七年级数学上册 第四章图形认识初步章节测试1 人教新课标版

合集下载

七年级上第四章《图形的初步认识》复习测试题含答案

七年级上第四章《图形的初步认识》复习测试题含答案


B
A 西

54

D
西 B东
第 7题
第 8题
8. 如图所示 , 若 AB∥ CD,则∠ A+∠ M+∠ N+∠C=( C.540° )
第 9题
9. 如图所示 , 由 B 测 A 的方向是 (A. 北偏西 54° ) 10. 如图甲,用一块边长 10cm 的正方形 ABCD厚纸板,做了一套七巧板.将七巧板拼成一座桥(如图
七年级上第四章《图形的初步认识》复习测试题
(时间 120 分钟,满分 120 分) 一、选择题( 每题 3 分,满分 30 分) 1. 下列图形中 ,( A 2)(4)(5)) 不是多面体一
1
.
2
3
2. 如图所示 , 哪个图形不能折成一个正方体表面
4
.( b )
5
6
A

C
D
3. 下列语句中,正确的个数是( B.2 )个 ①两条直线相交 , 只有一个交点 . ②在∠ ABC的边 BC的延长线上取一点 D . ③若∠ 1+∠ 2+∠ 3=90° , 则∠ 1、∠ 2、∠ 3 互余 . ④一个角的余角比这个角的补角小 . 4. 在图中,不同的线段的条数是( C.10 )
∴AD∥ BC(同位角相等 , 两直线平行 )
A
B
25. (本题 12 分) 如图, ∠ 1=80°,∠ 2=100°,∠ BAD=60
(1)直线 AB与 CD是什么关系?请说明理由 .
( 2)求∠ D的度数 .
解 :(1)AB 与 CD平行 . ∵∠ 1=80°(已知)∴∠ ABE=80°(对顶角相等)
3
22
2
3

人教版数学七年级上册第四章《几何图形初步》单元测试题含答案

人教版数学七年级上册第四章《几何图形初步》单元测试题含答案

人教版初中数学七年级上册第四章《几何图形初步》测试一、选择題(每小題3分.共36分)1. 在的内部任取一点C作射线OC,则一定成立的是()A. AAOB > ZAOC B・ZAOC > ZBOCC・ZLAOC = Z1BOC D. ZAOC < ZBOC2. 下列描述正确的是()A. 若乙1+乙2+/3=180。

,则厶1、Z2、乙3互补.B. 两个锐角的和一定是钝角.C. 互补的两个角一定是一个锐角,一个钝角.D. 钝角的一半是锐角.3. 如图1是一块手表,早上8点时针、分针的位置如图所示,那么时针与分针所成的角度是()A. 60°B. 80°C. 120°D. 150°4. 已知:ZJ=25. 12°, Z^ = 25°12%那么ZA、ZB的大小关系为()A・ZA>ZB B. ZA<ZB C. ZB = AA D. ZB>Z^5. 用一对三角尺画出小于180。

的角,一共能画出()个A. 10 B・ 11 C. 12 D. 136. 如图2,若Z1 = Z2,则下列结论正确的是()A. OB 平分Z AOCB. OB、OC是ZAOD的三等分线C. ZAOC=ZBODD. ZAOD=3ZBOC1.如果Za + Z^ = 90°>而Z0与互余.那么Za 与Zy 的关系是() A ・一定互余 B ・一定互补 C. 一定相等 D.不能确定8.如图3,是O 直线AB 上一点.OD 是ZAOC 的平分线,OE 是ZCOB 的平分线,则 ZDOE 的度数是( )A. 70°B. 80°C. 90°D. 100°9. 如图4所示.下列说法中错误的是()A. 04的方向是北偏东40。

•B. 的方向是北偏两 C. OC 的方向是南僞西30。

・D. OD 的方向是正东南方向•10. 如图 5. ZAOD=ZCOB=90°t ZAOC=a.则ZBOD的D. 180°-2aA. 90°+aB. 90°+2aC. 180°-a11. 一个角的余角比它的补角的丄少20°.则这个角为()2A. 30°B・ 40° C. 60° D. 75°12、如图3・OB、OC是乙4OD内部的两条射线,OM平分乙4OB・ ON平分厶COD、若M0D=a・ 3ON=p・则MOC可表示为()A. a—flB. 2a—ftC. a—2fl D・—a二、境空題(毎小題3分,共12分)13. 如图7・厶OC = 90。

人教版数学七年级上册第四章测试题含答案 (1)

人教版数学七年级上册第四章测试题含答案 (1)

人教版数学七年级上册 第四章几何图形初步一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( )A.圆柱B.球C.圆D.圆锥第1题图2.下列说法正确的是( )A.两点确定一条直线B.两条射线组成的图形叫作角C.两点之间直线最短D.若AB =BC ,则点B 为AC 的中点3.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对4.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )A.3cmB.6cmC.9cmD.12cm第4题图 第5题图5.如图,∠AOB 为平角,且∠AOC =27∠BOC ,则∠BOC 的度数是( ) A.140° B.135° C.120° D.40°6.如图,有一个正方体纸巾盒,它的平面展开图是( )7.若一个角的补角的余角是28°,则这个角的度数为( )A.62°B.72°C.118°D.128°8.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A ,D ,B 三点在同一直线上,BM 为∠ABC 的平分线,BN 为∠CBE 的平分线,则∠MBN 的度数是( )A.30°B.45°C.55°D.60°9.两根木条,一根长20cm ,一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A.2cmB.4cmC.2cm 或22cmD.4cm 或44cm10.如图,C 、D 在线段BE 上,下列说法:①直线CD 上以B 、C 、D 、E 为端点的线段共有6条;②图中有2对互补的角;③若∠BAE =100°,∠DAC =40°,则以A 为顶点的所有小于平角的角的度数和为360°;④若BC =2,CD =DE =3,点F 是线段BE 上任意一点,则点F 到点B ,C ,D ,E 的距离之和的最大值为15,最小值为11.其中说法正确的个数有( )A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因 .第11题图 第12题图12.如图所示的图形中,柱体为 (请填写你认为正确物体的序号).13.如图,直线AB ,CD 交于点O ,我们知道∠1=∠2,那么其理由是 .第13题图14.已知BD =4,延长BD 到A ,使BA =6,点C 是线段AB 的中点,则CD = .15.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样), 且任意两站间的票价都不同,共有 种不同的票价,需准备 种车票.16.如图①所示的∠AOB 纸片,OC 平分∠AOB ,如图②,把∠AOB 沿OC 对折成∠COB(OA 与OB 重合),从O 点引一条射线OE ,使∠BOE =12∠EOC ,再沿OE 把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB = °.第16题图 第18题图17.已知A 、B 、C 三点都在数轴上,点A 在数轴上对应的数为2,且AB =5,BC =3,则点C 在数轴上对应的数为 .18.用棱长是1cm 的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm 2.三、解答题(共66分)19.(10分)观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.20.(10分)如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.21.(10分)如图,将两块直角三角尺的顶点叠放在一起.(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的关系,并说明理由.22.(12分)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD=AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.23.(12分)如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).24.(12分)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.参考答案与解析1.A 2.A 3.B 4.D 5.A 6.B 7.C 8.B 9.C10.B 解析:以B ,C ,D ,E 为端点的线段有BC ,BD ,BE ,CE ,CD ,ED 共6条,故①正确;图中互补的角就是分别以C ,D 为顶点的两对角,即∠BCA 和∠ACD 互补,∠ADE 和∠ADC 互补,故②正确;由∠BAE =100°,∠CAD =40°,根据图形可以求出∠BAC +∠CAE +∠BAE +∠BAD +∠DAE +∠DAC =100°+100°+100°+40°=340°,故③错误;当F 在线段CD 上时最小,则点F 到点B ,C ,D ,E 的距离之和为FB +FE +FD +FC =2+3+3+3=11,当F 和E 重合时最大,则点F 到点B 、C 、D 、E 的距离之和为FB +FE +FD +FC =8+0+3+6=17,故④错误.故选B.11.两点之间,线段最短 12.①②③⑥ 13.同角的补角相等14.1 15.10 20 16.12017.-6或0或4或10 18.3019.解:图略.(10分)20.解:(1)∵C 是线段BD 的中点,BC =3,∴CD =BC =3.又∵AB +BC +CD =AD ,AD =8,∴AB =8-3-3=2.(5分)(2)∵AD +AB =AC +CD +AB ,BC =CD ,∴AD +AB =AC +BC +AB =AC +AC =2AC .(10分)21.解:(1)由题意知∠ACD =∠ECB =90°,∴∠ACB =∠ACD +∠DCB =∠ACD +∠ECB -∠ECD =90°+90°-35°=145°.(3分)(2)由(1)知∠ACB =180°-∠ECD ,∴∠ECD =180°-∠ACB =40°.(6分)(3)∠ACB +∠DCE =180°.(7分)理由如下:∵∠ACB =∠ACD +∠DCB =90°+90°-∠DCE ,∴∠ACB +∠DCE =180°.(10分)22.解:(1)设BC =x cm ,则AC =3x cm.又∵AC =AB +BC =(20+x )cm ,∴20+x =3x ,解得x =10.即BC =10cm.(4分)(2)∵AD =AB =20cm ,∴DC =AD +AB +BC =20cm +20cm +10cm =50cm.(8分)(3)∵M 为AB 的中点,∴AM =12AB =10cm ,∴MD =AD +AM =20cm +10cm =30cm.(12分)23.解:(1)图略.(4分)(2)∠BAC =90°-80°+90°-20°=80°.(8分)(3)约2.3cm ,即实际距离约23海里.(12分)24.解:(1)由已知得∠BOC =180°-∠AOC =150°,又∠COD 是直角,OE 平分∠BOC ,∴∠DOE =∠COD -12 ∠BOC =90°-12×150°=15°.(3分) (2)∠DOE =12a .(6分) 解析:由(1)知∠DOE =∠COD -12∠BOC =90°,∴∠DOE =90°-12(180°-∠AOC )=12∠AOC =12α. (3)①∠AOC =2∠DOE .(7分)理由如下:∵∠COD 是直角,OE 平分∠BOC ,∴∠COE =∠BOE =90°-∠DOE ,∴∠AOC =180°-∠BOC =180°-2∠COE =180°-2(90°-∠DOE),∴∠AOC=2∠DOE.(9分)②4∠DOE-5∠AOF=180°.(10分)理由如下:设∠DOE=x,∠AOF=y,∴∠AOC-4∠AOF=2∠DOE-4∠AOF=2x-4y,2∠BOE+∠AOF=2(90°-x)+y=180°-2x+y,∴2x -4y=180°-2x+y,即4x-5y=180°,∴4∠DOE-5∠AOF=180°.(12分)指导学生学习的技能指导学生学习是指在课堂教学中,教师以学生学习的心理过程为依据,为学生的自主学习创设有利环境,发挥学生的主观能动作用,对学生的学习过程进行指导和引导,从而达到教学目标的行为方式。

新人教版七年级数学上册第四章《几何图形初步》单元测试卷及答案详细解析

新人教版七年级数学上册第四章《几何图形初步》单元测试卷及答案详细解析

新人教版七年级数学上册第四章《几何图形初步》单元测试卷一、选择题1、下列错误的判断是( )A.任何一条线段都能度量长度B.因为线段有长度,所以它们之间能比较大小C.利用圆规配合尺子,也能比较线段的大小D.两条直线也能进行度量和比较大小2、已知线段AB=3cm,点C在线段AB所在的直线上,且BC=1cm,则线段AC的长度为()A.4cm B.2cm C.2cm或4cm D.3cm3、如图所示的各图中,不是正方体表面展开图的是()A.B.C.D.4、由若干个相同的小正方体组合而成的一个几何体从不同方向看到的图形如图,则组成这个几何体的小正方体的个数是()A.3 B.4 C.5 D.65、把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富 B.强 C.文 D.民6、一个锐角和它的余角之比是5∶4,那么这个锐角的补角的度数是()A.100°B.120°C.130°D.140°7、如图:OC是AOB的平分线,OD是BOC的平分线,下列各式中正确的是()A.∠COD=∠AOC B.∠AOD=∠AOBC.∠BOD=∠AOB D.∠BOC=∠AOB8、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON ⊥OM,若∠CON=55°,则∠AOM的度数为()A.35°B.45°C.55°D.65°9、如图,已知点M是直线AB上一点,∠AMC=52°48′,∠BMD=72°19°,则∠CMD等于()A.49°07′B.54°53′C.55°53′D.53°7′10、下列说法正确的个数是().①角是由两条射线组成的图形;②角的大小与边的长短无关,只与两条边张开的角度有关;③角的两边是两条射线,④把一个角放到一个放大10倍的放大镜下观看,角度数也扩大10倍.A.1个B.2个C.3个D.4个二、填空题11、一个角的余角比这个角的补角的一半小40°,则这个角为________度.12、用两个钉子就可以把木条钉在墙上,其依据是_________.13、已知如图:直线AB和CD相交于点O,若AOD=5AOC,则BOC=___________。

人教版数学七年级上册第四章 几何图形初步测试题(含答案)

人教版数学七年级上册第四章   几何图形初步测试题(含答案)

第四章几何图形初步测试题一、选择题(本大题共10小题,每小题3分,共30分)1.(2021年贵阳)下列几何体中,圆柱体是()A B C D2.(2021年河北)如图1,已知a,b,c,d四条线段中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A. aB. bC. cD. d3. 一个20°的角放在10倍的放大镜下看是()A. 2°B. 20°C. 200°D. 无法判断图14. 如图2所示的工件,从正面看到的平面图形是()A B C D 图25. 下列生活中的实例,可以用“两点之间,线段最短”来解释的是()A. 把一根木条固定到墙上需要两颗钉子B. 植树时只要确定两个坑的位置,就能确定同一行的树坑所在的直线C. 小狗看到远处的食物,总是径直奔向食物D. 经过刨平木板上的两个点,能弹出一条笔直的墨线6. 将下列平面图形绕虚线旋转一周,能够得到图3所示的立体图形的是()A B C D 图37. 图4所示的是一副特制的三角尺,用它们可以画出一些特殊角.在下列选项中,不能用这副三角尺画出的角度是()A. 18°B. 108°C. 82°D. 117°8. 如图5所示的正方体纸盒,展开后可以得到()图4A B C D 图5第 1 页共6 页9. 把一副三角尺ABC与BDE按图6所示方式拼在一起,已知∠ABC=60°,∠C=∠DBE=90°,其中A,D,B 三点在同一条直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A. 55°B. 30°C. 45°D. 60°图6 图710. 如图7,点C,D为线段AB上两点,AC+BD=8,且AD+BC=107AB.设CD=t,则方程3x-7(x-1)=2t-2(x+3)的解是()A. x=2B. x=3C. x=4D. x=5二、填空题(本大题共6小题,每小题3分,共18分)11. 如图8所示的图形中,①能折叠成,②能折叠成 .①②图812. 若∠A=6.6°,∠B=6°6′,则∠A________∠B(填“>”“<”或“=”).13. 如图9,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它北偏西60°的方向上,观测到小岛B在它南偏西38°的方向上,则∠AOB的度数是.图9 图10 图1114. 已知点A,B,P在一条直线上且不重合,则下列等式:①AP=BP;②BP=12AB;③AB=2AP;④AP+PB=AB,其中不能判断点P是线段AB中点的有.(填序号)15. 将长方形纸片ABCD按如图10所示的方式折叠,EF,EG为折痕,点A落在A',点B落在B',点A',B',E在同一直线上,则∠FEG=°.16. 把图11-①所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图11-②依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为.三、解答题(本大题共6小题,共52分)17.(6分)图12是由9个小正方体组成的一个几何体,请画出从三个方向看这个几何体得到的平面图形.图1218.(8分)如图13,已知AB=2,延长线段AB至点C,使BC=2AB,点D是线段AC的中点,用刻度尺画出图形,并求线段BD的长度.图1319.(8分)已知∠α=76°,∠β=41°31′,求:(1)∠β的余角;(2)∠α的2倍与∠β的12的差.20.(8分)如图14,C为线段AB的中点,E为线段AB上的点,D为线段AE的中点.(1)若线段AB=a,CE=b,且(a-15)2+∣2b-9∣=0,求a,b的值;(2)在(1)的条件下,求线段CD的长.图1421.(10分)聪聪在学习了“展开与折叠”这部分内容后,明白了很多几何体都能展开成平面图形,于是他在家用剪刀把一个长方体纸盒(如图15-(1))剪开了,可是他一不小心多剪了一条棱,把纸盒剪成了两部分,即图15-(2)中的①和②.根据你所学的知识,回答下列问题:(1)若这个长方体纸盒的长、宽、高分别是8 cm,4 cm,2 cm,则该长方体纸盒的体积是多少?(2)聪聪一共剪开了____________条棱;(3)现在聪聪想将剪掉的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪掉的②粘贴到①中的什么位置?请你帮助他在①上补全一种情况.图1522.(12分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图16-①,当∠BOC=40°时,求∠DOE的度数;(2)如图16-②,当射线OC在∠AOB内绕O点旋转时,OD,OE始终分别是∠AOC与∠BOC的平分线,则∠DOE的大小是否发生变化?说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,OD,OE仍始终是∠AOC与∠BOC的平分线,直接写出∠DOE的度数(不必写过程).①②图16附加题(共20分,不计入总分)1.(6分)图1是从正面、左面、上面看由一些相同的小正方体搭成的几何体得到的平面图形,则搭成这个几何体的小正方体的个数是()A. 4B. 5C. 6D. 7图12.(14分)已知A,B两点在数轴上的位置如图2所示,其中点A表示的有理数为-4,且AB=10.点P从点A 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t(t>0)秒.(1)当t=1时,线段AP的长为,点P表示的有理数为;(2)当PB=2时,求t的值;(3)若M为线段AP的中点,N为线段PB的中点,在点P运动的过程中,线段MN的长度是否发生变化?若发生变化,请说明理由;若不发生变化,求出线段MN的长.图2(吉林刘春霞)第四章几何图形初步测试题参考答案一、1. C 2. A 3. B 4. C 5. C 6. D 7. C 8. A 9. C10. D 提示:因为AD+BC=107AB=AC+CD+BD+CD,AC+BD=8,AB=AC+BD+CD,所以107(8+CD)=2CD+8,解得CD=6,即t=6.所以方程3x-7(x-1)=3-2(x+3)的解为x=5.二、11. 五棱柱圆锥12. >13. 82°14. ②③④15. 90 16. 富三、17. 解:(1)如图1所示.图118. 解:如图2所示.CA B D图2由BC=2AB,AB=2,得BC=4,所以AC=AB+BC=2+4=6.因为点D是线段AC的中点,所以AD=12AC=12×6=3.所以BD=AD-AB=3-2=1.19. 解:(1)90°-∠β=90°-41°31′=48°29′;(2)2∠α-12∠β=2×76°-12×41°31′=152°-20°45′30″=131°14′30″.20. 解:(1)由(a-15)2+∣2b-9∣=0,得a-15=0,2b-9=0.解得a=15,b=4.5.(2)因为C为线段AB的中点,AB=15,CE=4.5,所以AC=7.5,所以AE=AC+CE=7.5+4.5=12.因为D为线段AE的中点,所以DE=12AE=12×12=6,所以CD=DE−CE=6-4.5=1.5.21. 解:(1)该长方体纸盒的体积是:8×4×2=64(cm3);(2)8(3)答案不唯一,有以下三种情况供参考,如图3.图322.解:(1)∠AOC=90°-∠BOC=50°.因为OD,OE分别平分∠AOC和∠BOC,所以∠COD=12∠AOC=25°,∠COE=12∠BOC=20°.所以∠DOE=∠COD+∠COE=45°. (2)∠DOE的大小不变.理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB=45°.(3)∠DOE=45°或135°.提示:分两种情况:如答图①,∠DOE=45°;如答图②,∠DOE=135°.①②附加题1. B 提示:由从正面看和从上面看可知,几何体的底层有3个小正方体;由从正面看和从左面看可知,几何体的第二层有2个小正方体.则搭成这个几何体的小正方体的个数为3+2=5.2. 解:(1)2 -2(2)当点P在点B左侧时,因为AB=10,AP=2t,所以PB=10-2t.由题意,得10-2t=2,解得t=4.当点P在点B右侧时,因为AB=10,AP=2t,所以PB=2t-10.由题意,得2t-10=2,解得t=6.综上,t=4或t=6.(3)如图1,当点P在线段AB上时,MN=MP+PN=12AP+12PB=12(AP+PB)=12AB=12×10=5;如图2,当点P在AB延长线上时,MN=MP-NP=12AP-12PB=12(AP-PB)=12AB=12×10=5.综上,线段MN的长度不发生变化,其值为5.。

新人教版七年级上册 第四章 图形认识初步目标检测(五套试卷和参考答案)

新人教版七年级上册 第四章 图形认识初步目标检测(五套试卷和参考答案)

第四章 图形认识初步目标检测试卷(四)一、 精心选一选:(每小题3分,共30分)1、过不在一条直线直上的A 、B 、C 三点中每两个点作一条直线,共可作直线( )A 1条B 2条C 3条D 4条2、8点30分,时钟的时针与分针所夹的角度是( )A 60°B 70°C 75°D 80°3、如图,共有( )个小于180°的角A 5B 6C 7D 84、如图,哪一个图形能够折叠成一个无盖的盒子( )AB C D5、正方体的三视图为( )A 三个大小一样的正方形B 一个正方形和两个长方形C 三个大小不一样的正方形D 以上都不对6、一个角是钝角,那么这个角的一半是( )A 锐角B 直角C 钝角D 以上都有可能7、下列说法中正确的是( )A 延长线段AB B 延长射线OAC 在直线AB 的延长线上取一点CD 延长线段BA 到C ,使BC=AB8、若两个角的度数和为90°,则这两个角中至少有一个角不大于( )A 30°B 45°C 50°D 55°9、38°15′和38.15°的关系是( )A 38°15′>38.15°B 38°15′<38.15°C 38°15′=38.15°D 以上都有可能10、下列说法正确的是( )A 在角的一边的延长线上取一点AB 角的两边张的越开,角就越大C 用一个放大倍率为2倍的放大镜放大一个20°的角是40°D 角的两边伸的越长,角就越大二、 耐心填一填:(每小题3分,共30分)1、直线有 个端点,射线有 个端点,线段有 个端点2、21周角= 平角= 直角= ° 3、一个几何体的三种视图如图,它是4、立体图形可分为 体、 体和 体 3题图 主视图 左视图 俯视图5、圆柱的侧面展开图是 ,圆锥的侧面展开图是 ,棱柱的侧面展开图是6、68°12′的余角为7、如图,图中有 条线段8、点A 是线段BC 外一点,一定有AB+AC BC ,理由是9、如图,OC 是∠AOB 的平分线,则∠AOC = 10、将一个直角三角尺绕着一条直角边旋转一周得到的几何体是 三、用心做一做:(本大题共60分)1、计算下列各题:(每小题4分,共8分)(1)、22°18′×5 (2)90°-57°23′27″2、(本题8分)已知线段AB=8cm ,点C为线段AB 上任一点,M 是AC中点,N是BC 中点,求线段MN 的长?3、(本题8分)读下列语句并画出图形:(1)画直线AC ;(2)画线段AB ;(3)画射线BC ;(4)直线AC 与BD 相交于点O4、(本题12分)指出下面每组左面三个图形是右面物体分别从哪个方向观察到的图形,如图(1)(2)C D A B E 7题图 · · · · · A O C B 9题图· A · B · D·C5、(本题12分)如图所示,O 是直线AB 上一点,OC 是任意一条射线,OD 一平分∠AOB ,OE 平分∠BOC ,那么射线OD 与OE 互相垂直吗?请说明理由6、(本题12分)如图所示,一辆汽车在马路上行驶,∠AOB=40°,∠CO’D=140°,若这辆汽车向右拐,则需拐多少度的角?若这辆汽车向左拐,则需拐多少度的角?参考答案:一、1、C ;2、C ;3、C ;4、D ;5、A ;6、A ;7、A ;8、B ;9、A ;10、B二、1、0,1,2;2、1,2,90;3、三棱柱;4、柱,锥,球;5、长方形,扇形,长方形;6、21°48′;7、10;8、>,两点之间线段最短;9、∠BOC ;10、圆锥;三、1、(1)111°30′,(2)32°36′33″;2、4cm ;3、略;4、(1)俯视图,左视图、主视图,(2)主视图、俯视图、左视图;5、互相垂直;6、140°、40°。

七年级数学上册第四章几何图形初步测试卷新版新人教版

七年级数学上册第四章几何图形初步测试卷新版新人教版

DCBABABABA第四章《几何图形初步》测试题一、选择题(每题6分,共36分)1.以下说法中正确的选项是()A.射线AB和射线BA是同一条射线B.延长线段AB和延长线段BA的含义是相同的C.延长直线ABD.2.如图,以下说法中不正确的选项是()A.∠1与∠AOB是同一个角B. ∠AOC也能够用∠O来表示C. 图中共有三个角:∠AOB,∠AOC,∠BOCD. ∠β与∠BOC是同一个角3.甲看乙的方向是北偏东300,那么乙看甲的方向是()第2题图A.南偏东600B.南偏西600C.南偏西 300D.南偏东3004. 别离从正面、左面和上面这三个方向看下面的四个几何体,取得如下图的平面图形,那么那个几何体是()5. 以下四个图形中,通过折叠能围成如下图的几何图形的是()6.一个角的度数为321154'''︒,那么那个角的余角和补角的度数别离为(A. 738435'''︒,7384125'''︒ B.738435'''︒,3211144'''︒C.7384125,321136'''︒'''︒ D.3211144,321136'''︒'''︒二、填空题(每题6分,共24分)第7题图7.如图,从学校A到书店B最近得线路是①号线路,得出那个结论的依照是________________________.8.如图,各图中阴影部份绕着直线AB旋转3600,所形成的立体图形别离是__________________________.第8题图9.如图,以图中的A,B,C,D,E为端点的线段共有__________条.CBA书店学校B第9题图10.如下图,两个直角三角形的直角极点重合,若是∠AOD=1280,那么∠BOC=_________.第10题图三、解答题(每题10分,共40分)11.如图,假设CB=4cm ,DB=7cm ,且D 是AC 的中点,求线段DC 和AB 的长度.12. 借助一副三角尺画出150,1050,1200,1350的角13.直线AB ,CD 相交于点O ,OE 平分∠AOD ,∠FOC=900,∠1=400,求∠2与∠3的度数D EA D CB A14.计算:(1)13679348'︒+'︒ (2)57121⨯'︒参考答案:1.D2.B3.C4.C5.B6.A7.两点之间,线段最短8.圆柱、圆锥、球9.1010.52011.DC=3cm ,AB=10cm12.略13.∠2=500,∠3=650 14.(1)011160',(2)521060'.。

人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

第四章几何图形初步单元测试一.选择题1.对如图所示几何体的认识正确的是()A.棱柱的底面是四边形B.棱柱的侧面是三角形C.几何体是四棱柱D.棱柱的底面是三角形2.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于()A.点动成线B.线动成面C.面动成体D.以上都不对3.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线4.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.85.下列说法正确的是()A.两点之间的线段,叫做这两点之间的距离B.87'等于1.45°C.射线OA与射线AO表示的是同一条射线D.延长线段AB到点C,使AC=BC6.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.7.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间8.如图,将一副三角板叠在一起使直角顶点重合于点O,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是()A.∠BOA>∠DOC B.∠BOA﹣∠DOC=90°C.∠BOA+∠DOC=180°D.∠BOC≠∠DOA9.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离10.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.10二.填空题11.若一个六棱柱,则它有条棱,有个面.12.秒针旋转一周时,形成一个圆面,用数学知识可以理解为.13.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.14.如图,线段AB=3,延长AB到点C,使BC=2AB,则AC=.15.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.16.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.17.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.18.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.19.如图,C、D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=m,CD =n,则线段EF的长为.20.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)三.解答题21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.22.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,求∠BOE的度数.25.如图,C是线段AB上一点,AC=5cm,点p从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.26.线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB 的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.参考答案1.解:如图所示的几何体是三棱柱,它有两个全等的三角形的底面,三个矩形的侧面,因此选项ABC均不符合题意,选项D符合题意;故选:D.2.解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.3.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.4.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.5.解:A、应为:连结两点的线段的长度叫做这两点间的距离,故本选项错误;B、87'=60'+27'=1°+()°=1.45°,故本选项正确;C、射线OA的端点是点O,射线AO的端点是点A,所以,它们不是同一条射线,故本选项错误;D、延长线段AB到点C,则AC一定大于BC,不能使AC=BC,故本选项错误.故选:B.6.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.7.解:∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选:A.8.解:因为是直角三角板,所以∠AOC=∠BOD=90°,所以∠BOA+∠DOC=∠AOC+∠BOC+∠DOC=∠AOC=∠BOD=180°,故选:C.9.解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.10.解:∵OC平分∠DOA,∴∠AOC=∠COD,∵OE平分∠DOB,∴∠DOE=∠BOE,∴∠COE=90°,∴∠AOC+∠BOE=90°,∠AOC+∠DOE=90°,∠COD+∠BOE=90°,∠COD+∠DOE =90°,∠COF+∠EOF=90°,∵OF⊥AB,∴∠AOC+∠COF=90°,∠COD+∠COF=90°,∠BOE+∠EOF=90°,∠BOD+∠DOF =90°,∠DOE+∠EOF=90°,∴互余的角有10对.故选:D.11.解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有18条棱,8个面;故答案为18,8.12.解:根据点、线、面、体之间的关系可得,线动成面.13.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.14.解:∵AB=3,∴BC=2AB=6,∴AC=AB+BC=3+6=9.故答案为:9.15.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.16.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.17.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.18.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x ∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.19.解:∵AB=m,CD=n.∴AB﹣CD=m﹣n,∵E、F分别是AC、DB的中点,∴CE=AC,DF=DB,∴CE+DF=(m﹣n),∴EF=CE+DF+DC=(m﹣n)+n=m+n,故答案为:m+n.20.解:∵∠AOB和∠BOC互为补角,∴∠AOB+∠BOC=180°,∵∠BOD=,∴3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∵∠COD+∠BOD=∠BOC,∴180°﹣3∠BOD=∠COD+∠BOD,∴∠COD+4∠BOD=180°,∵∠COD比∠BOD大m°(m<30),∴∠COD﹣∠BOD=m°,∴∠BOD=()°,∠COD=()°∴∠BOC=()°,∴∠AOB=180°﹣∠BOC=(108﹣)°,∴∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).21.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),22.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.25.解:(1)设AB=xcm,根据题意可得:(x﹣5)﹣=3,解得:x=12,答:AB的长为12cm;(2)①由题意可得:3t=t+5,解得:t=,故点P与点Q重合时(未到达点B),t的值为;②当点P追上点Q前相距2cm,由题意可得:3t+2=t+5,解得:t=,当追上后相距2cm,由题意可得:3t﹣2=t+5,解得:t=,总上所述:t=或t=.26.解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.。

人教版七年级数学上册第四章 几何图形的初步单元测试(含答案)

人教版七年级数学上册第四章 几何图形的初步单元测试(含答案)

第四章几何图形的初步一、单选题1.如图,图、图、图均由四个全等的等边三角形组成,其中能够折叠围成一个立体图形的有()A.只有图①B.只有图①、图②C.图①、图②、图③ D.只有图②、图③2.下列平面图形中不能围成正方体的是()A.B.C.D.3.某校年级(1)班在“迎中考日誓师”活动中打算制作一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字如图是该班同学设计的正方体挂坠的平面展开图,那么“谁”对面的字是()A.成B.功C.其D.我4.将一个底面直径是10厘米,高为36厘米的圆柱体锻压成底面直径为20厘米的圆柱体,在这个规程中不改变的是圆柱的()A.高B.侧面积C.底面积D.体积5.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.1个B.2个C.3个D.4个6.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹7.点A,B,C在一条直线上,AB=6,BC=2,点M是AC的中点,则AM的长度为()A.4 B.6 C.2或6 D.2或48.如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间线段最短D.经过两点有且仅有一条直线9.将直角三角尺和长方形纸片如图放置,图中与∠1互余的角有A.2个B.3个C.4个D.5个10.如图,点位于点的().A.南偏东方向上B.北偏西方向上C.南偏东方向上D.南偏西方向上11.如图,直线AB,CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD的度数是()A.35°B.45°C.30°D.40°12.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.二、填空题13.如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则从C岛看A、B两岛的视角∠ACB=_______.14.如图,平面展开图折叠成正方体后,相对面上的两个代数式值相等,则x+y=________.15.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=_____.16.线段,C是线段AB上一点,AC=4,M是AB的中点,点N是AC的中点,则线段NM的长是________.三、解答题17.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图。

(新版人教版)七年级上第四章《图形认识初步》测试题及答案

(新版人教版)七年级上第四章《图形认识初步》测试题及答案

D CB AB A第1题图会社谐和设建DC BAβββααα第3题图七级数学第四章几何图形初步测试题(新课标)(时限:100分钟 总分:100分)一、选择题:将下列各题正确答案的代号填在下表中。

每小题2分,共24分。

1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是( )A.和B.谐C.社D.会2.下面左边是用八块完全相同的小正方体搭成 的几何体,从上面看该几何体得到的图是( )A B C D3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( ) A. 正方体、圆柱、三棱柱、圆锥 B. 正方体、圆锥、三棱柱、圆柱 C. 正方体、圆柱、三棱锥、圆锥 D. 正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB ,线段CD ,射线EF ,其中能相交的是( )5.下列说法中正确的是( )A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长 6.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )1乙甲N MP D C B A B ()D C A D C B A 第9题图BA 7.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个 8. C 是线段AB 上一点,D 是BC 的中点,若AB =12cm ,AC =2cm ,则BD 的长为( ) A. 3cm B. 4cm C. 5cm D. 6cm9.如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为( )A. 1B. 2C. 3D. 410.用度、分、秒表示91.34°为( ) A. 91°20/24// B. 91°34/ C. 91°20/4// D. 91°3/4// 11.下列说法中正确的是( )A.若∠AOB =2∠AOC ,则OC 平分∠AOBB.延长∠AOB 的平分线OCC.若射线OC 、OD 三等份∠AOB ,则∠AOC =∠DOCD.若OC 平分∠AOB ,则∠AOC =∠BOC12.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°; 乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错 二、填空题:本大题共8小题,每小题3分,共24分。

(新版人教版)七年级上第四章《图形认识初步》检测试卷

(新版人教版)七年级上第四章《图形认识初步》检测试卷

第四章 图形认识初步 检测试卷(满分100分)班级 姓名 成绩一、填空题(每空4分,共40分) 1.圆柱的侧面展开图是 ;2.已知α∠与β∠互余,且40α=∠51',则β∠为 ; 3.如果一个角的补角是150,那么这个角的余角是________;4.乘火车从A 站出发,沿途经过3个车站可到达B 站,那么在A B ,两站之间最多共有________种不同的票价; 5.如图,若是中点,是中点,若,,_________。

6.要在墙上固定一根木条,至少要 个钉子,根据的原理是 。

7.22.5=________度________分; 8. 1224'=________; 9.小明每天下午5:30回家,这时分针与时针所成的角的度数为____度。

二、选择题(每题4分,共20分) 10.下列判断正确的是( )A.平角是一条直线 B.凡是直角都相等C.两个锐角的和一定是锐角 D.角的大小与两条边的长短有关 11.下列哪个角不能由一副三角板作出( )A .︒105B . ︒15C .︒175D .︒135 12.若︒+︒=∠︒-︒=∠m m 90,90βα,则∠α与∠β的关系是( )A .互补B .互余C .和为钝角D .和为周角13.平面上A 、B 两点间的距离是指( )A . 经过A 、B 两点的直线 B. 射线AB C. A 、B 两点间的线段 D. A 、B 两点间线段的长度14.一个立体图形的三视图如图所示,那么它是 ( )A .圆锥B .圆柱C .三棱锥D .四棱锥三、解答题:(共40分) 15.根据下列要求画图:(10分) (1)连接线段AB ; (2)画射线OA ,射线OB ;(3)在线段AB 上取一点C ,在射线OA 上 取一点D (点C 、D 不与点A 重合),画直 线CD ,使直线CD 与射线OB 交于点E 。

16、如图所示的几何体是由5个相同的正方体搭成的, 请画出它的主视图、左视图和俯视图(9分)17.如图所示,点O 是直线AB 上一点,OE ,OF 分别平分∠AOC 和∠BOC ,若∠AOC =68°,则∠BOF 和∠EOF 是多少度?(9分)18.(1)如下图,已知点C 在线段AB 上,且AC=6cm ,BC=4cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的的长度.(2)在(1)中,如果AC=acm ,cm BC b ,其它条件不变,你能猜出MN 的长度吗?请你用 一句简洁的话表述你发现的规律.(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm ,BC=4cm ,点C 在直线AB 上,点M 、N 分别是AC 、BC 的中点,求MN 的长度。

人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

第四章几何图形初步单元测试一.选择题1.下列几何体中,是棱锥的为()A.B.C.D.2.沿图中虚线旋转一周,能围成的几何体是()A.B.C.D.3.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外4.如图,已知线段AB=6cm,在线段AB的延长线上有一点C,且BC=4cm,若点M为AB中点,那么MC的长度为()A.5cm B.6cm C.7cm D.无法确定5.已知∠A=30°45',∠B=30.45°,则∠A()∠B.(填“>”、“<”或“=”)A.>B.<C.=D.无法确定6.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′7.甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80kmD.南偏西40°方向,距离为80km8.在下列说法中:①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上差一刻六点时,时针和分针形成的角是直角;③钟表上九点整时,时针和分针形成的角是直角.其中正确的个数是()A.1B.2C.3D.49.如图,∠AOB=∠COD=90°,∠AOD=146°,则∠BOC的度数为()A.43°B.34°C.56°D.50°10.如图,点A,B,C,D,E,F在同一条直线上,则图中线段和射线的条数分别为()A.10,10B.12,15C.15,12D.15,15二.填空题11.如果一个棱柱共有15条棱,那么它一定是棱柱.12.下列平面图形中,将编号为(只需填写编号)的平面图形绕轴旋转一周,可得到图中所示的立体图形.13.平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线条.14.已知点C是线段AB的中点,若AB=6,则线段AC的长为.15.若∠A=59.6°,则它的余角为°′.16.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为.17.如图,点C在线段AB上,且AC:BC=2:3,点D在线段AB的延长线上,且BD=AC,E为AD的中点,若AB=40cm,则线段CE=.18.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)19.将三角形AOB绕顶点O旋转到如图所示的位置,若∠AOD=100°,∠AOC=20°,则∠BOA=.20.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF的长度为cm.三.解答题21.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,其中一条直角边旋转一周,得到了一个几何体,请计算出几何体的体积.(锥体体积=底面积×高)22.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD 和∠AOC互余,并求∠COD的度数.23.如图,已知线段AB=12 cm,点C为线段AB上的一动点,点D,E分别是AC和BC 中点.(1)若点C恰好是AB的中点,则DE=cm;(2)若AC=4 cm,求DE的长;(3)试说明无论AC取何值(不超过12 cm),DE的长不变.24.如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.25.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.参考答案1.解:选项中的四个几何体的名称分别为:圆柱,圆锥,四棱柱,四棱锥,故选:D.2.解:将长方形沿着一边旋转一周,所形成的几何体是圆柱,故选:B.3.解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.4.解:∵M是线段AB的中点,AB=6cm,∴MB=AB=3cm,∵BC=4cm,∴MC=MB+BC=3+4=7(cm),故选:C.5.解:30.45°=30°+0.45×60′=30°27′,∵30°45′>30°27′,∴30°45'>30.45°,∴∠A>∠B,故选:A.6.解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.7.解:如图:∵乙城市位于甲城市北偏东50°方向,距离为80km,∴甲城市位于乙城市南偏西50°方向,距离为80km,故选:B.8.解:①钟表上九点一刻时,时针和分针形成的角是180°﹣30°÷4,不是平角,原说法错误;②钟表上六点整时,时针指向6,分针指向12,形成的角是平角,原说法正确;③钟表上差一刻六点时,时针和分针形成的角是90+30°÷4,不是直角,原说法错误;④钟表上九点整时,时针指向9,分针指向12,形成的角是直角,原说法正确.∴正确的个数是2个.故选:B.9.解:∠AOB=∠COD=90°,∠AOD=146°则∠BOC=360°﹣2×90°﹣146°=34°则∠BOC=34°.故选:B.10.解:图中线段有15条:线段AB、线段AC、线段AD、线段AE、线段AF、线段BC、线段BD、线段BE、线段BF、线段CD、线段CE、线段CF、线段DE,线段DF、线EF;以每个点为端点的射线有2条,共6个点,故射线有12条;故选:C.11.解:15÷3=5,所以是五棱柱,故答案为:五.12.解:①是两个圆台,故①错误;②上面大下面小,侧面是曲面,故②正确;③上面小下面大,侧面是曲面,故③错误;④是一个圆台,故④错误;故答案为:②.13.解:①当四点共线时,则经过每两个点画一条直线,那么共可以画直线1条;②当只有三点共线时,则经过每两个点画一条直线,那么共可以画直线4条;③当每三点不共线时,则经过每两个点画一条直线,那么共可以画直线6条.故答案为:1或4或6.14.解:∵点C是线段AB的中点,若AB=6,∴AC=AB=3,故答案为:3.15.解:∵∠A=59.6°,∴∠A的余角为90°﹣59.6°=30.4°=30°24',故答案为30;24.16.解:如图1,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=22.5°+37.5°=60°;如图2,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.17.解:∵AC:BC=2:3,BD=AC,∴设AC=BD=2x,BC=3x,∵AC+BC=2x+3x=40,解得:x=8,∴AC=BD=16cm,BC=24cm,∵E为AD的中点,∴AE=ED=(16×2+24)=28cm,∴EC=AE﹣AC=28﹣16=12cm.故答案为:12cm.18.解:∵∠AOB和∠BOC互为补角,∴∠AOB+∠BOC=180°,∵∠BOD=,∴3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∵∠COD+∠BOD=∠BOC,∴180°﹣3∠BOD=∠COD+∠BOD,∴∠COD+4∠BOD=180°,∵∠COD比∠BOD大m°(m<30),∴∠COD﹣∠BOD=m°,∴∠BOD=()°,∠COD=()°∴∠BOC=()°,∴∠AOB=180°﹣∠BOC=(108﹣)°,∴∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).19.解:根据旋转的性质可得∠BOD=∠AOC=20°,所以∠BOA=∠AOD﹣∠BOD=100°﹣20°=80°.故答案为:80°.20.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.21.解:以4cm为轴体积为×π×32×4=12π,以3cm为轴的体积为×π×42×3=16π.22.解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.23.解:(1)∵点D,E分别是AC和BC的中点,∴DC=AC,CE=CB,∴DC+CE=(AC+CB)=6cm;故答案为:6.(2)∵AC=4cm,∴CD=2cm,∵AB=12cm,AC=4cm,∴BC=8cm,∴CE=4cm,DE=DC+CE=6cm;(3)∵点D,E分别是AC和BC的中点,∴DC=AC,CE=CB,∴DC+CE=(AC+CB),即DE=AB=6cm,故无论AC取何值(不超过12 cm),DE的长不变.24.解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.25.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.。

七年级数学上册《第四章 几何图形初步》单元检测题带答案(人教版)

七年级数学上册《第四章 几何图形初步》单元检测题带答案(人教版)

七年级数学上册《第四章几何图形初步》单元检测题带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法正确的是()A.两边成一直线的角是平角B.一条射线是一个周角C.两条射线组成的图形叫做角D.平角是一条直线2.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.1个B.2个C.3个D.4个3.用量角器测量∠AOB的度数,操作正确的是()A.B.C.D.4.如果在点O北偏西60°的某处有一点A,在点O南偏西20°的某处有一点B,则∠AOB的度数是()A.100°B.70°C.180°D.140°5.已知点M在线段AB上,点N是线段MB的中点,若AN=6,则AM+AB的值为()A.10 B.8C.12 D.以上答案都不对6.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10 B.5 C.﹣10 D.﹣57.如图,已知∠MOQ是直角,∠QON是锐角,OR平分∠QON,OP平分∠MON,则∠POR的度数为()A.45°+ 1∠QON B.60°2∠QONC.45°D.128.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为()A.33分米2B.24分米2C.21分米2D.42分米2二、填空题:(本题共5小题,每小题3分,共15分.)9.已知∠α=53°27′,则它的余角等于10.现有一个长为4cm,宽为3cm的长方形,绕它的一边旋转一周,得到的几何体的体积是.11.如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=35°,则∠AOD= °.12.如下图,点C在线段AB上,D是线段CB的中点.若AC=4,AD=7,则线段AB的长为.13.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是(填编号).三、解答题:(本题共5题,共45分)14.如图,已知线段AB=60,点C、D分别是线段AB上的两点,且满足AC:CD:DB=3:4:5,点K是线段CD的中点,求线段AK的长.15.密云水库是首都的“生命之水”,作为北京重要的水源地,保持水质成为重中之重.如图所示,点A和点B分别表示两个水质监测站,监测人员上午6时在A处完成采样后,测得实验室P在A点北偏东60°方向.随后监测人员乘坐监测船继续向东行驶,上午9时到达B处,同时测得实验室P在B点北偏西30°方向,其中监测船的行驶速度为20km/ℎ.(1)在图中画出实验室P的位置;(2)已知A、B两个水质监测站的图上距离为3cm.①请你利用刻度尺,度量监测船在B处时到实验室P的图上距离;②估计监测船在B处时到实验室P的实际距离,并说明理由.16.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)与∠AOE互补的角是.(2)若∠AOC=72°,求∠DOE的度数;(3)当∠AOC=x时,请直接写出∠DOE的度数.17.如图,是底面为正方形的长方体的表面展开图,折叠成一个长方体,那么:(1)与N重合的点是哪几个?(2)若AB=3cm,AH=5cm,则该长方体的表面积和体积分别是多少?18.已知点C为线段AB上的一个动点,点D、E分别是AC和BC的中点.(1)若DE=10cm,则AB=cm.(2)当点C是线段AB的中点时,且AD=6cm,求DE的长. (3)若AB=acm,求DE的长(用含a的式子表求) .1.A 2.C 3.C 4.A 5.C 6.C 7.C 8.A9.36°33′10.36πcm3或48πcm311.11012.1013.314.解:设AC=3x,则CD=4x,DB=5x∵AB=AC+CD+DB=60∴AB=3x+4x+5x=60.∴x=5.∵点K是线段CD的中点.CD=10.∴KC=12∴AK=KC+AC=25.15.(1)解:如图,点P即为所求;(2)解:①度量监测船在B处时到实验室P的图上距离为1.5cm;②由题意∠PAB=90°−60°=30°,∠PBA=90°−30°=60°∴∠APB=180°−30°−60°=90°∵AB=3×20=60(km)×60=30(km).∴B处时到实验室P的实际距离为:1216.(1)∠BOE、∠COE(2)解:∵OD、OE分别平分∠AOC、∠BOC,∠AOC=72°∠BOC∴∠COD=∠AOD=36°,∠COE=∠BOE= 12∴∠BOC=180°﹣72°=108°∠BOC=54°∴∠COE= 12∴∠DOE=∠COD+∠COE=90°(3)解:当∠AOD=x°时,∠DOE=90°17.(1)解:与N重合的点有点H和点J.(2)解:∵长方体的底面为正方形由长方体展开图可知:AB=BC=3cm,而AH=5cm∴长方体的长、宽、高分别为:5cm,3cm,3cm∴长方体的表面积为:(5×3+5×3+3×3)×2=78cm2体积为:5×3×3=45cm3 .(2)解:∵点D是AC中点∴AC=2AD=12又∵D、E分别是AC和BC的中点∴AB=2AC=24∴DE=DC+CE=12AC+12BC=12AB=12故DE的长为12cm.(3)解:∵DE=DC+CE=12AC+12BC=12AB而AB=a∴DE=1 2 a故当AB=acm时,DE的长为12a。

人教版七年级上册数学第四章几何图形初步全章测试题

人教版七年级上册数学第四章几何图形初步全章测试题

人教版七年级数学测试卷(考试题)第四章几何图形初步周周测1一、选择题(本题共10小题,每小题3分,共30分)1.下图是某物体的直观图,它的俯视图(从上向下看)是()A.B.C.D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示,某同学的家在A处,星期日他到书店B去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A. A→C→D→BB. A→C→F→BC. A→C→E→F→BD. A→C→M→B4.如图,下列说法不成立的是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段5.如图,AB=CD,那么AC与BD的大小关系是()A 、AC=BDB 、AC<BDC 、AC>BD D 、不能确定6.下列四个图形中是正方体的平面展开图是()7.已知线段AB,延长AB 到C,使BC=31AB,D 为线段AC 的中点,若DC=2cm,则线段AC 的长为( ) A.4cm B.3cm C.2cm D.1cm8.已知在线段上依次添加1点,2点,3点,......,原线段上所成线段的总条数如表。

图形线段总条数361015若在原线段上添加n 个点,则原线段上所有线段总条数为( ) A. n+2 B. 1+2+3+...+n+n+2 C. n+1 D. 2)1)(2(++n n9.同一直线上,A,B,C 三点,若线段AB=12,BC=7,则A 、C 的距离是( )A.5B.19C.5 或 19D.无法确定10.(2016长沙)如图,C 是AB 的中点,D 是BC 的中点,下列等式中:①CD=AC-DB ;②CD=AD-BC ;③BD AB CD -=21;④AB CD 31=,其中正确的结论的个数有( )A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.如图是某几何体的展开图,那么这个几何体是___.12.线段AB=8cm,C 是AB 的中点,D 是BC 的中点,则A 、D 两点间的距离是__cm13.如图,把长方形ABCD 的对角线AC 分成K 段,以每一段为对角线作K 个小长方形。

七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)

七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)

七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.下列几何图形中,不能一笔画成的是()A. B. C. D.2.已知∠AOB=30°,∠BOC=45°,则∠AOC等于()A.15°B.75°C.15°或75°D.不能确定3.在数轴上与表示-2的点距离等于3的点所表示的数是()A.1 B.-1或5 C.-5 D.-5或14.已知锐角α,那么∠α的补角与∠α的余角的差是()A.90°B.120°C.60°+αD.180°﹣α5.如图所示,OA是北偏东60︒方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A.北偏西30︒B.北偏西60︒C.东偏北30︒D.东偏北60︒6.如图,OE⊥AB,直线CD经过点O,∠COA=35°,则∠BOD的余角度数为()A.35°B.45°C.55°D.60°7.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是()A.文B.明C.全D.运8.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误..的是()A .BC=AB-CDB .BC= 12 (AD-CD)C .BC= 12AD-CD D .BC=AC-BD 二、填空题:9.计算:902648︒-︒'= .10.将一副三角板如图放置,若 20AOD ∠= ,则 BOC ∠ 的大小为 .11.如图,点B 在线段AC 上,已知9cm AB =,4cm BC =点O 是线段AC 的中点,则线段OB = cm.12.如图,点O 是直线AD 上的点,∠AOB ,∠BOC ,∠COD 三个角从小到大依次相差25°,则这三个角的度数是 .13.如图,白纸上放有一个表面涂满染料的小正方体,在不脱离白纸的情况下,转动正方体,使其各面染料都能印在白纸上,且各面仅能接触白纸一次,则在白纸上可以形成的图形有 .(填序号)三、解答题:14.已知:如图,A ,B ,C 在同一条线段上,M 是线段AC 的中点,N 是线段BC 的中点,且 5AM cm = cm = 求线段AB 的长.15.如图是一个正方体的表面展开图,它的每一个面上都写有一个数,并且相对的两个面的数字互为相反数,求2a b c +-的值.16.如图,直线AB ,CD 相交于点O ,OE AB ⊥且OF 平分AOC ∠,且40BOD ∠=︒,求EOF ∠的度数.17.如图,OC AB ⊥于点O ,OD 平分BOC ∠,OE 平分AOD ∠(1)求BOD ∠的度数;(2)求COE ∠的度数.18.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a+24|+|b+10|+(c-10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.参考答案:1.C 2.C 3.D 4.A 5.A 6.C 7.A 8.B9.6312︒'10.160°11.5212.35°,60°,85°13.①③14.解: M 是线段AC 的中点,N 是线段BC 的中点5MC AM cm ∴== 和 3BN CN cm ==16AB AM MC CN NB cm ∴=+++=15.解:因为相对的两个面的两个数字互为相反数所以80a +=,40b +=和50c +=所以845a b c =-=-=-,,所以()()2842584102a b c +-=-+--⨯-=--+=-16.解:∵40BOD ∠=︒∴40AOC BOD ∠=∠=︒∵OF 平分AOC ∠ ∴1202AOF AOC ∠=∠=︒ ∵OE AB ⊥∴90AOE ∠=︒∴9020110EOF AOE AOF ∠=∠+∠=︒+︒=︒.17.(1)解:∵OC AB ⊥∴90BOC AOC ∠=∠=︒∵OD 平分BOC ∠ ∴1452BOD COD BOC ∠=∠=∠=︒ (2)解:由(1)可得9045135AOD AOC COD ∠=∠+∠=︒+︒=︒∵OE 平分AOD ∠ ∴167.52AOE AOD ∠=∠=︒ ∴9067.522.5COE ∠=︒-︒=︒18.(1)解:∵|a+24|+|b+10|+(c-10)2=0∴a+24=0,b+10=0,c-10=0解得:a=-24,b=-10,c=10;(2)解:-10-(-24)=14①点P 在AB 之间,AP=14×221+ = 283 -24+ 283 =- 443点P的对应的数是- 443;②点P在AB的延长线上,AP=14×2=28-24+28=4点P的对应的数是4;(3)解:∵AB=14,BC=20,AC=34∴t P=20÷1=20(s),即点P运动时间0≤t≤20点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s)当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t= 463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t= 623>20(舍去)当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8。

人教版初中七年级数学上册第四章《几何图形初步》测试卷(含答案解析)(1)

人教版初中七年级数学上册第四章《几何图形初步》测试卷(含答案解析)(1)

人教版初中七年级数学上册第四章《几何图形初步》测试卷(含答案解析)(1)一、选择题1.给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( )A .①②B .②③C .②④D .③④C解析:C【分析】根据圆柱、圆锥、正方体、球,可得答案.【详解】解:①圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故①错误;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故②正确;③球仅由1个面围成,这个面是曲面,故③错误;④正方体由6个面围成,这6个面都是平面,故④正确;故选:C .【点睛】本题考查了认识立体图形,熟记各种图形的特征是解题关键.2.点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( )A .3B .2C .3 或 5D .2 或 6D 解析:D【解析】试题此题画图时会出现两种情况,即点C 在线段AB 内,点C 在线段AB 外,所以要分两种情况计算.∵点A 、B 表示的数分别为﹣3、1,∴AB=4.第一种情况:在AB 外,如答图1,AC=4+2=6;第二种情况:在AB 内,如答图2,AC=4﹣2=2.故选D .3.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.4.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等D 解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.5.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )A .m ﹣nB .m +nC .2m ﹣nD .2m +n C解析:C由已知条件可知,EC+FD=m-n,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=m-n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF-CD=m-n又∵AB=AE+FB+EF∴AB=m-n+m=2m-n故选:C.【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.6.已知:∠AOC=90°,∠AOB:∠AOC=2:3,则∠BOC的度数是()A.30°B.60°C.30°或60°D.30°或150°D解析:D【分析】根据两角的比和两角的和即可求得两个角的度数.【详解】由∠AOC=90°,∠AOB:∠AOC=2:3,可得当B在∠AOC内侧时,可以知道∠AOB23=⨯90°=60°,∠BOC=30°;当B在∠AOC外侧时,∠BOC=150°.故选:D.【点睛】本题考查了三角形中角的求法,解题的关键是分两种情况讨论.7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.4cm或10cm D.6cm或10cm D解析:D【分析】由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C在直线AB上,AB=8,BC=2,∴当点C在线段AB上时,AC=AB-BC=8-2=6cm,当点C在线段AB的延长线上时,AC=AB+BC=8+2=10cm,∴AC的长度是6cm或10cm.故选D.本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.8.下列事实可以用“经过两点有且只有一条直线”来说明的是()A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线B解析:B【分析】根据两点确定一条直线进而得出答案.【详解】在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选B.【点睛】此题主要考查了直线的性质,利用实际问题与数学知识联系得出是解题关键.9.用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有()A.7个面B.15条棱C.7个顶点D.10个顶点A解析:A【解析】【分析】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.【详解】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.故选:A.【点睛】此题考查截一个几何体,解题关键在于掌握立体图形.10.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D. A解析:A【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B、图C和图D中对面图案不相同;故选A.【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题11.请写出图中的立体图形的名称.①_______;②_______;③_______;④_______.圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断依据圆锥的概念可以对(4)进行判断【详解】(1)该立体图形的上下两解析:圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断,依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断,依据圆锥的概念可以对(4)进行判断.【详解】(1)该立体图形的上下两个底面是大小相同且平行的两个圆,所以是圆柱;(2)该立体图形的上下两个底面是相同且平行的两个三角形,三个侧面都是长方形,所以是三棱柱;(3)该立体图形的共有四个面,每个面都是三角形,所以是三棱锥;(4)该几何体只有一个底面,是圆,并且有一个顶点,所以是圆锥.答案:(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.【点睛】此题考查柱体与锥体的认识,掌握立体图的概念是解题的关键.12.如图,能用O,A,B,C中的两个字母表示的不同射线有____条.7【分析】找射线可以先找到一个端点然后以这个端点发散本题可以分别以ABCO为端点找到不同的射线【详解】以点O为端点并且能用两个字母表示的射线是OAOBOC以点A为端点并且能用两个字母表示的射线是AC解析:7【分析】找射线可以先找到一个端点,然后以这个端点发散。

(新版人教版)七年级上第四章《图形认识初步》单元测试卷及解析答案

(新版人教版)七年级上第四章《图形认识初步》单元测试卷及解析答案

第四章《图形认识初步》 综合测试题(满分120 分时间90 分钟)一、选择题(每题 3 分,共 30 分)1. ①平角是一条直线;②射线是直线的一半;③射线一个扩大 2 倍的放大镜去看一个角, 这个角会扩大= 120 °50. ?AB 与射线 BA 表示同一条射线;④用2 倍;⑤两点之间,线段最短; ⑥ 120.5 °以上说法正确的有 (A.0 个B.12.以下四个图中,能用∠)个 C.2 个 D.3 个1、∠ AOB 、∠ O 三种方法表示同一个角的是()3.以下表达正确的选项是() A . 180°是补角B 120°和 60°互为补角 C 120 °和 60°是补角 D 60°是 30°的补角4. 如图 1 表示一个用于防震的 L 形的包装用泡沫塑料,当从上边看这一物体时看到的图形形状是()A .B .C .D .(图 1)5.以下图形中,哪一个是正方体的睁开图()6.甲看乙的方向为南偏西25°,那么乙看甲的方向是 ()A .北偏东 75° B.南偏东 75° C.北偏东 25° D .北偏西 25°7.若∠ A 的余角是 70°,则∠ A 的补角是()A . 70°B .110°C . 20°D . 160°8.如图,AOC和BOD都是直角,假如D CAOB150 ,那么 COD()AA 、30B 、40C 、50D 、60BO9.经过随意三点中的两点共可画出()A .1 条直线B . 2 条直线C .1 条或 3 条直线D . 3 条直线10. 如下图,从O点出发的五条射线,能够构成角的个数是().A.10个B.9个C.8个D.4个二、填空题(每题 3 分,共 30 分)11.橙子近似 ______ 体,菠萝近似 _______ 体,角柜近似 _______ 体,金字塔近似 _______体,粉笔盒近似 _______体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章图形认识初步章节测试
(时间:45分钟满分:100分)
姓名______________
一、选择题(每小题3分,共18分)
1.下列说法正确的是()
A.直线AB和直线BA是两条直线;
B.射线AB和射线BA是两条射线;
C.线段AB和线段BA是两条线段;
D.直线AB和直线a不能是同一条直线。

2.下列图中角的表示方法正确的个数有( )
C
B A
∠ABC
C
B A
∠CAB
直线是平角
∠AOB是平角
A.1个 B.2个
C.3个 D.4个
3.下面图形经过折叠可以围成一个棱柱的是( )
A. B.
C.D.
4.将如图所示的正方体沿某些棱展开后,能得到的图形是()
A. B. C. D.
5.若∠A = 20°18′,∠B = 20°15′30″,∠C = 20.25°,则()
A.∠A>∠B>∠C
B.∠B>∠A>∠C
C.∠A>∠C>∠B
D.∠C>∠A>∠B
6.经过任意三点中的两点共可画出()
A.1条直线 B.2条直线
C.1条或3条直线 D.3条直线
二、填空题(每小题3分,共12分)
7.有公共顶点的两条射线分别表示南偏15°与北偏东25°,则这两条射线组成的角的度数为_____________________.
8.如图,若CB = 4 cm,DB = 7 cm,且D是AC的中点,则AC =_________________.
B
C
D
A
9.八时三十分,时针与分针夹角度数是_______.
10.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是_____________________________________.
三、解答题(每小题10分,共30分) 11.计算: '
'
'
4839673121175+-⨯
12.一个角的余角比它的补角的2
3还少40°,求这个角。

13.如图,∠AOB 是直角,OD 平分∠BOC ,OE 平分∠AOC ,求∠EOD 的度数。

E D
C B
A
O
四、试一试,探一探(20分)
14.如图,BO 、CO 分别平分∠ABC 和∠ACB , (1)若∠A = 60°,求∠O ;
(2)若∠A =100°、120°,∠O 又是多少? (3)由(1)、(2)你又发现了什么规律?当∠A 的度数发生变化后,你的结论仍成立吗? (提示:三角形的内角和等于180°)
O C
B
A
4321
五、猜一猜,做一做(20分)
15.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。

(1)求线段MN 的长;
(2)若C 为线段AB 上任一点,满足AC + CB = a cm ,其它条件不变,你能猜想MN 的长度吗?并
说明理由。

你能用一句简洁的话描述你发现的结论吗?
(3)若C 在线段AB 的延长线上,且满足AC -BC = b cm ,M 、N 分别为AC 、BC 的中点,你能猜想
MN 的长度吗?请画出图形,写出你的结论,并说明理由。

A
B
C
M
N
参考答案
一、选择题
B、B、D、
C、A、C.
二、填空题
7.140° 8.6cm 9.75°10.两点之间,线段最短
三、解答题
11.9°45′ 12.30° 13.45°14.(1)120°;(2)140°,150°;
(3)∠O = 90°+1
2∠A。

15.(1)MN =1
2AB = 7 cm;
(2)MN =1
2AB = a cm;
线段上任一点分线段两段的中点的距离等于线段长的一半
(3)MN =1
2AC
1
2BC =
1
2AB = a cm。

相关文档
最新文档