个线性空间,若存在一个映射T: V→W,满足以下条件:(1)对于任意u,v∈V,有T(u+v) = T(u) + T(v);(2)对于任意k∈F和任意u∈V,有T(ku) = kT(u)。
则称T为从V到W的线性变换。
1.3 线性变换的矩阵表示设V是n维线性空间,B = {v1, v2, ..., vn}是V的一组基,W是m维线性空间,C = {w1, w2, ..., wm}是W的一组基。
若T: V→W是一个线性变换,则存在一个m×n的矩阵A,使得对于任意u∈V,都有T(u)在基C下的坐标向量等于A乘以u在基B下的坐标向量。
1.4 线性变换的性质(1)零变换:对于任意线性空间V,零变换T:V→V定义为T(u) = 0,对于任意u∈V都有T(u) = 0。
(2)恒等变换:对于任意线性空间V和其基B,存在一个单位矩阵I使得对于任意u∈V 都有I(u) = u。
二、线性变换的基本定理2.1 线性变换的核与值域(1)核:对于线性变换T: V→W,其核Ker(T)定义为Ker(T) = {u∈V | T(u) = 0},即T的所有零空间。
(2)值域:对于线性变换T: V→W,其值域Im(T)定义为Im(T) = {T(u) | u∈V},即T所有可能的输出向量。
2.2 线性变换的满射与单射(1)满射:若线性变换T: V→W的值域等于W,即Im(T) = W,则称T是满射的。
(2)单射:若对于任意非零向量u,若T(u)≠0,则称T是单射的。
2.3 线性变换的秩和零度若线性变换T: V→W,则其秩rank(T)等于T的值域Im(T)的维数;零度nullity(T)等于T 的核Ker(T)的维数。
第七章线性变换总结篇(高等代数)
第 7章 线性变换7.1知识点归纳与要点解析一.线性变换的概念与判别 1.线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。
注:V 的线性变换就是其保持向量的加法与数量乘法的变换。
2.线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3.线性变换的性质设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈。
性质1. ()()00,σσαα==-; 性质2. 若12s ,,,ααα线性相关,那么()()()12s ,,,σασασα也线性相关。
性质3. 设线性变换σ为单射,如果12s ,,,ααα线性无关,那么()()()12s ,,,σασασα也线性无关。
注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组,如果:11111221221122221122s ss s m m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭于是,若()dim V n =,12,,,n ααα是V 的一组基,σ是V 的线性变换, 12,,,m βββ是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++记:()()()()()1212,,,,m m σβββσβσβσβ=那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是12,,,m ηηη的一个极大线性无关组,那么()()()12,ri i iσβσβσβ就是()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的秩等于秩()B 。
高等代数课件(北大版)第七章-线性变换§7.7
若 V W1 W2 Ws,则
11, ,1n1 , 21, , 2一组基,且在这组基下 的矩阵为准对角阵
A1
A2
.
As
2023/8/17§7.7 不变子空间 数学与计算科学学院
(1)
反之,若 在基 11, ,1n1 , 21, , 2n2 , , s1, , sns 下的矩阵为准对角矩阵(1), 则由 i1, i2 , , ini 生成 的子空间 Wi 为 的不变子空间,且V具有直和分解:
其次,任取 Vi , 设
( i E )ri Wi 0.
1 2 s , i Wi . 即 1 2 (i ) s 0 令 j j , ( j i); i i .
2023/8/17§7.7 不变子空间 数学与计算科学学院
由(2), 有 ( i E)ri (i ) 0, i 1,2, , s. 又 ( i E)ri (i ) ( i E)ri (i )
Wi fi ( )V , 则Wi 是 fi ( ) 的值域, Wi是 的不变子空间.
又 ( i E)ri Wi ( i E)ri fi ( )V
( i E)ri fi ( ) V f V
( i E)ri Wi 0.
(2)
2023/8/17§7.7 不变子空间 数学与计算科学学院
下证 V V1 V2 Vs . 分三步:
1 . 证明 V W1 W2 Ws .
2 . 证明f1(V1),fV2(2), fVs (s是)直和1 .
3∴. 证存明在多Vi 项 W式i
, i
u1 (
1, 2,
), u2(
, s. ),
, us ( ),
使
u1( ) f ( )1 u2( ) f2( ) us ( ) fs ( ) 1
第七章线性变换总结篇
第 7章 线性变换7、1知识点归纳与要点解析一.线性变换的概念与判别 1、线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ与数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。
注:V 的线性变换就就是其保持向量的加法与数量乘法的变换。
2、线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3、线性变换的性质设V 就是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈L 。
性质1、 ()()00,σσαα==-;性质2、 若12s ,,,αααL 线性相关,那么()()()12s ,,,σασασαL 也线性相关。
性质3、 设线性变换σ为单射,如果12s ,,,αααL 线性无关,那么()()()12s ,,,σασασαL也线性无关。
注:设V 就是数域P 上的线性空间,12,,,m βββL ,12,,,s γγγL 就是V 中的两个向量组, 如果:11111221221122221122s s s sm m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++L L LL LL记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫⎪⎪= ⎪⎪⎝⎭L LL L M M M L于就是,若()dim V n =,12,,,n αααL 就是V 的一组基,σ就是V 的线性变换,12,,,m βββL 就是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++L L LLLL记:()()()()()1212,,,,m m σβββσβσβσβ=L L那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭L L L L M M M L设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭L LM M M L,12,,,m ηηηL 就是矩阵B 的列向量组,如果12,,,r i i i ηηηL 就是12,,,m ηηηL 的一个极大线性无关组,那么()()()12,r i i i σβσβσβL 就就是()()()12,m σβσβσβL 的一个极大线性无关组,因此向量组()()()12,m σβσβσβL 的秩等于秩()B 。
高等代数考研复习[线性变换]描述
A 1(1,2, ,n )= (1,2, ,n ) A1.
(ⅴ)同一线性变换在不同基下矩阵之间的关系: 设1,2, ,n 与 1, 2, , n 是线性空间V的两
组基,且 (1, 2, , n ) (1,2, ,n ) X . 如果 A (1,2, ,n ) (1,2, ,n ) A,
则称 A B 是V的线性变换,并称它为 A 与 B
的乘积. 说明:变换乘积满足结合律,乘法对加法的分 配率,数乘结合律.但是不满足交换律.
线性变换的方幂与多项式变换:
n个线性变换 A 的乘积称为 A 的n次幂,记为 A n即 A n =AA A. 规定:A 0 =E.当A 可逆时,规定
(A 1)n =A n . 一般地,A B B A , 但是
那么 A 就是V上满足条件的线性变换.
(ⅲ) 线性变换的矩阵
A 设1,2, ,n 是n维空间V的一组基, 是V
的线性变换,如果基的像可以被基线性表出,
即 A (1) a111 + a212
A
(2 ) a121 + a222
A (n ) a1n1 + a2n2
(2)如果对任意的α ∈V,A(α)=α,则称A为V的 恒等变换(也叫单位变换). (3)A是V的线性变换的充分必要条件是:
A (k l ) kA () lA ( ),, ,V ,k,l P.
1.2 线性变换性质: 设V是数域P上的线性空间,A是V的线性变
换,则有 (1) A (0) 0, A () A ();
变换. 说明:线性空间V上的所有线性变换对于线性
变换的加法与数乘变换构成P上的线性空间,记 为L(V).即对 A ,B L(V ) A +B L(V ), kA L(V ).
线性变换的相关知识点总结
线性变换的相关知识点总结一、线性变换的定义线性变换是指一个向量空间V到另一个向量空间W的一个函数T,满足以下两条性质:1.加法性质:对于向量空间V中的任意两个向量x和y,有T(x+y)=T(x)+T(y)。
2.数乘性质:对于向量空间V中的任意向量x和标量a,有T(ax)=aT(x)。
根据以上的定义,我们可以得出线性变换的几个重要性质:1. 线性变换保持向量空间中的原点不变;2. 线性变换保持向量空间中的直线和平面不变;3. 线性变换将线性相关的向量映射为线性相关的向量;4. 线性变换将线性无关的向量映射为线性无关的向量。
二、线性变换的矩阵表示在研究线性变换时,我们通常会使用矩阵来表示线性变换。
设V和W分别是n维和m维向量空间,选择它们的一组基{v1, v2, ..., vn}和{w1, w2, ..., wm}。
线性变换T可以用一个m×n的矩阵A来表示,假设向量x在基{v1, v2, ..., vn}下的坐标为[x],向量T(x)在基{w1, w2, ..., wm}下的坐标为[T(x)],则有[T(x)]=[A][x]。
由此可见,矩阵A中的每一列都是T(vi)在基{w1, w2, ..., wm}下的坐标,而T(vi)可以写成基{w1, w2, ..., wm}的线性组合,所以矩阵A的列向量就是线性变换T对基{v1, v2, ..., vn}下的坐标系的映射。
另外,矩阵A的行空间也是线性变换T的像空间,而零空间是T的核空间。
线性变换的基本性质在矩阵表示下也可以得到进一步的解释,例如线性变换的复合、逆变换等都可以在矩阵表示下进行研究。
因此,矩阵表示是研究线性变换的重要工具。
三、特征值和特征向量特征值和特征向量是线性代数中的一个非常重要的概念,它们在研究线性变换的性质时有非常重要的应用。
设T是一个n维向量空间V上的线性变换,那么存在一个标量λ和一个非零向量v,使得Tv=λv。
这里的λ就是T的特征值,v就是T的特征向量。
高等代数--第七章 线性变换_OK
45
线性变换的乘法
首先,线性空间的线性变换作为映射的特殊 情形当然可以定义乘法。设A,B 是线性空间V 的两个线性变换,定义它们的乘积AB为
(A B )() A (B ()) ( V ).
容易证明,线性变换的乘积也是线性变换。事 实上,
(A B )( ) A (B ( )) A (B () B ())
A ( ) k1A (1) k2A (2) krA (r ),
14
又如果1 , 2 ,, r之间有一线性关系式 k11 k22 krr 0,
那么它们的象之间也有同样的关系
A ( ) k1A (1) k2A (2) krA (r ),
15
3. 线性变换把线性相关的向量组变成线性 相关的向量组.
A x1A 1 x2A 2 xnA n x1B 1 x2B 2 xnB n B .
20
结论1的意义就是,一个线性变换完全被它 在一组基上的作用所决定。
2.设 1,2,,n是线性空间V的一组基。对于
任意一组向量 1,2,,n一定有一个线性变换A
使
A i i ,i 1, 2, , n.
46
A (B ()) A (B ( )) (A B )( ) (A B )( ),
(A B )(k) A (B (k)) A (kB ())
kA (B ()) k(A B )().
这说明AB是线性的。
既然一般映射的乘法适合结合律,线性变换
的乘法当然也适合结合律,即
(A B )C A (B C ).
29
例3 在 F 22 中定义线性变换 A
X
a c
b
d
X
第七章 线性变换
,即A
1
B .
可以证明,可逆线性变换一定是双射,从而它就是线性空间到其自身的同构映射。
类似于方阵的幂与多项式概念,关于线性变换,也有所谓幂与多项式概念,具体如下 定义 1.7 设 A L(V ), 利用乘法定义可以归纳地定义线性变换的正整数次幂:
2
A
A A , A
3
A
2
A , , A
第七章
线性变换
变换的思想是数学中一个十分重要的思想,几乎可以说无处不在,也可以这么说,如 果不研究变换,数学就变得死水一潭、没有意义。线性变换是高等代数中一个重要概念, 它对研究线性空间本身结构有着重要作用,为矩阵运算的简化以及矩阵的分解提供了方法。
§1
线性空间上的线性变换及其运算
如果说同构映射反映了两个线性空间之间的关系, 那么, 这一节将要介绍的线性空间上 的线性变换反映的将是线性空间到其自身的关系。 定义 1.1 设 V 是数域 P 上一个线性空间,如果映射 A : V V 满足:
3
( x, y, z )T 3 , 定义 A ( x, y, 0)T 3 , 证明: A 是 3 上的线性变换。
4. 设 A 是实数域 上 3 维线性空间 中绕 Oz 轴由 Ox 向 Oy 方向旋转 90 的变换,证
3
明: A 是 上的线性变换,并且 A 5. 6. 证明性质 1.1, 1.3.
3
4
E .
在 P[ x] 中, 对任意 f ( x) P[ x], A f ( x) f' ( x), B f ( x) xf ( x), 其中 f' ( x) 是 f ( x) 的导函数,证明: AB BA E , 这里E 为恒等变换。
高等代数讲义ppt第七章 线性变换
(4) 若A 是可逆的,则矩阵 A 也可逆,且A-1的矩阵是A-1。
例5 设 V是数域P上的n维线性空间,则L(V)与P n×n同构。
例6 设 A1,A2是 n 维线性空间 V 的两个线性变换,证明: A2V⊂A1V 的充要条件是存在线性变换 A 使得 A2=A1A 。
线性变换
§3 线性变换的矩阵
例4 设 A 是n维线性空间V的一个线性变换, A3=2E, B =A2-2A+2E, 证明:A,B都是可逆变换。
线性变换
§3 线性变换的矩阵
§3 线性变换的矩阵
定理1 设1, 2 , , n是线性空间V的一组基, 对V中任意n个向量 1,2 , ,n 存在唯一的线性变换 A∈L(V) 使任的何像得元,素只都要可选以取是适基当
线性变换
§1 线性变换的定义
二、线性变换的性质
性质1 设 A 是V的线性变换,则 A(0) 0, A( ) A()
性质2 线性变换保持线性组合与线性关系式不变。
性质3 线性变换把线性相关的向量组变成线性相关的向量组。
注意: 线性变换可能把线性无关的向量组变成线性相关的 向量组。
例3 设 1,2, ,r 是线性空间V的一组向量,A 是V的一个线
线性变换的加法满足以下运算规律:
(1) A + ( B + C ) = ( A + B ) + C
(2) A + B = B + A
线性变换
§2 线性变换的运算
定义2 设 A∈L(V),k∈P,对k与 A 的数量乘积 kA 定义为:
(kA) k A, V
结论2 对∀A ∈L(V),k∈P 有 kA∈L(V)。
Amn AmAn , (Am )n Amn, m, n N
高等代数7线性变换
⾼等代数7线性变换⾼等代数7 线性变换⽬录线性变换的定义线性空间V到⾃⾝的映射通常称为V的⼀个变换。
定义线性空间V的⼀个变换A称为线性变换,如果对于V中任意的元素α,β和数域P中的任意数k都有A(α+β)=A(α)+A(β)A(kα)+k A(α)线性变换A保持向量的加法和数量乘法。
恒等变换、单位变换 E(α)=α (α∈V)零变换0 0(α)=0 (α∈V)数乘变换设V是数域P上的线性空间,k是数域P上的某个数,定义V的变换:α→kα,α∈V这是⼀个线性变换,称为由数k决定的数乘变换。
简单性质1. 线性空间V的⼀个线性变换A,则A(0)=0,A(−a)=−A(a)2. 线性变换保持线性组合不变β=k1α1+k2α2+⋯+k rαr A(β)=k1A(α1)+k2A(α2)+⋯+k r A(αr)3. 线性变换把线性相关的向量组变成线性相关的向量组。
线性变换的运算线性变换作为映射的特殊情形可以定义乘法运算乘法设A,B是线性空间V上的两个线性变换,它们的乘积AB为(AB)(α)=A(B(α)) (α∈V)线性变换的乘积也是线性变换。
适合结合律 (AB)C=A(BC)⼀般是不可交换的单位变换E EA=AE=A加法设A,B是线性空间V上的两个线性变换,它们的和A+B为(A+B)(α)=A(α)+B(α) (α∈V)线性变换的和还是线性变换交换律 A+B=B+A结合律 (A+B)+C=A+(B+C)零变换0 A+0=A负变换 A+(−A)=0 .负变换也是线性的。
线性变换乘法对加法具有左右分配律A(B+C)=AB+AC(B+C)A=BA+CA数量乘法数域P中的数与线性变换的数量乘法为k A=KA(kl)A=k(l A)(k+l)A=k A+l Ak(A+B)=k A+k B1A=A线性空间V上全体线性变换,对于如上定义的加法与数量乘法,也构成数域P上的⼀个线性空间逆变换V上的变换A称为可逆的,如果有V的变换B存在,使 AB=BA=E这时,变换A称为A的逆变换,称为A−1如果线性变换A是可逆的,那么它的逆变换A−1也是线性变换。
线性代数高等代数知识点总结
线性代数高等代数知识点总结线性代数和高等代数是数学中重要的两个分支,它们是数学中的基础课程,也是其他学科例如物理学、计算机科学等的基础。
本文将对线性代数和高等代数的主要知识点进行总结。
一、线性代数(Linear Algebra):线性代数研究向量空间以及向量空间中的线性变换。
它包含以下重要的知识点:1. 向量空间(Vector Space):向量空间是由向量组成的集合,满足一定的运算规则和性质。
向量空间的定义、性质和例子是线性代数的基础。
2. 线性变换(Linear Transformation):线性变换是一种保持向量空间线性运算性质的映射。
线性变换的定义、矩阵表示和性质是线性代数的重要内容。
3. 矩阵(Matrix):矩阵是线性代数中的基本工具,用于表示线性变换和解线性方程组。
矩阵的定义、运算和性质十分重要。
4. 线性方程组(Linear Equation System):线性方程组是由一组线性方程构成的方程系统。
线性方程组的求解方法、解空间和矩阵表示是线性代数的关键概念。
5. 特征值和特征向量(Eigenvalues and Eigenvectors):特征值和特征向量是线性变换中十分重要的概念,用于描述变换的性质。
特征值和特征向量的定义、计算和应用是线性代数的重点。
6. 内积空间(Inner Product Space):内积空间是定义了内积操作的向量空间。
内积空间的性质、正交性和投影定理是线性代数的重要内容。
7. 正交性和正交矩阵(Orthogonality and Orthogonal Matrix):正交性是内积空间中的重要概念,用于描述向量之间的垂直关系。
正交矩阵的性质和应用是线性代数的核心内容。
8. 行列式(Determinant):行列式是矩阵的一种特殊标量,用于衡量矩阵对线性变换的影响。
行列式的计算、性质和应用是线性代数的重点内容。
9. 线性相关性和线性无关性(Linear Dependence and Linear Independence):线性相关性和线性无关性用于描述向量或向量组之间的关系。
第七章线性变换(小结)
第七章 线性变换(小结)本章的重点: 线性变换的矩阵以及它们对角化的条件和方法. 本章的难点: 不变子空间的概念和线性变换与矩阵的一一对应关系.线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用.线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其它应用学科,都有极为广泛的应用.本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换与矩阵对应和相互转换. 一、线性变换及其运算1. 基本概念: 线性变换,可逆线性变换与逆变换; 线性变换的值域与核,秩与零度; 线性变换的和与差, 乘积和数量乘法, 幂及多项式.2. 基本结论(1) 线性变换保持零向量、线性组合与线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组(2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换.(3) 线性变换的基本运算规律(略).(4) 一个线性空间的全体线性变换关于线性变换的加法与数量乘法作成一个线性空间.(5) 线性空间V 的线性变换A 的象Im(A )= A V 与核ker A = A -1(0) (a) A 的象Im(A )= A V 与核ker A = A -1(0)是V 的(A -)子空间. (b)若dim(V )=n ,则Im(A )由V 的一组基的象生成: 即设V 的一组基n ααα,...,,21, Im(A )= A V =L(A α1, A α2,… ,A αn )={ A α|α∈V }.ker A = A -1(0)= { α∈V | A α=0}.(c)A 的秩(dim Im(A ))+A 的零度(dim ker A )=n .(d)A 是双射⇔A 是单射⇔ Ker(A )={0}⇔A 是满射.(e)像空间的一组基的原像与核空间的一组基合并就是线性空间V 的一组基:取Im A 的一组基r βββ ,,21,存在,,...,21r ααα使得A i i βα=,i=1,2,…,r. 再取ker A 的基,,...1n r αα+则,,...,21r ααα,,...1n r αα+就是V 的一组基. 二、线性变换与矩阵1.基本概念:(1)线性变换在基下的矩阵:设A ∈L(V),取定n 维线性空间V 的一组基n ααα,...,,21,则A α1, A α2,… ,A αn 可由α1,α2,…,αn 线性表示, 即(A α1, A α2,… ,A αn )=( n ααα,...,,21)A ,矩阵A 称为线性变换A 在此基下的矩阵.(2) 一个线性变换在不同基下的矩阵相似:设n ααα,...,,21,n βββ,...,,21是线性空间V 的两组基,(n βββ,...,,21)=(n ααα,...,,21)P, (A α1, A α2,… ,A αn )=( n ααα,...,,21)A ,则(A β1, A β2,… ,A β n )=(n βββ,...,,21)AP P 1-.2.基本结论(1) 若n ααα,,,21 是线性空间V 的一个基, V n ∈∀βββ,,,21 ,则存在唯一A )(V L ∈,使得A n i i i ,,2,1,)( ==βα.(2) 在取定n 维线性空间V 的一个基之后,将V 的每一线性变换与它在这个基下的矩阵相对应,则这个对应使得线性变换的和、乘积、数量乘积的矩阵分别对应于矩阵的和、乘积、数量乘积;可逆线性变换与可逆矩阵对应,且逆变换对应逆矩阵。
高等代数第七章线性变换
高等代数第七章线性变换一、定义:变换:线性空间V到自身的映射通常称为V的一个变换线性变换=线性映射+变换更准确地说线性变换的特点就是满足线性性以及定义域和陪域都是同一个线性空间*这里说的陪域是丘维生的高等代数里提出的一个概念,与值域的每一个自变量都有因变量相对应不同的是陪域包含自变量没有因变量相对应的情况这样解释是为了类比:同构映射=线性映射+双射也就是说同构映射的特点是满足线性性以及每一个自变量都有一个因变量相对应下面引出线性变换的准确定义线性变换:如果对于V中任意的元素 \alpha,\beta和数域P 中任意数k,都有\sigma(\alpha+\beta )=\sigma(\alpha)+\sigma(\beta) ,\sigma(k\alpha)=k\sigma(\alpha) 则称线性空间V的一个变换 \sigma 称为线性变换。
二、线性变换的矩阵所有线性变换的全体可以通过选取V的一组基与所有矩阵的全体建立一一对应的关系,将几何对象和代数对象建立转化。
只要取一组足够好的基,就可以得到足够好的矩阵。
某些特殊情况下,矩阵可以取成对角阵,就称线性变换可以对角化,不可对角的矩阵可以写成若尔当块的形式,则选取的基就为循环基,当做不到选取循环基时就只能上三角化或者下三角化。
三、矩阵的相似1.定义Ⅰ.①相似的定义: A,B\in P^{n\times n} ,若存在可逆矩阵 P ,使得 P^{-1}AP=B ,则称A与B是相似的②相似的标准型:若尔当标准型Ⅱ.类比合同(相抵):本质是初等变换①合同的定义: A,B\in P^{n\times n} 若存在可逆矩阵P ,使得 PAQ=B ,则称A与B是合同的②合同的标准型:PAQ=\left( \begin{array}{cc} E_{r}&0\\ 0&0 \end{array} \right),r=r(A),E(r)=\left( \begin{array}{cc} 1&&\\ &1 &\\ &...\\ &&1 \end{array} \right)_{r\times r}③性质:若 A\sim B ,则 \left| A \right|=\left| B \right| ,r(A)=r(B)若A\sim B ,则 A,B 的特征多项式相同,极小多项式相同若 A\sim B ,则 A'\sim B'*根据定义有 P^{-1}AP=B ,两边同时转置: P'A'(P')^{-1}=B' ,则 A'\sim B'若 A\sim B ,A可逆,则 A^{-1}\sim B^{-1}若 A\sim B ,则 A^{k}\sim B^{k}若 A\sim B , f(x)\in k[x] (f(x)是数域K上的多项式)则 f(A)\sim f(B) (A与B的多项式相似)*多项式的形式是 f(x)=x^{k}+x^{k-1}+...+x+m ,由A^{k}\sim B^{k} ,则 f(A)\sim f(B)若 A\sim B,则 A^{*}\sim B^{*} (A的伴随矩阵相似于B的伴随矩阵)四、矩阵的特征值和特征向量1.定义:对于矩阵A,若存在 x\ne0 (非零向量), x\inK^{n} ,s,t, Ax=\lambda x ,则称 \lambda 是 A 的一个特征值, x 是 \lambda 对应的特征向量2.求特征值、特征向量①求解特征多项式f(\lambda)=\left| \lambda E_{n} -A\right|=0\Rightarrow\lambda_{1},\lambda_{2},...,\lambda_{n} 为特征值②求 (\lambda_{i} E_{n} -A)x=0\Rightarrowx_{1},x_{2},...,x_{n} 为特征向量3.性质:若矩阵A的特征值为 \lambda_{1},...,\lambda_{n}① tr(A)=\lambda_{1}+...+\lambda_{n} ( tr(A) 为矩阵的迹:对角线元素之和为矩阵特征值之和)② \left| A\right|=\lambda_{1}\lambda_{2}...\lambda_{n}③哈密顿-凯莱定理:特征多项式一定是零化多项式f(\lambda)=\left| \lambda E_{n}-A \right|,f(A)=0*零化多项式: f(x)\in k[x] ( f(x) 是数域K上的多项式),若 f(A)=0 则称 f(x) 是 A 的零化多项式eg. f(x)=x^2-3x+1 则有 A^2-3A+E_{n}=0④若 f(A)=0\Rightarrow f(\lambda)=0eg. A^2-3A+E_{n}=0\Rightarrow\lambda^2-3\lambda+1=0则根据④若矩阵A的特征值为\lambda_{1},\lambda_{2},...,\lambda_{n}\Rightarrow A^{-1} 的特征值为\frac{1}{\lambda_{1}},\frac{1}{\lambda_{2}},...,\frac{ 1}{\lambda_{n}}\Rightarrow aA 的特征值为a\lambda_{1},a\lambda_{2},...,a\lambda_{n}\Rightarrow A^{k} 的特征值为\lambda_{1}^k,\lambda_{2}^k,...,\lambda_{n}^k五、矩阵A可对角化的判别办法① A_{n\times n} 可对角化 \Leftrightarrow n阶矩阵A有n个线性无关的特征向量设 \lambda_{1},\lambda_{2},...,\lambda_{s} 是两两不同的特征值②A可对角化 \LeftrightarrowdimV_{\lambda_{1}}+dimV_{\lambda_{2}}+...+dimV_{\lambd a_{s}}=n③(充分但不必要条件)A的特征多项式无重根 \Rightarrow A可对角化六、不变子空间定义:W是线性空间V的子空间,线性变换 \sigma:V\rightarrow V ,若 \sigma(W)\subseteq W ,则称W是\sigma 的不变子空间利用定义求不变子空间。
高等代数.第七章.线性变换.课堂笔记
第七章 线性变换§7.1 线性变换的定义与判别一、线性变换的定义:定义1 设V 为数域P 上线性空间,A 为V 的一个变换(即V ⟶V 的映射),若A 保持加法和数乘运算,即A (α+β)=A (α)+ A (β),∀α,β∈V ,A (kα)=k A (α),∀k ∈P ,则称A 为V 的一个线性变换.注记: 以后我们用花体拉丁字母A,B,C,...表示V 的线性变换,除了特别说明外,本章节中V 均指数域P 上有限维线性空间.例1.说明下列变换均为线性变换: (1)把V 中任一向量都映射为0(称为零变换,记作0); (2)把V 中任一向量α映射为本身(恒等变换,记作E ); (3)取定k ∈P ,把V 中的每一个向量α映射为kα(数乘变换,记作k ).例2.判定下列规则σ是否为指定线性空间的线性变换: (1)ℝ,x -:σ(f (x ))=f′(x );(2)C ,a,b -: σ(f (x ))=∫f (t )dt x0;(3)P n×n : σ(A )=A +A ′,σ2(A )=SAT ,S,T 为固定二个n ×n 矩阵. (4)ℝ,x -n : σ1(f (x ))=xf (x ),σ2(f (x ))=f (x )+1. 解:可验证(1)-(3)均为线性变换,下面证明(1): ∀ f (x )∈ℝ,x -,其导函数唯一确定,且f (x )∈ℝ,x -,因而σ为V ⟶V 的变换,即V 的一个变换,σ(f (x )+g (x ))=(f (x )+g (x ))′=f ′(x )+g ′(x )= σ(f (x ))+ σ(g (x )), ∀k ∈ℝ,σ(kf (x ))=(kf (x ))′=kf ′(x )=kσ(f (x )).(4): σ1与σ2均不是线性变换,取f (x )=x n−1+1=ℝ,x -n ,但σ1(f (x ))=xf (x )=x n +x ∉ℝ,x -n , 因而σ1不是ℝ,x -n 的一个变换, σ2是ℝ,x -n 的一个变换,但运算不保持,因而不是线性变换.习题:P320、1例3.设α为通常几何空间ℝ3中固定的向量,把空间中每个向量η映射为η在α上的内映射(正投影),即Πα: η⟶(α∙η)(α∙α)α是ℝ3的线性变换,这里(α∙η),(α∙α)表示通常向量的内积.证:如图,Πα(η)=OD ⃗⃗⃗⃗⃗ =ηcos (η∙α)α|α|=(α∙η)(α∙α)α,唯一确定, 从而Πα为ℝ3的一个变换,如图,AC ⊥W(垂足为C),OCD LA Wα1α2η因此L 与W 为ℝ3的子空间且ℝ3=W ⊕L ,令 η=α1+α2,α1=OD⃗⃗⃗⃗⃗ =Πα(η),α2∈W , δ=β1+β2,β1=Πα(δ)∈L,β2∈W ,则η+δ=(α1+β1)+(α2+β2),α1+β1∈L,α2+β2∈W , 从而Πα(η+δ)=α1+β1=Πα(η)+Πα(δ), 同理,Πα(kη)=kΠα(η).二、线性变换的性质: 设A 为V 的线性变换,则: (1) A (0)=0, A (−α)=−A (α),∀α∈V ; (2) A (k 1α1+k 2α2+⋯+k t αt )=k 1A (α1)+k 2A (α2)+⋯+k t A (αt ); (3) A 把线性相关的向量组映射为线性相关的向量组(反之不真).2011-04-02A : V ⟶V 线性变换性质: (3) A 为V 中线性相关的向量组,映为V 中线性相关的向量组,即α1,α2,…,αs 相关⟹A (α1), A (α2),…, A (αs )相关;但A (α1), A (α2),…, A (αs )线性相关⇒α1,α2,…,αs 相关. 如A =0,∀ α∈V,α≠0, A (α)=0.(4)设α1,α2,…,αn 为V 的一个基,∀ α∈V,α=x 1α1+x 2α2+⋯+x n αn ⟹A (α)=A (x 1α1+x 2α2+⋯+x n αn ) 线性变换A 由V 中一个基中的像唯一确定;(5)设α1,α2,…,αn 为V 的一个基,则对V 中任一向量组β1,β2,…,βn 必存在一个线性变换 A : V ⟶V ,使得:A (αi )=βi ,1≤i ≤n ;证:作V ⟶V 映射:A (α)= x 1β1+x 2β2+⋯+x n βn ,其中:α=x 1β1+x 2β2+⋯+x n βn ,则A (αi )=βi ,1≤i ≤n ; 下证:A 为V 的线性变换:∀ α=x 1α1+x 2α2+⋯+x n αn ∈V,β=y 1α1+y 2α2+⋯+y n αn ∈V,A (α+β)= A .(x 1+y 1)α1+(x 2+y 2)α2+⋯+(x n +y n )αn /=(x 1+y 1)β1+(x 2+y 2)β2+⋯+(x n +y n )βn=(x 1β1+x 2β2+⋯+x n βn )+(y 1β1+y 2β2+⋯+y n βn ) = A (x 1α1+x 2α2+⋯+x n αn )+ A (y 1α1+y 2α2+⋯+y n αn )= A (α)+A (β)同理,∀k ∈P ,A (kα)=k A (α).§7.2 线性变换的运算为方便,引入记号:Hom (V,V ),它表示数域P 上线性空间V 的所有线性变换的集合。
高等代数第七章线性变换复习讲义
⾼等代数第七章线性变换复习讲义第七章线性变换⼀.线性变换的定义和运算1.线性变换的定义(1)定义:设V是数域p上的线性空间,A是V上的⼀个变换,如果对任意α,β∈V和k∈P都有A(α+β)=A(α)+A(β),A(kα)=kA(α)则称A为V的⼀个线性变换。
(2)恒等变换(单位变换)和零变换的定义:ε(α)=α,ο(α)=0,任意α∈V.它们都是V的线性变换。
(3)A是线性变换的充要条件:A(kα+lβ)=kA(α)+lA(β),任意α,β∈V,k,l∈P.2.线性变换的性质设V是数域P上的线性空间,A是V的线性变换,则有(1)A(0)=0;(2)A(-α)=-A(α),任意α∈V;(3)A(∑kiαi)=ΣkiA(α),α∈V,ki∈P,i=1,…,s;(4)若α1,α2,…,αs∈V,且线性相关,则A(α1),A (α2),…,A(αs)也线性相关,但当α1,α2,…,αs线性⽆关时,不能推出A(α1),A(α2),…,A(αs)线性⽆关。
3.线性变换的运算4.线性变换与基的关系(1)设ε1,ε2,…,εn是线性空间v的⼀组基,如果线性变换A和B在这组基上的作⽤相同,即Aεi=Bεi,i=1,2,…,n,则有A=B.(2)设ε1,ε2,…,εn是线性空间v的⼀组基,对于V 中任意⼀组向量α1,α2,…,αn,存在唯⼀⼀个线性变换A 使Aεi=αi,i=1,2,…,n.⼆.线性变换的矩阵1.定义:设ε1,ε2,…,εn是数域P上n维线性空间v的⼀组基,A是V中的⼀个线性变换,基向量的像可以被基线性表出Aε1=a11ε1+a21ε2+…an1εnAε2=a12ε1+a22ε2+…an2εn……Aεn= a1nε1+a2nε2+…annεn⽤矩阵表⽰就是A(ε1,ε2,…,εn)=(ε1,ε2,…,εn)A,其中a 11 a 12 …… a 1na 21 a 22 …… a 2nA= ……a n1 a n2 …… a nn称为A在基ε1,ε2,…,εn下的矩阵。
高等代数(第7章)
例如,零变换将线性无关的向量组变成线性相关 的向量组.
§7.2 线性变换的运算
设V是数域P上的线性空间, 、是V的两个线 性变换. 1.线性运算 (1)加法: 与的和定义为 ( +)()=()+() ( V) (2)数量乘法:数域P中的数k与的数量乘法定义为 (k)( ) =k(()) ( V) (3) 负变换:的负变换 -定义为 (-)()= - () ( V) 结论:线性空间V上的线性变换的全体,对于如上定 义的加法与数乘运算构成数域P上的线性空间.即
例2 设是几何空间中一个固定的非零向量, 将每个 向量变到它在上的内射影的变换
( , ) ( ) ( , ) .
( )
是一个线性变换.
2.线性变换的简单性质 设 是数域P上线性空间V的一个变换. (i)(0)=0, (-)= - (), V. (ii)(k11+…+ kmm)= k1(1) +…+ km(m) i V, ki P (i=1,2,…,m) (iii) 设i V, (i=1,2,…,m) .若 1,2,…,m线性相关,则 (1),(2),…,(m)线性相关;反之不然.
线性变换被基向量的像唯一确定!
定理1: 设1, 2,…,n是数域P上n维线性空间V 的一组 基, 1,2,…,n是V中任意n个向量,则存在唯一的线性 变换使 (j)= j , j=1,2,…,n.
证明:(i)存在性
x i i V , 定义V的变换: x i i .
仍是线性变换
()()=(()) ( V)
运算律: (i)()= () (ii) (+) = + , (+)+= +(+) (iii)k()=(k)= (k) 注意:线性变换的乘积一般是不可交换的,即 . 例1 在P22中,定义线性变换、 、为
第七章 线性变换
, ε n ,写出
,ε n
高等代数
东北大学秦皇岛分校
例 2 设线性变换A 在基 ε 1 , ε 2 , ε 3 下的矩阵是
⎛1 2 2⎞ ⎜ ⎟ A = ⎜ 2 1 2⎟, ⎜2 2 1⎟ ⎝ ⎠
求A 的特征值与特征向量. 线性变换A 的属于 λ0 的全部特征向量再添上零向量所 成的集合,是V的一个子空间,称为A 的一个特征子空间,记为
高等代数
东北大学秦皇岛分校
例 设V是数域P上一个二维线性空间,
ε 1 , ε 2是一组基线性变换A 在 ε 1 , ε 2 下的矩阵是
⎛ 2 1⎞ ⎜ ⎟. ⎝ −1 0 ⎠ 对V的另一组基 η1 ,η 2 ,有
⎛ 1 −1 ⎞ (η1 ,η 2 ) = (ε 1 , ε 2 ) ⎜ ⎟, ⎝ −1 2 ⎠ k ⎛ 2 1⎞ 求 ⎜ ⎟ . ⎝ −1 0 ⎠
高等代数
东北大学秦皇岛分校
定理 2 设 ε 1 , ε 2 ,
, ε n 使数域P上n维 ,ε n ) A
线性空间V的一组基,在这组基下,每个线性变换按
A (ε 1 , ε 2 ,
, ε n ) = (ε 1 , ε 2 ,
都对应一个 n × n 矩阵,这个对应具有以下的性质: 1) 线性变换的和对应于矩阵的和; 2) 线性变换的乘积对应于矩阵的乘积; 3) 线性变换的数量乘积对应与矩阵的数量乘积; 4) 可逆的线性变换与可逆矩阵对应,且逆变换对 应于逆矩阵.
高等代数
东北大学秦皇岛分校
利用线性变换的矩阵计算向量的像: 定理 3 设线性变换A 在基 ε 1 , ε 2 , 矩阵是A,向量 ξ 在基 ε 1 , ε 2 , 则 A ξ 在基 ε 1 , ε 2 ,
, ε n 下的 , ε n下的坐标是 ( x1 , x2 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 7章 线性变换7.1知识点归纳与要点解析一.线性变换的概念与判别 1.线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。
注:V 的线性变换就是其保持向量的加法与数量乘法的变换。
2.线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3.线性变换的性质设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈。
性质1. ()()00,σσαα==-; 性质2. 若12s ,,,ααα线性相关,那么()()()12s ,,,σασασα也线性相关。
性质3. 设线性变换σ为单射,如果12s ,,,ααα线性无关,那么()()()12s ,,,σασασα也线性无关。
注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组,如果:11111221221122221122s ss s m m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭于是,若()dim V n =,12,,,n ααα是V 的一组基,σ是V 的线性变换, 12,,,m βββ是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++记:()()()()()1212,,,,m m σβββσβσβσβ=那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是12,,,m ηηη的一个极大线性无关组,那么()()()12,ri i iσβσβσβ就是()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的秩等于秩()B 。
4. 线性变换举例(1)设V 是数域P 上的任一线性空间。
零变换: ()00,V αα=∀∈; 恒等变换:(),V εααα=∀∈。
幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使得σ=m0,就称σ为幂零变换。
幂等变换:设σ是数域P 上的线性空间V 的线性变换,如果2σσ=,就称σ为幂等变换。
(2)nV P =,任意取定数域P 上的一个n 级方阵A ,令:111222n n n n x x x x x x A ,P x x x σ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=∀∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
(3)[]V P x =,()()()()[]D f x f x ,f x P x '=∀∈。
(4)n nV P⨯=,()ij A a =是V 中一固定矩阵,()n n X AX ,X P τ⨯=∀∈。
二.线性变换的运算、矩阵 1. 加法、乘法、数量乘法(1) 定义: 设V 是数域P 上的线性空间,,στ是V 的两个线性变换,定义它们的和στ+、乘积στ分别为:对任意的V α∈()()()()στασατα+=+,()()()()σταστα=任取k P ∈,定义数量乘积k σ为:对任意的V α∈()()()k k σασα=σ的负变换-σ为:对任意的V α∈()()()-=-σασα则στ+、στ、k σ与-σ都是V 的线性变换。
(2)()L V ={σσ为V 的线性变换},按线性变换的加法和数乘运算做成数域P 上的维线性空间。
2. 线性变换的矩阵(1)定义:设V 是数域P 上的n 维线性空间,σ是V 的线性变换,12,,,n ααα是V 的一组基,如果:()()()11111221221122221122n n n n n n n nn na a a a a a a a a σαααασαααασαααα=+++=+++=+++那么称矩阵112111222212n n nnnn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭为线性变换σ在基12,,,n ααα下的矩阵。
此时:()()()()()()121212,,,,,,,n n n A σααασασασαααα==(2)线性变换的和、乘积、数量乘积、逆变换、负变换及线性变换多项式的矩阵:设12,,,n ααα是数域P 上的n 维线性空间V 的一组基,(),L V στ∀∈,设它们在12,,,n ααα下的矩阵分别为A,B 。
1)():n n f L V P ⨯→,A σ是数域P 上的线性空间()L V 到数域P 上的线性空间n n P ⨯的同构映射,因此()n n L V P ⨯≅。
2)σ可逆⇔A 可逆3)①στ+、στ与-σ在基12,,,n ααα下的矩阵分别为A B,AB +与A -; ② 任取k P ∈,k σ在基12,,,n ααα下的矩阵为kA ;③ 若σ为可逆线性变换,则1σ-在基12,,,n ααα下的矩阵为1A -;④ 设()1110mm m m f x a x a xa x a --=++++为数域P 上的任一多项式,那么()1110m m m m f a a a a σσσσε--=++++(ε为V 的恒等变换)在基12,,,n ααα下的矩阵为:()1110m m m m n f A a A a A a A a E --=++++。
三.特征值、特征向量与对角矩阵1. 矩阵的特征值与特征向量(1)矩阵的特征多项式:设A 为n 级复方阵,将多项式()λλ=-A n f E A 称为A 的特征多项式。
注: 1)若()ijnnA a =,则:()()()()1112211λλλλ-=-=+-+++++-nn n A n nn f E A a a a A()()()11tr 1λλ-=+-++-nn n A A2) 将λ-n E A 称为矩阵A 的特征矩阵,0λ-=n E A 称为矩阵A 的特征方程。
(2) 定义:n 级方阵A 的特征多项式()λλ=-A n f E A 在复数域上的所有根都叫做其特征值(根),设0λ∈C 是A 的特征值,齐次线性方程组()0λ-=n E A X 的每个非零解都叫做矩阵A 的属于其特征值0λ的特征向量。
(3)求法:1)求()λλ=-A n f E A 在复数域上的所有根12λλλn ,,,(重根按重数计算); 2)对()1λ=k k ,n 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηk k k k l (=-k l n 秩()λ-k n E A ),则矩阵A 的属于特征值λk 的全部特征向量为1122,,ηηη+++k k k k k k k l k l s s s ,其中12,,,,k k k k l s s s 为不全为零的任意常数(复数)。
(4) 重要结论:1)设0λ∈C 是A 的特征值,0X 是A 的属于其特征值0λ的特征向量,()g x 为一复系数多项式。
① ()0λg 为()g A 的特征值,0X 为()g A 的属于特征值()0λg 的特征向量; ② 如果A 还是可逆矩阵,那么1λ与λA分别为1-A 和*A 的特征值,0X 为1-A 的属于特征值1λ的特征向量,0X 为*A 的属于特征值λA的特征向量,③ 若12λλλn ,,,是矩阵A 的全部特征值,那么()()()12λλλn g ,g ,,g 就是()g A 的全部特征值,如果A 还是可逆矩阵,则12111λλλn,,,为1-A 的全部特征值,12λλλnA A A,,,为*A 的全部特征值;2)若12λλλn ,,,是矩阵A 的全部特征值,那么()12tr λλλ=+++n A ,12λλλ=n A 。
2. 线性变换的特征值与特征向量(1)定义:设σ是数域P 上的线性空间V 的线性变换,0λ∈P ,若存在0α≠∈V ,使得()0σαλα=,就称0λ为σ的一个特征值,α为σ的一个属于特征值0λ的特征向量。
(2)线性变换的特征多项式设σ是数域P 上的n 维线性空间V 的线性变换,任取V 的一组基12,,,n ααα,设σ在该基下的矩阵为A ,称矩阵为A 的特征多项式λ-n E A 为σ的特征多项式,记为()σλλ=-n f E A ,即线性变换的特征多项式为其在任意基下矩阵的特征多项式。
(3)求法:设σ是数域P 上的n 维线性空间V 的线性变换。
1)取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;2)求()σλλ=-n f E A 在P 中的所有根12λλλm ,,,(0≤≤m n ,重根按重数计算,且0=m 表示σ无特征值)。
3)若0>m ,对()1λ=k t ,s 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηk k k k l (=-k l n 秩()λ-k n E A ),则线性变换σ的属于特征值λk 的全部特征向量为()()121122,,,,,αααηηη+++k kn k k k k k l k l s s s ,其中12,,,,k k k k l s s s 为P 中不全为零的任意常数。
3. 矩阵相似(1)定义:设A,B 是数域P 上的两个n 级方阵,如果存在数域P 上的n 级可逆矩阵T ,使得1-=T AT B ,就称矩阵A 相似于矩阵B ,记为AB 。
(2)性质:1)矩阵相似是等价关系,即:设A,B,C 都是n 级方阵,那么:①A A ; ② 若A B ,那么B A ;③ 若A B 且B C ,则A C 。
2)若AB ,那么()()λλλλ=-==-A n B n f E A f E B ,因此矩阵A 与矩阵B 有相同的特征值,相同的迹(()()tr tr =A B ),相同的行列式(=A B )。
3)两个实对称阵相似⇔它们有相同的特征值。
(3)有限维线性空间上的线性变换在不同基底下的矩阵彼此相似。
(4)若1-=T AT B ,那么1-+=∀∈kkB T A T ,k Z 。