第五章相干光电检测系统

合集下载

光电检测技术与应用 第五章 光电直接探测系统

光电检测技术与应用 第五章  光电直接探测系统
29
探测器上的光谱功率
Pe E e A0 0
探测器输出信号电压
A0 VS 2 L
I
1
2
e

1
0
RV d
输出信噪比
VS A0 2 I e 1 0 RV d 2 Vn Vn L 1
简化处理结果:
VS A0 I R 2 e 1 0 V Vn Vn L
15
信噪比为:
SNRp
Po e h PS2 2 2 2 2 Pno iNS iNB iND iNT
2
(ePS G / hv) 2 2e 2 ( PS Pb )G 2 4kt 2 2eI d G f hv RL
当热噪声是主要噪声源时
E I 0 I(ωo)=I(0)为最大频谱分量
2
22
激光波形为:
I t Ae
光脉冲宽度。 频谱I(ω)为:
2t 2
β 是脉冲峰值, β ≈1.66 /τ0 , τ0是激
I I t e jt dt



A

e
2 4 2
SNR p
i
e h
2 NS
2
P G
2 S 2
i
2 NB
i
2 ND
G i
2
2 NT
G2很大时,热噪声可以忽略,光电倍增管可接
近散粒噪声限。
19
2)光导探测器直接探测系统的信噪比
主要噪声为复合噪声,它和偏置电流成比例, 因而它的灵敏度与具体使用条件有关。 光导探测器的极限灵敏度比光伏器件及光电 倍增管的极限灵敏度要低,所需理想的最小 可探测功率大。 3、直接探测系统的视扬角 被测物在无穷远处,且物方与像方两侧的介 质相同。

光电检测系统课件

光电检测系统课件

光电检测系统在物联网与人工智能领域的应用前景
要点一
总结词
要点二
详细描述
随着物联网和人工智能技术的快速发展,光电检测系统的 应用前景十分广阔。
在物联网领域,光电检测系统可以用于各种传感器的数据 采集,实现远程监控和实时反馈。在人工智能领域,光电 检测系统可以作为机器视觉和图像识别的重要组件,为人 工智能提供更准确、更可靠的数据支持。同时,光电检测 系统还可以与其他技术相结合,如光通信、激光雷达等, 拓展其在物联网和人工智能领域的应用范围。
特点
高精度、高灵敏度、非接触、实时性 等。
光电检测系统的应用领域
工业自动化
用于生产线上的质量检测、测量 和控制。
通信与信息处理
用于光纤通信、光信号处理、光 计算等领域。
医学诊断
用于光谱分析、荧光检测、内窥 镜等医疗设备。
环境监测
用于水质、气体成分、污染物等 的检测和分析。
光电检测系统的发展趋势
高速化
Part
05
光电检测系统的未来展望
新型光电材料与器件的研究与应用
总结词
随着科技的不断进步,新型光电材料与器件的研究与应用成为了光电检测系统发展的重 要方向。
详细描述
新型光电材料如钙钛矿、二维材料等具有优异的光电性能,为光电检测系统的性能提升 提供了新的可能。同时,新型光电器件如光电晶体管、光电传感器等在灵敏度、响应速
02 03
光电效应分类
光电效应分为外光电效应和内光电效应,其中外光电效应是指光子能量 足够大时,将电子从物质表面打出,内光电效应则是光子能量使物质内 部电子跃迁至激发态。
光电效应应用
光电效应在光电检测、光电器件、光电子技术等领域有广泛应用。

第五章 相干光电检测系统2

第五章 相干光电检测系统2

光纤迈克尔逊干涉仪
光纤马赫曾德干涉仪
光纤萨格纳克干涉仪
光纤杨氏干涉仪
光纤多光束F-P干涉仪
三 同频率相干信号的相位调制与检测方法
当两束相干光束的频率相同时,若被测量变化使 相干光波的相位发生变化,再通过干涉作用把光波相 位的变化变换为振幅的变化,这个过程称为单频光波 的相位调制。
1 相位调制与检测的原理
r1

P
r2
D
x O 干 涉 条 纹
S2

I
光 强 分 布

2

r2 r1
2

d sin
2、多光束干涉系统
A0
i1
G
i2
G’
A’
I1’ I2’
I1
I2 I3 I11 I22 I33
各透射光波叠加干涉后的干涉强度分布为
I E
2
I3’ n2 h
2
1 sin 2 2 1 R 4R

干涉条纹光强检测法
在干涉场中确定的位臵上用光电元件直接检测干涉条纹的 光强变化称为干涉条纹光强检测法。下图给出了一维干涉测长 的实例。为了获得最佳的光电信号,要求有最大的交变信号幅 值和信噪比,这需要光学装臵和光电检测器确保最佳工作条件, 尽可能地提高两束光的相干度和光电转换的混频效率。干光的相位差,而相位差又取决于光传输介 质的折射率 n 对光的传播距离ds 的线积分,即

2 nds
0
L
2nL / 0
2
0
0
( Ln nL)
光波传输介质折射率和光程长度的变化都将导致相干光相位的变化,从 而引起干涉条纹强度的改变。干涉测量中就是利用这一特性改变光载波的特 征参量,以形成各种光学信息的。 几何距离、位移、角度、速度、温度引起的热膨胀——导致传播距离 改变;介质成分、密度、环境温度、气压以及介质周围电场、磁场引起折射 率变化。 相位调制通常是利用不同形式的干涉仪,借助机械的、光学的、电子学 的变换器件,将被测量的变化转换为光路长度L和折射率的变化,用于检测 几何和机械运动参量,分析物质的理化特性。

光电检测系统原理

光电检测系统原理

光电检测系统原理
光电检测系统是一种常用的检测技术,其原理基于光电效应。

光电效应是指当光照射到物质表面时,光子的能量被电子吸收,使电子获得足够的能量从而跳出原子的束缚,产生自由电子。

在光电检测系统中,一般采用光敏元件作为光电转换器件。

光敏元件根据其工作原理的不同可以分为光电二极管、光电三极管、光敏电阻等。

当光照射到光敏元件上时,会产生光生电流或改变电阻值,这种电信号可以被测量、放大并进一步处理。

光电检测系统的光源也是至关重要的组成部分。

光源的选择要根据被检测物体的特性来确定,可以使用白光、激光、红外线等不同种类的光源。

在某些应用中,还需要使用滤光片来选择特定波长的光源。

此外,光电检测系统中还包含光电信号的处理与分析。

光电信号一般较弱,需要经过放大、滤波、调整等处理,以提高信号质量和准确性。

处理之后的信号可以用于后续的数据分析、控制指令等。

总的来说,光电检测系统通过利用光电效应将光信号转化为电信号,进而实现对被检测物体的非接触式检测。

这种检测方式具有灵敏度高、响应速度快、精度较高等特点,广泛应用于工业制造、生命科学、环境监测等领域。

相干光检测

相干光检测

相干光检测
相干光检测技术在当下应用极为广泛,它能够实现光学信号与数字信号的快速、准确地对接,大大提升了光学系统的检测效率。

同时,相干光检测技术在我国得到了广泛的应用和研究,为光学技术的发展做出了巨大的贡献。

在光学检测过程中,相干光检测技术主要利用光学信号的干涉、衍射等现象具有周期性、对称性、可重复性等特性,实现光学信号与数字信号的快速对接。

传统的光学检测技术往往需要采用复杂的设备,如光学检测仪、光学系统、数字信号发生器等,增加了系统的复杂性和使用难度。

而相干光检测技术则可以实现光学信号与数字信号的直接对接,大大简化了系统的构成,提高了光学检测的效率。

此外,相干光检测技术在光学系统的应用中具有极高的准确率。

由于光学信号与数字信号的对接是实时、准确的,因此系统的检测结果往往更为精确。

同时,该技术还可以实现对光学系统检测结果的重现,为光学系统的优化提供了重要的参考依据。

在我国,相干光检测技术的研究与应用得到了广泛的关注。

各类企业和高校纷纷加大对相干光检测技术的研究投入,不断推动光学技术的发展。

同时,我国政府也给予了相干光检测技术极大的政策支持,鼓励各类企业和高校积极开展合作研究,共同推进光学技术的发展。

总之,相干光检测技术在光学检测领域具有重要的应用价值。

它的出现和应用,大大简化了光学系统的检测过程,提高了光学检测的效率和准确率,为光学技术的发展做出了巨大的贡献。

光电检测原理与技术第5章 光学系统与专用光学元件

光电检测原理与技术第5章 光学系统与专用光学元件

2. 望远系统
(1)伽俐略望远镜( Galileo telescope )
结构 发散透镜作目镜,会聚 透镜作物镜,物镜的像 方焦点和目镜的物方焦 点重合。
光路 Q Q ' Q "
远物 Q 射来的平行光束,经物镜会聚后,原来应成实像于 Q', 这对于目镜来说应作虚物,最后成正立像P"Q"于无穷 远处。
非近轴情况下,三次幂以上项不能忽略
球面系统不能理想成像
出现三级以上像差
u3 u5 u7 u9 sin u u 3! 5! 7! 9!
三级像差(或初级像差)----5种: 1) 球差(spherical aberration) 2) 慧差(coma) 3) 像散(astigmatism)和场曲(curvature of field) 4) 畸变(distortion)
表5-1 不同波长时焦 深的计算结果
nf 2 nD 2 x 2 2 2 ( F )
(5-6)
(3)最小弥散斑及其角直径 光学系统中影响成像质量的因素主要是像差和衍射。系统的 像差按照不同的设计有很大的差别。而衍射作用的大小可用计算 艾里斑的方法来估计。当斑内占总衍射能量的84%时,所对应的 角直径分别为 (5-7) 2.44
D
—— 探测光辐射的波长。
4 2L ' ( F ) 2 n
' 0
以可见光、中红外和远红外三个光谱区中,三种典型波长的 焦深为例,说明这一关系。计算结果列于表5-1中。表中可见,当 ' =0.5μm,2 L = 8μm,说明像面有确定的位置,随着波长增加, 0 L'0 2 按正比增加,当 =10μm,2 = 160μm L'0 ,这时很难断定像 面的确切位置。这是红外系统的特点之一。 与焦深相对应的物空间中。物移动某一 ' 距离x,只要其像面移动不超过 L0,那 么仍可得到清晰的像。所以,对应焦深 在物空间中的范围就是景深。利用牛顿 公式可以计算出x为

光电检测系统

光电检测系统

长度:直尺、游标卡尺、千分尺
电压:万用表
质量:天平
间接测量:测量几个与被测量相关的物理量,通过函数关系式 计算出被测量。例如:
电功率:P = I * V(电流/电压)
重力加速度:单摆测量(L:摆的线长,T:摆动的周
期)
g

4
T
2L
2
返回
光电探测器的种类
类型 PN结
非PN结 电子管类
以光电子学为基础,以光电器件为主体,研究和发展光电信 息的形成、传输、接收、变换、处理和应用。它涉及到:
1、光电源器件(包括激光器)和可控光功能器件及集成 2、光通信和综合信息网络 3、光频微电子 4、光电方法用于瞬态光学观测 5、光电传感、光纤传感和图象传感 6、激光、红外、微光探测,定向和制导 7、光电精密测试,在线检测和控制技术 8、混合光电信息处理、识别和图象分析
光信息量化的变换方式在位移量(长度、宽 度和角度)的光电测量系统中得到广泛的应 用。
若长度信息量L量化为条纹信息量,则长度 L=qn
q为量化单位,采用莫尔条纹变换时,其为光栅节距,达到微米 量级;若采用激光干涉时,其 等于激光波长的二分之一或四分之一;n为条纹个数。
信息载入光学信息的方式
光通讯方式的信息变换
光电检测系统
光 光 被 光 光变 电

学 系 统
测 对 象
学 变 换
电换 传电 感路
信 号 处 理
存储 显示 控制
光学变换
电路处理
Байду номын сангаас
光电检测系统
光学变换
时域变换:调制振幅、频率、相位、脉宽 空域变换:光学扫描 光学参量调制:光强、波长、相位、偏振 形成能被光电探测器接收,便于后续电学处理的光学信息。

光电检测系统的工作原理及应用

光电检测系统的工作原理及应用

光电检测系统的工作原理及应用概述光电检测系统是利用光电传感器来实现对光信号的检测和测量的一种系统。

它通过将光信号转化为电信号进行处理和分析,广泛应用于工业自动化、仪器仪表、机器视觉、安防监控等领域。

本文将介绍光电检测系统的工作原理及其在各个领域的应用。

工作原理光电检测系统的工作原理是将光信号转化为电信号,并通过电路进行处理和分析。

光电传感器是光电检测系统的核心组件,它可以将光信号转化为电信号。

光电传感器光电传感器主要由光电二极管(Photodiode)、光敏电阻(Photocell)和光电管(Phototube)等组成。

光电二极管是最常见的光电传感器之一,其工作原理是利用半导体材料对光的敏感性,在光照下产生电流。

光电二极管可根据光照强度的变化产生不同的电流信号,实现对光信号的检测和测量。

信号处理电路光电检测系统中的信号处理电路主要用于放大、滤波和处理光电传感器产生的微弱电信号。

通过增加电流放大器、滤波器和信号处理器等电路,可以提高系统对光信号的灵敏度和稳定性。

同时,信号处理电路还可以对电信号进行模数转换和数字信号处理,进一步对光信号进行分析和判断。

应用领域光电检测系统在各个领域有广泛的应用,以下是几个常见的应用领域:工业自动化光电检测系统在工业自动化领域中起到了重要作用。

它可以用于物料检测、位置判断和传感器触发等任务。

光电传感器可以检测到物体的存在与否,实现对物体的自动识别和测量。

在流水线上,光电检测系统可以实现对物体的计数和判断,提高生产效率和质量。

仪器仪表光电检测系统在仪器仪表领域中也有广泛的应用。

例如,在光谱仪中,光电传感器可以将光信号分解为不同波长的光谱,并进行光谱分析和测量。

在激光测距仪中,光电检测系统可以利用光信号的反射时间来测量目标物体与传感器的距离。

机器视觉光电检测系统在机器视觉领域中也被广泛应用。

它可以用于图像传感和边缘检测等任务。

利用光电传感器对光信号的感知和分析,可以实现对图像的自动采集、处理和判断。

光电检测技术与应用 第五章 光电直接探测系统

光电检测技术与应用 第五章  光电直接探测系统

22
激光波形为:
I t Ae 2t2
第五章 光电直接探测系统
直接检测系统的基本工作原理 直接检测系统的基本特性 直接检测系统的距离方程 光电直接检测系统举例
直接探测(非相干探测)系统 利用光源出射光束的强度去携带信息, 光电探测器直接把接收到的光强度变化 转换为电信号变化,最后用解调电路检 出所携带的信息。 光外差探测(相干探测)系统 利用光波的振幅、频率、相位来携带信 息,而不是利用光强度,所以只有相干 光可被用来携带信息,检出信息时需用 光波相干的原理。
20
半视场角为: W d
2f
视场角立体角Ω为:
Ad f2
增大视场角Ω方法:增大探测器面积或 减小光学系统的焦距。
21
4、系统的通频带宽度
1) 等效矩形带宽 I(ω)为信号的频谱,则信号的能量为:
E 1
2
I d
2
等效距形带宽Δω定义为:
E I 0 2 I(ωo)=I(0)为最大频谱分量
G2很大时,热噪声可以忽略,光电倍增管可接 近散粒噪声限。
19
2)光导探测器直接探测系统的信噪比 主要噪声为复合噪声,它和偏置电流成比例, 因而它的灵敏度与具体使用条件有关。 光导探测器的极限灵敏度比光伏器件及光电 倍增管的极限灵敏度要低,所需理想的最小 可探测功率大。 3、直接探测系统的视扬角 被测物在无穷远处,且物方与像方两侧的介 质相同。
[2
e2
hv
( PS
Pb )G 2
2dI d G 2
4kt RL
]fR
L
15
信噪比为:
SNR
p
Po Pno
iN2S
e h 2 PS2
iN2B iN2D iN2T

光电检测系统

光电检测系统

模数变换系统
在这类光电变换中,被测信息量Q通过光学变换量化为数字信息(包 括光脉冲、条纹信号和数字代码等),再经光电变换电路输出。
模-数光电变换中的光电变换电路只要输出“0”和“1”(高、低电 平)两个状态的脉冲即可。脉冲的频率、间隔、宽度、相位等都可以载 荷信息。因此,这类光电变换电路的输出信号不再是电流或电压,而是
返回
被动系统
光信号来自被测物体的自发辐射
信息载入光学信息的方式-光电变化的基本形式
信息载荷于光源的方式
如图(a)所示,为信息载荷于光源中的 情况(或光学信息为光源本身),如 光源的温度信息,光源的频谱信息, 光源的强度信息等。根据这些信息可 以进行钢水温度的探测、光谱分析、 火灾报警、武器制导、夜视观察、地 形地貌普查和成像测量等的应用。
光电检测技术
检测与测量 光电传感器:
基于光电效应,将光信号转换为电信号的一种光电器件 将非电量转换为与之有确定对应关系的电量输出。
光电检测技术:是利用光电传感器实现各类检测。
它将被测量的量转换成光通量,再转换成电量,并综合 利用信息传送和处理技术,完成在线和自动测量
光电检测系统
光学变换 光电变换 电路处理
光谱
光电检测系统的功能分类
控制跟踪型
跟踪控制:激光制导,红外制导 数值控制:自动定位,图形加工形成,数值
控制
图象分析型
图形检测 图形分析
光电检测技术的特点
高精度:从地球到月球激光测距的精度达到 1米。
高速度:光速是最快的。 远距离、大量程:遥控、遥测和遥感。 非接触式检测:不改变被测物体性质的条件
红外系统多用于军事,有大气窗口,需要特种探测器 可见光系统多用于民用
点探测/面探测系统(按接受系统分)

光电检测系统原理

光电检测系统原理

光电检测系统原理光电检测系统是一种常用的传感器,广泛应用于自动化控制领域,例如机械加工、纺织、食品处理、生物化学和医疗卫生等。

其原理是利用光电器件将光信号转换为电信号,通过电路处理后,将电信号转换成机械或其他可控制的信号,实现自动检测和控制。

本文将从光电器件、处理电路、应用领域等方面进行详细介绍。

一、光电器件光电器件是光电检测系统的核心部分,其主要功能是将光信号转化为电信号,其种类包括光敏二极管(PD)、光电二极管(PH)、光励磁二极管(PC)、光电晶体管(PT)、硅光电池(PD)等。

其中,PD是一种光敏半导体器件,应用范围十分广泛。

PD中的光信号通过PN结被掺杂之后,使之成为具有光电特性的二极管,根据入射光信号的强弱,PD产生的电流也随之变化。

PH、PC、PT相比PD更加敏感,其检测范围可以覆盖可见光和红外光谱区域,使用时需要更加谨慎,但其具有相对较高的灵敏度和更快的响应速度,可以满足更高的应用需求。

硅光电池具有较高的光电转换效率,但其使用条件较为苛刻,易受温度变化等环境因素影响。

二、处理电路处理电路是光电检测系统中的第二个核心部分,主要功能是对从光电器件收集的电信号进行处理和放大,以满足后续电路的工作需要。

处理电路一般分为前端电路和后端电路两大部分。

(一)前端电路前端电路是光电检测系统中的第一级信号处理电路,主要由前放电路、驱动电路、滤波电路和保护电路组成。

前放电路的作用是放大从光电器件获得的弱电信号;驱动电路是用于对光电器件进行驱动的电路,使其在有效频率范围内工作;滤波电路则可以用来滤除杂乱的高频或低频信号;最后,保护电路则可以将前端电路和后端电路隔离,防止过高电压或过电流对后续模块造成损害。

(二)后端电路后端电路是对前端电路处理后的信号进行进一步处理和放大的电路,主要由比较电路、微处理器、放大电路、输出电路、计时电路和显示电路组成。

后端处理电路可以根据应用需要设置不同的模块,例如可通过比较电路可以实现对输入信号的阈值比较,以触发输出信号;在微处理器中可以设置一定的软件算法,用于对信号进行更加复杂的处理。

《光电检测系统》课件

《光电检测系统》课件

智能化:通过人工 智能技术实现检测 系统的自主学习和 决策
自动化:通过自动 化技术实现检测系 统的无人值守和自 动运行
集成化:将多种检 测技术集成到一个 系统中,提高检测 效率和准确性
网络化:通过网络 技术实现检测系统 的远程监控和管理 ,提高检测系统的 安全性和可靠性
THANK YOU
汇报人:
光电子的发射:光电子从物体表面发射出来,形成光电流
光电效应的应用:光电效应广泛应用于光电检测系统,如光电倍增管、光电二极管等光电器 件
光电转换器件
光电二极 管:将光 信号转换 为电信号
光电三极 管:将光 信号转换 为电信号, 具有放大 功能
光电池: 将光信号 转换为电 能
光电传感 器:将光 信号转换 为电信号, 用于检测 和控制
优点:结构简单、成本低、易于维护
缺点:对环境光线敏感,需要避免强光照射
反射式光电检测系统
工作原理:利用光电效应,将光信 号转换为电信号
优点:响应速度快,稳定性ห้องสมุดไป่ตู้,抗 干扰能力强
添加标题
添加标题
添加标题
添加标题
应用领域:广泛应用于工业自动化、 安防监控等领域
缺点:对环境光线敏感,需要定期 校准和维护
添加标题
添加标题
添加标题
添加标题
光电传感器由一个发光二极管和一 个光敏二极管组成,发光二极管发 出光线,光敏二极管接收光线。
报警器接收到报警信号后,发出声 音或灯光报警,提醒人们注意火灾 危险。
光电式转速计的工作原理
光电式转速计主要由光源、光电转换器和信号处理电路组成。 光源发出光束,照射到被测物体上,形成反射光。 光电转换器将反射光转换为电信号,信号处理电路对电信号进行处理,得到转速信号。 光电式转速计具有测量精度高、响应速度快、抗干扰能力强等优点。

光电检测系统

光电检测系统
返回
被动系统
光信号来自被测物体的自发辐射
信息载入光学信息的方式-光电变化的基本形式
信息载荷于光源的方式
如图(a)所示,为信息载荷于光源中的 情况(或光学信息为光源本身),如 光源的温度信息,光源的频谱信息, 光源的强度信息等。根据这些信息可 以进行钢水温度的探测、光谱分析、 火灾报警、武器制导、夜视观察、地 形地貌普查和成像测量等的应用。
U 0 0 DR 光电变
换系数
透过率
信息载入光学信息的方式
信息载荷于反射光的方式
通常分为两种:镜面反射:用来判断 光信号的有无。如光准直,转速等; 漫反射:检测物体表面的外观质量。
U 0 Er1 r2 BR
疵病信 号电压
正品表 被测表 面的反 面的照 射率

疵病表 光电接收器件有 面的反 效视场内疵病所 射率 占地面积
全部操作: 检测器具 检测过程
传感器、检测仪器、检测装置、检测系统 信号采集、信号处理、信号显示、信号输出
例:空调机测量控制室温 被测对象: 室内空气 被测信息: 温度 检测器具: 温度传感器 --- 热电阻、热电偶
操作过程:空气 热敏电阻 电信号 处理 显示
空调机
返回
测量
直接测量:对仪表读数不经任何运算,直接得出被测量的数值。 例如:
信息载入光学信息的方式
信息载荷于遮挡光的方式
如图(d)所示为信息载荷于遮挡光的方式,物体部分或全部 遮挡入射光束,或以一定的速度扫过光电器件的视场,实现 了信息载荷于遮挡光的过程。
可用于检测物体的位移量&尺寸。主要用在测微计,尺寸检测仪 以及光电计数,光开关等领域。
U 0 EbRl
输出位移量 的信号电压

光纤通信原理课件-第5章 相干光波通信系统

光纤通信原理课件-第5章 相干光波通信系统

I (t) RP(t) 2RKEs0EL0 cos(IFt s L )
可以发现,检测器的输出电流不仅与被测信号强度或功率有关, 亦即不仅可用光信号的强度传递信息,还与光载波的相位或频 率有关,因而有可能通过调制光载波的相位或频率来传递信息, 而在直接检测技术中不允许进行相位或频率调制,所有有关信 号相位和频率的信息都丢失了。
(2) 声光调制器。这是一种声表面波波导,结构简单, 但产生的频移量在 1GHz
(3) 半导体激光器内调制。这是一种直接调制方法。
3 解调方案
零差检测
外差检测
异步解调 同步解调
零差检测可将光信号直接解调至基带,但实现 困难,要求本振频率与光信号频率精确相等, 本振相位与达到信号锁定,这种解调方案称为 同步解调。
(3)零差检测
L s
这时光电流
IF 0
称为零差检测
I (t) RP(t) 2RKEs0EL0 cos(IFt s L )
2KREs0EL0 cos(s L )
也可以写为
I (t) R PsPL cos(s L )
如果 L s I (t) R Ps PL
■ 零差检测的优点是检测灵敏度高 ■ 缺点是对相位的敏感性高
双相零差分集接收机
两相接收机中的两个支路接收信号相位差为90°,I 支路为同相信道,Q支路 为正交信道,很像柯斯塔斯环,但没有OPLL,每个支路中的信号处理可用于 恢复ASK、FSK或DPSK调制信号。在某一相位条件下,当一个支路中的信号 接近零时,另一个支路则有信号,而总输出就是调制信号。由于信号光与本振 光都要分成两部分,在散粒噪声限制下,对两相接收,灵敏度将比 OPLL 接收 机低 3dB。对三相接收,则要低 4.8dB。
马赫—曾德LiNbO3光波导调制器

第五章 光电信号的检测方法

第五章 光电信号的检测方法
L= 2/‫•ג‬N
这就是双频干涉测长装置的测量公式。
2、萨格纳克效应(光程差随转速而改变的现象)和转动差频 当封闭的光路相对于惯性空间有一转动速度Ω时,顺时针光路和
逆时针光路之间形成与转速成正比的光程差ΔL,其数值满足下列 关系:
式中,c为光速,A为封闭光路包围的面积;φ为转速矢量与面积 A的法线间的夹角。当光路平面垂直于Ω时,上式简化为:
图5-13给出像偏移测量轴向位移的原理示意图。
下图为采用PSD和半导体激光器的距离传感器示意图。
驱动电路
半导体 激光器
聚光 透镜
光学 滤光 片
PSD 器件
模拟开关 取样放大器
A/D变 换器
成像聚光镜
信号电 极距 PSD光 敏区中
放大器 输出
电脑 Z K I A I B
IA IB
入射光 点距中
像点的ΔZ′偏移引起原像面上的离焦,使像面照 度分布扩散,如图所示。
2、像点轴外偏移检测的像偏移法
像点偏移法又称光切法。它是一种三角测量方式的轴 向位移测量方法。当将光束照射到被测物体时,用成 像物镜从另外的角度对物体上的光点位置成像,通过 三角测量关系可以计算出物面的轴向位移大小。这种 方法数毫米到数米的距离范围可实现高精度的测量。 在工业领域内的离面位移检测中常常用到。
这一光程差随转速而改变的现象称作萨格纳克效应,图5-22给 出这一效应的图解说明。
三个或三个以上反射绕组成的激光谐振腔使光路转折形 成闭合环路。这种激光器称作环形激光器(如图5-23)。
小型化的环形激光器及相应的光学差频检测装置组成了 激光陀螺。它可以感知相对惯性空间的转动,在惯性导 航中作为光学陀螺仪使用。此外,作为一种测角装置, 它是一种以物理定律为基准的客观角度基准,有很高的 测角分辨率。图5-23(b)给出了早期激光陀螺的结构示 意图。

第五章光通信之光电检测器PPT课件

第五章光通信之光电检测器PPT课件
4 雪崩光电二极管
■雪崩光电二极管的结构与PIN不同表现在增 加了一个附加层,以实现碰撞电离产生二次 电子-空穴对,在反向时夹在I层和N层间的P 层中存在高电场,该层称为倍增区或增益区 雪崩区,耗尽层仍为I层,起产生一次电子 -空穴对的作用。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
工作原理
光照hv>Eg-->耗尽区吸收大部分光-->受激吸收 -->光生载流子-->耗尽区电场作用,电子向N区漂移, 空穴向P区漂移-->反向电压,耗尽区加宽 -->接通电 路,R上有电流
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2 接收机中存在的噪声源可分为()()() 二、简答题: 1 雪崩光电二极管是利用什么原理使检测灵敏度
得到大大提高的? 2 半导体光电二极管是利用什么原理实现光/电
转换的? 3 比较APD、PIN光电检测器的优缺点。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
3 PIN光电二极管
■由于PN结耗尽区只有 几微米,大部分入射 光被中性区吸收,因 而光电转换率低,响 应速度慢。为改善器 件的特性,在PN结中 间设置一层掺杂浓度 很低的本征半导体 (称为I层),这种 结构便是常用的PIN 光电二极管。
基于异质结的PIN光电二极管
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

第五章光电检测系统

第五章光电检测系统
光电检测技术
Ch5 光电检测系统
吕勇 lvyong222@
0
•光电检测系统相关概念
•直接(非相干)探测基本原理
•相干探测的基本原理
•光调制/解调
1
光电信号变换
• 在光电系统中,通常要借助于几何光学、物理光学和光电子
学的方法对信号进行变换,包括将一种光量转换为另一种光 量,将非光量转换为光量或将连续光量转换为脉冲光量等。
• 直接检测是将待测的光信号直接入射到光电器件的光敏面 上,光电器件的输出电流或电压与入射光强度有关。 • 若入射光波的振幅为 U (t ) a sin( t )
S s s s
那么入射光功率为
PS (t ) as [sin( st s )]平均
2
光电检测器件的输出光电流为 I K P 1 K a 2 dS s s 2 q 式中K为光电灵敏度 K 其中 q 为产生的电荷, h h 为入射光功率。 平方律:输出光电流和输入光振幅的平方成正比
6
被动光电系统和主动光电系统
• 光源、光电变换系统和光电接收器件一起构成光电测量系统。 • 如果信息源通过调制光源的电源电压或电流,把信息载荷到光 载波上,而发射调制光,或者用光电系统的光源(人工光源) 照射目标再进行光电变换,然后由光电接收系统接收,称为主 动光电系统。 • 如果光电系统所接收的信号完全来自于被测对象的自发辐射而 非人工光源照明,称为被动光学系统;
• 2、按时空状态分类 按调制位置是在光源内发生还是在光源外进行可分为内调制和外调制;
24
光调制的分类:
• 3、按载波波形分类 按调制光波的参量可分为振幅调制、频率调制、相 位调制等; • 4、按调制元件分类 根据应用的物理效应分为电光调制、声光调制、磁 光调制; • 5、按调制形式分类 按调制的形式分模拟调制、数字调制和脉冲调制。

第五章 光电检测系统

第五章  光电检测系统
1:灯,2:聚光镜,3:指示光栅 ,4:长光栅,5:光电探测器
精品资料
莫尔条纹(tiáo wén)测长仪
光电探测器接收到的明暗变 化的光信号转换成电信号;
通过对莫尔条纹的直接测量 (cèliáng),可以测的光栅的 位移量;
在较宽的莫尔条纹间隔内安 放细分装置进行细分,可读 取位移的分数,提高测量 (cèliáng)的灵敏度和精度.
本机振荡光场为: E L t A L c L o t L s
入射到探测器上的总光场为: E t A s c s t o s A L s c L t o L 精品资料
光探测器输出(shūchū)的光电
i p t 流 S E 2 t S E s t E L t 2 S A s 2 c 2 s t s o A L 2 c 2 L s t o L
fS 为信号光波,fL为本 机振荡光波,这两束相 干光入射到探测器表面 (biǎomiàn)进行混频,形 成相干光场。
经探测器变换后,输出 信号中包含 fs fL 的 差频信号,故又称相干 探测。
精品资料
基本原理
设入射到探测器上的信号(xìnhào)光场为:
E s t A s co s t s s
测距原理: 由激光器对被测目标发射一
个光脉冲,然后接受目标反射 回来的光脉冲,通过测量光脉 冲往返所经过(jīngguò)的时间来 计算出目标的距离。
测距仪原理:
由激光发射系统、接受系
统,门控电路、时钟脉冲振荡
器和计数器等组成。
脉冲激光测距仪的原理框图
精品资料
激光器:LD,ND:YAG(调Q/锁模)
Ip S P q h E 2(t)2 q h A 2
输出的电功率正比于入射光功率的平方

第5章 光电直接检测系统

第5章 光电直接检测系统

e h
② 当散粒噪声远大于热噪声时,直接检测系统受散粒噪声限 2 制,信噪比为: e h Ps2 SNR p散 ____ ____ ____ 5-15 ③ 当背景噪声是直接检测系统的主要噪声源时,直接检测系统 受背景噪声限制,信噪比为:
2 2 2 iNS iNB iND
5.3 直接检测系统的距离方程
光 源
强度 调制器 信 号 光学天线 光学通道
接收天线及 光电检测器
光电信号 处理器
回收的 信息
背景噪声场
电路噪声
发射机
接收机
光电检测系统的灵敏度在不同的用途时, 灵敏度的表达形式不同,在对地测距、搜索和 跟踪等系统中,通常用“检测距离”来评价系 统的灵敏度。对于其他系统的灵敏度亦可用距 离方程推演出来。 直接检测系统分为被动检测和主动检测系 统,其距离方程不同。下面分别进行推导。
测量精度(灵敏度)更高,作用距离更远。
5.1 光电直接检测系统的基本工作原理
光电直接检测系统是将待测光信号直接入射到光检测器光 敏面上,光检测器响应光辐射强度(幅度)并输出相应的电流 和电压。 检测系统经光学天线或直接由检测器接收光信号,前端还 可经过频率滤波和空间滤波等处理。
假定入射光信号电场为:
数字系统的信噪比
用误码率评价它的性能。 “0”、“1”码出现错误的概率称为误码率。
10
5.2.2 直接检测系统的检测极限及趋近方法
考虑直接检测系统中存在的所有噪声,则输出噪声总功 率为:
____ ____ ____ ____ 2 2 2 2 Pno iNS iNB iND iNT RL
5.2.3 直接检测系统的视场角
视场角表示系统能检测到的空间 范围,是检测系统的性能指标之一。 对于检测系统,被测物看作是在无穷 远处,且物方与像方介质相同。当检 测器位于焦平面上时,其半视场角为:

第五章 光电直接检测系统

第五章 光电直接检测系统

激光器发射激光脉冲被分为两 部分:参考信号和回波信号。 回波脉冲经光电探测器变换成 电信号,再经放大和整形后, 将电子门打开,使通过电子门 的时钟脉冲进入计数器开始计 时;当回波脉冲(负与门)到 来时,关闭电子们。 在参考和回波脉冲之间计数器 所接收到的时钟脉冲个数代表 来被测距离。
时钟频率越高,测量的分辨率 越高。但分辨率最终取决于激 光脉冲的上升时间。
注意:
在电子细分技术中,常采用四倍频细分法, 这种细分法也是许多其他细分法的基础。
依次相距B/4的位置安放四个光电元件
细分电路原理框图
i
+
C
u1
_
uc _ +
+
R
u2
_
uC (0 _) 0 V
u1
U
tp
u2
t1
t
t
四倍频细分电路
激光测距仪
激光测距仪的类型 – 脉冲激光测距仪 – 相位激光测距仪 激光测距仪的特点 – 测程远、测量精度高 – 结构小巧、携带方便 – 快速、非接触式距离测量 – 激光对点准确 – 受气象条件影响较大 激光测距仪广泛应用于工业、 国防军事、科学技术。
长光栅莫尔条纹
播放动画
长光栅光闸莫尔条纹
播放动画
圆弧莫尔条纹
播放动画 单击准备演示 播放中……
辐射、光闸莫尔条纹
播放中…… 播放动画
环形莫尔条纹
播放中…… 播放动画
单击准备演示
辐射形莫尔条纹
单击准备演示 播放动画
莫尔条纹测长仪
莫尔条纹的原理
– 将两块光栅(同节距)叠加在一 起,并且两者的栅线成很小的 角度θ ,透过光栅能看到随光 栅的移动,某点透过的光强呈 现明暗交替变化.这就是莫尔 条纹的光强调制作用. 条纹变化情况与光栅节 距之间是什么关系? 光栅相对运动一个节距, 条纹变化一个周期
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相干光电检测系统
实际上,干涉条纹的强度取决于相干光的相位差,而相位差 又取决于光传输介质的折射率n对光的传播距离ds的线积分, 即
L
2 0 nds
0
对于均匀介质,上式可简化为: 2nL / 0
对上式中的变量L和n作全微分可得到相位变化量
2 (Ln nL) 0
第五章相干光电检测系统
三 同频相干信号的相位调制与检测方法
1 相位调制与检测原理 2 同频相干信号的检测方法
四 光外差检测方法与系统
1 光外差检测原理 2 光外差检测特性 3 光外差检测条件
五 光电直接检测系统举例
1 干涉测量技术 2 光外差通信 3 多普勒测速
第五章相干光电检测系统
一 相干检测的基本原理
相干检测就是利用光的相干性对光载波所携带的信息 进行检测和处理,它只有采用相干性好的激光器作为光 源才能实现。所以从理论上讲,相干检测能准确检测到 光波振幅、频率和相位所携带的信息。但由于光波的频 率很高,迄今为止的任何光电探测器都还不能直接感受 光波本身的振幅、相位、频率及偏振的变化,而只能探 测光的强度(注)。因此,光的这些特征参量最终都须 转换为光强的变化进行探测。而这种转换就必须通过干 涉测量技术。
1 2 是光频差; (x, y) 1(x, y) 2(x, y) 是相位差。
第五章相干光电检测系统
①当两束频率相同的光(即单频光)相干时,有1 2 , 即 0 ,此时,
I x, y A x, y1 x, ycos x, y
干涉条纹不随时间变化,呈稳定的空间分布。随着相位差 的变化,干涉 条纹强度的变化表现为有偏置的正弦分布。可 以看出,干涉条纹的强度信息和被测量的相关参数相对应,对 干涉条纹进行计数或对条纹形状进行分析处理,可以得到相应 的被测信息。
光电传感与检测技术
第五章 相干检测方法与系统
第五章相干光电检测系统
第五章 相干检测方法与系统
按光学变换系统将被测量转换为光信息方式的不同,可将光 电检测系统分为非相干检测系统和相干检测系统。
非相干检测系统
相干检测系统
被测量被携带于光载波的 强度之中或加载于调制光载 波的振幅、频率或者相位变 化之中,这样的系统称为非 相干检测系统。
2
h
当平行反射面镀以高反射膜层,即 R 1 时,4R 1 R2 1 ,可见,
当 sin 2 0时,光强 I 几乎为0;而当满足sin 2 0 条件时, I 达到极大值 I a2 。因此,多光束干涉的光强分布是由宽的暗 带相间的明亮细条纹。 第五章相干光电检测系统
3、光纤干涉仪
光纤迈克尔逊干涉仪
同频干涉 根据产生干涉的光束间频率关系可分为:
外差干涉
第五章相干光电检测系统
1 光学干涉和干涉测量
光学测量中,常需要利用相干光作为信息变换的载体,将 被测信息加载到光载波上,使光载波的特征参量随被测信息变 换。
光干涉是指可能相干的两束或多束光波相叠加,它们的合 成信号的光强度随时间或空间有规律的变化。
第五章相干光电检测系统
② 当两束光的频率不同,干涉条纹将以 的角频率随时
间波动,形成光学拍频信号,也叫外差干涉信号。如果两 束光的频率相差较大,超过光电检测器件的频响范围,将
观察不到干涉条纹。在两束光的频率相差不大( 较小)
的情况下,采用光电检测器件可以探测到干涉条纹信号, 并且可以通过电信号处理直接测量拍频信号的频差及相位 等参数,从而能以极高的灵敏度测量出相干光束本本身的 特征参量,形成外差检测技术。
被测信息加载于光载波 (只能是相干光源)的振幅、 频率或者相位之中的系统称 为相干检测系统。
第五章相干光电检测系统
第 五 章 相干检测方法与系统 主要内容:
一 相干检测的基本原理
1 光学干涉和干涉测量 2 干涉测量技术中的调制与解调
二 基本干涉系统及应用
1 典型的双光束干涉系统 2 多光束干涉系统 3 光纤干涉仪
第五章相干光电检测系统
二 基本干涉系统及应用
能形成干涉现象的装置是干涉仪,它的主要作用是,将光束 分成两个沿不同路径传播的光束,在其中一路中引入被测量,产 生光程差后,再与另一路参考光重新合成为一束光,以便观察干 涉现象。
第五章相干光电检测系统
1、典型的双光束干涉系统
2
r2r1 Fra bibliotek2 d
sin
2 干涉测量技术中的调制和解调
一般干涉测量系统主要由光源、干涉系统、干涉信号接收系统 和信号处理系统组成。从信息处理的角度来看,干涉测量实质上是 被测信息对光载波调制和解调的过程。各种类型的干涉仪或干涉装 置是光频载波的调制器和解调器。
根据光调制器所调制的光载波的特征参量不同,调制技术可以 分为振幅调制、频率调制、相位调制和偏振调制。
第五章相干光电检测系统
P
r1
S1
Sd
r2
x O
S2
D

I







2
第五章相干光电检测系统
r2 r1
2 d sin
2、多光束干涉系统
A0
i1
A’
G
G’
i2
I1
I1’
I2
I11
I2’
I3
I22
I3’
各透射光波叠加干涉后的干涉强度分布为
n2
I33
I
E
2
a2
1
1
4
R R
2
sin2
光纤马赫曾德干涉仪
光纤萨格纳克干涉仪
光纤杨氏干涉仪
第五章相干光电检测系统
光纤多光束F-P干涉仪
三 同频率相干信号的相位调制与检测方法
当两束相干光束的频率相同时,若被测量变化使 相干光波的相位发生变化,再通过干涉作用把光波相 位的变化变换为振幅的变化,这个过程称为单频光波 的相位调制。
干涉测量的作用就是把光波的相位关系或频率状态以及它 们随时间的变化关系以光强度的空间分布或随时间变化的形式 检测出来。
第五章相干光电检测系统
以双光束干涉为例,设两相干平面波的振动E1(x,y)和E2(x,y)分 别为:
EE21((xx,,
y) y)
a1 a2
exp{ exp{
j[1t j[2t
1(x, y)]} 2 (x, y)]}
两束光合成时,所形成干涉条纹的强度分布I (x, y)可表示为:
I (x, y) a12 a22 2a1a2 cos[t (x, y)]
A(x, y){1 (x, y) cos[t (x, y)]}
式中, A(x, y) a12 a22 是条纹光强的直流分量; (x, y) 2a1a2 / (a12 a22 ) 是条纹的对比度;
相关文档
最新文档