高中化学 选修三 配位化合物理论简介
配位化合物知识总结
[ PO4(M精选op3pOt 10]3-等 。
13
四 配合物的空间构型和异构现象
1、配合物的空间构型 配合物分子或离子的空间构型与配位数的多少密切相关。
配位数 空间构型
直线形
Ag(NH3)2
四面体
NiCl24
平面正方形 Ni(C)N24
八面体
精选ppt
Fe(CN36)
14
配位数 3
5
空
间
构
型
Triangle Tetragonal pyramid Trigonபைடு நூலகம்l bipyramid
1°几何异构(顺反异构) Geometrical isomers 配位数为 4 的平面正方形结构
cis — 二氯二氨合铂 棕黄色,m > 0
S = 0.2523 g/100g H2O 具抗癌活性(干扰DNA复制)
trans — 二氯二氨合铂 淡黄色,m = 0
S = 0.0366 g/100g H2O 不具抗癌活性
K2SO4 +Al2(SO4)3+24H2O == 2 KAl(SO4)2·12H2O 由中心原子(离子)和几个配体分子(离子)以配位键相
结合而形成的复杂分子或离子,通常称为配位单元。凡是含 有配位单元的化合物都称做配位化合物,简称配合物。
[Cu(NH3)4]2+ , [SiF6]2-, Ni(CO)4都是配位单元, 分别称 作配阳、阴离子和配分子。[Co(NH3)6]Cl3 , K3[Cr(CN)6],
•
•
N •O ( 2 硝H 基 2O • ) N •H3
NC( S 异硫氰根
•
● 多齿配体: 一个配体中含有多个配位原子
配位化合物理论简介-湖北省通山县第一中学高中化学选修三导学案
配位化合物理论简介【学习目标】1、认识配位键,知道简单配合物的基本组成和形成条件。
2、记住常见配位化合物,了解配合物的结构与性质之间的关系;认识配合物在生产生活和科学研究方面的重要应用。
【回顾旧知】1.孤电子对:分子或离子中, 的电子对。
2.共价键:。
【新知预习】共价键里还有一类特殊的叫配位键,与一般共价键的形成过程不同。
四、配合物理论简介一、配位键:一种特殊的共价键1、概念:成键的两个原子一方提供,一方提供而形成的共价键。
以NH4+的形成为例说明配位键的形成:NH3分子的电子式中,N原子上有一对孤电子对,而H+的核外没有电子,1s是空轨道。
因此当NH3分子与H+靠近时,NH3分子中N原子上的进入H+的,与H+共用。
H+与N原子间的共用电子由N原子单方面提供,不同于一般的共价键,是一种特殊的共价键,叫配位键。
2、形成条件:其中一个原子提供。
另一原子提供空轨道。
可用电子式表示NH4+的形成过程: + H+为了区别普通共价键与配位键,可用“→”表示配位键,箭头指向接受电子(提供空轨道)的原子,因此的结构式可表示为:从形成过程看,尽管一个N-H键与其它的三个不同,但形成NH4+后,这四个共价键的、、三个参数是完全相同的,表现的化学性质也完全相同,所以NH4+空间结构为,与CH4、CCl4相似。
〖自学检测〗1.分析H3O+中的配位键成键情况(用电子式表示H3O+的形成过程)2.气态氯化铝(Al2Cl6)中具有配位键,分解原子间的共价键关系如图所示,将图中的配位键标上箭头。
二、配合物理论简介离子(或原子)与某些分子或离子以结合形成的化合物称为配位化合物,简称配合物,又叫络合物。
目前已知配合物的品种超过数百万,是一个庞大的化合物家族。
1、有关配合物(配位化合物)的几个概念如:[ Cu (NH3) 4 ] SO4名称:硫酸四氨合铜(Ⅱ)中心原子配体配位数内界外界理解要点:①配合物中的配体,提供孤电子对,可为中性分子或阴离子。
配位化合物.pptx
为一类具有特征化学结构的化合物,由中心原子(或离子,统称中 心原子)和围绕它的分子或离子(称为配位体/配体)完全或部分 通过配位键结合而形成。
包含由中心原子或离子与几个配体分子或离子以配位键相结合 而形成的复杂分子或离子,通常称为配位单元。凡是含有配位单 元的化合物都称作配位化合物。研究配合物的化学分支称为配位 化学。
配合物是化合物中较大的一个子类别,广泛应用于日常生活、 工业生产及生命科学中,近些年来的发展尤其迅速。它不仅与无 机化合物、有机金属化合物相关连,并且与现今化学前沿的原子 簇化学、配位催化及分子生物学都有很大的重叠
一、配位化合物的概念
配位化合物,简称配合物。是无机化学研究的 主要对象之一,它是一类复杂、特点多样、应 用广泛的化合物。 它与医学有密切关系,生物体内的金属离子大 多以配合物的形式存在,在生命活动中起着极 其重要的作用。
二、配位化合物的组成
• 1.内界和外界 • 配合物一般由内界和外界两部分组成。 • 内界:即配位单元,是配合物的特征部分 • 外界:除内界以外的部分 • 以硫酸四氨合铜(II)为例说明内界和外界
(一)内界 1.中心离子 2.配体和配位数 3.配离子 (二)外界
三、配离子和配合物的命名
1.配离子的命名顺序 配位数目(用一、二、三、四等 +配体+合=中心离子+ 化合价(用罗马数字表示)+离子 如:书P33 2.配合物的命名 原则:阴离子在前,阳离子在后 如:书P33-34
配位化合物知识总结
VS
磁性配合物在磁学、磁记录、信息存 储和分子基磁体等领域有广泛的应用 前景。
Part
04
配位化合物的应用
在化学反应中的作用
催化反应
配位化合物可以作为催化剂,通 过与反应物结合,改变反应途径,
降低反应活化能,从而加速化学 反应的进行。
分离和提纯
利用配位化合物的独特性质,如选 择性络合、稳定性差异等,可以实 现化学物质的分离和提纯。
配位化合物的稳定性取决于多个因素 ,包括中心离子的性质、配位体的类 型和数量、以及配位环境等。
稳定性规律
一般来说,中心离子的电荷数越高、 半径越小,配位化合物的稳定性越强 ;配位体的电子给予能力越强、数目 越多,稳定性也越高。
配位化合物的合成方法
有机合成
通过有机合成方法,可以制备出结构复杂、功能多样的配 位化合物。常见的合成方法包括重氮化反应、氧化还原反 应等。
配位化合物的分类
按中心原子分类
根据中心原子的种类,可以将配位化合物分为金属配位化合物和非金属配位化合物。金属配位化合物是指中心原 子为金属元素的配位化合物,如铜、钴、铁等;非金属配位化合物是指中心原子为非金属元素的配位化合物,如 硫、氮、磷等。
按配位数分类
根据配位数的大小,可以将配位化合物分为低配位数(2-4)和高配位数(≥6)的配位化合物。低配位数配位化 合物是指中心原子周围参与配位的配位体数目较少的配位化合物;高配位数配位化合物是指中心原子周围参与配 位的配位体数目较多的配位化合物。
02
动态配位化合物
03
超分子配位化合物
具有可逆的结构变化和反应性, 可用于传感器、分子机器等领域。
由多个分子或离子通过非共价相 互作用形成的复杂结构,具有独 特的物理和化学性质。
新课标高中化学选修3第二节杂化轨道理论配合物理论
第2课时杂化轨道理论配合物理论学业要求素养对接1.能运用杂化轨道理论解释和预测简单分子的立体构型。
2.知道配位键的特点,认识简单的配位化合物的成键特征,了解配位化合物的存在与应用。
微观探析:运用杂化轨道理论、配合物理论。
模型认知:根据杂化轨道理论确定简单分子的立体构型、根据配合物理论模型解释配合物的某些典型性质。
[知识梳理]一、杂化轨道理论简介1.用杂化轨道理论解释甲烷分子的形成在形成CH4分子时,碳原子的一个2s轨道和三个2p轨道发生混杂,形成四个能量相等的sp3杂化轨道。
四个sp3杂化轨道分别与四个H原子的1s轨道重叠成键形成CH4分子,所以四个C—H键是等同的。
可表示为C原子的杂化轨道2.杂化轨道的类型与分子立体构型的关系杂化类型sp sp2sp3参与杂化的原子轨道及数目n s 1 1 1 n p 1 2 3杂化轨道数目 2 3 4 杂化轨道间的夹角180°120°109°28′杂化轨道示意图立体构型直线形平面三角形正四面体形实例BeCl2、CO2、CS2BCl3、BF3、BBr3CF4、SiCl4、SiH4【自主思考】1.用杂化轨道理论分析CH4的杂化类型和呈正四面体形的原因?提示在形成CH4分子时,碳原子的一个2s轨道与三个2p轨道混杂,形成4个能量相等的sp3杂化轨道,分别与四个氢原子的1s轨道重叠成键形成CH4分子,4个σ键之间作用力相等,键角相等形成正四面体形。
二、配合物理论简介1.配位键(1)概念:共用电子对由一个原子单方面提供而跟另一个原子共用的共价键,即“电子对给予-接受键”,是一类特殊的共价键。
(2)实例:在四水合铜离子中,铜离子与水分子之间的化学键是由水分子提供孤电子对给予铜离子,铜离子接受水分子的孤电子对形成的。
(3)表示:配位键可以用A→B来表示,其中A是提供孤电子对的原子,叫做配体;B是接受电子对的原子。
例如:①NH+4中的配位键表示为。
高中化学——配位化合物的基本概念
第一节配位化合物的基本概念一.知识储备1.配合物的定义1.定义由中心体(原子或离子)和配位体(阴离子或分子)以配位键的形式结合而形成的具有特定组成和形状的分子,称为配位化合物,简称配合物。
[Ag(NH3)2]Cl、[Cu(NH3)4]SO4、[Ni(CO)4]等皆为配合物,其中[Ag(NH3)2]+、[Cu(NH3)4]2+称为配离子,[Ni(CO)4]称为配分子。
2.配合物特征(1)含有配位键(中心体与配位体间以配位键相结合);(2)配离子或配分子是不可分割的整体(存在于固体或溶液中)。
2.配合物的组成[Ni(CO)4]——只有内界1.中心体(离子或原子):大多数是带正电的阳离子,也有中性原子,甚至是金属阴离子,其必备的条件是具有空轨道。
(1)多数为副族金属离子:(2)中性原子:如Ni(CO)4、Fe(CO)5等中的Ni、Fe原子。
(3)金属阴离子:如Fe(CO)42-中的Fe2-。
(4)高氧化态的金属(主族金属元素)和非金属元素的离子:如[AlF6]3-中的Al3+,[SiF6]2-中的Si(Ⅳ),PF6-中的P(Ⅴ)等。
碱金属和碱土金属的离子作为中心体的能力要比副族金属离子弱得多。
2.配位体(简称配体):含有孤对电子或π键电子对以及多个不定域电子的分子或离子。
如:阴离子X-、OH-、SCN-、CN-等和中性分子H2O、NH3、CO、醇、胺、醚等都含有至少一对孤电子,它们都可作为配体;乙烯C2H4、苯C6H6、环戊二烯C5H5等都含有π键电子对或多个不定域电子,它们也可以作为配体,称为π配体。
(1)配位原子:配体中直接同中心离子(或原子)配合的原子。
例如:NH3中的N原子、CO和CN-中的C原子等。
常见的配位原子是位于周期表中p区的非金属元素的原子——ⅣA、ⅤA、ⅥA、ⅦA,如C、N、P、O、S、F、Cl、Br、I等。
(2)配体的类型:①单齿配体:只含有一个配位原子的配体,如:NH3、H2O、X-、CO等。
配位化合物
配位化合物配位化合物编辑配位化合物(coordination compound)简称配合物,也叫错合物、络合物,为一类具有特征化学结构的化合物,由中心原子或离子(统称中心原子)和围绕它的称为配位体(简称配体)的分子或离子,完全或部分由配位键结合形成。
包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子,通常称为配位单元。
凡是含有配位单元的化合物都称做配位化合物。
研究配合物的化学分支称为配位化学。
配合物是化合物中较大的一个子类别,广泛应用于日常生活、工业生产及生命科学中,近些年来的发展尤其迅速。
它不仅与无机化合物、有机金属化合物相关连,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。
目录1术语2历史3基本组成4命名方法5命名规则6价键介绍7基本分类8主要性质9基本结构构型异构现象立体异构几何异构光学异构结构异构10理论11反应配体交换反应氧化还原反应12应用1术语编辑讨论经典配位化合物时,常会提到以下的术语:配位键、配位共价键:配位化合物中存在的化学键,由一个原子提供成键的两个电子,成为电子给予体,另一个成键原子则成为电子接受体。
参见酸碱反应和路易斯酸碱理论。
配位单元:化合物含有配位键的一部分,可以是分子或离子。
配离子:含有配位键的离子,可以是阳离子或阴离子。
内界、外界:内界指配位单元,外界与内界相对。
配体、配位体、配位基:提供电子对的分子或离子。
配位原子:配体中,提供电子对的原子。
中心原子、金属原子:一般指接受电子对的原子。
配位数:中心原子周围的配位原子个数。
螯合物:含有螯合配体的配合物。
此外,含有多个中心原子的配合物称为多核配合物,连接两个中心原子的配体称为桥联配体,以羟基桥联的称为羟联,以氧基桥联的称为氧联。
2历史编辑人们很早就开始接触配位化合物,当时大多用作日常生活用途,原料也基本上是由天然取得的,比如杀菌剂胆矾和用作染料的普鲁士蓝。
最早对配合物的研究开始于1798年。
有机化学基础知识点配位化合物的结构和性质
有机化学基础知识点配位化合物的结构和性质配位化合物是有机化学中一个重要的研究领域,它形成于配位键的形成和金属离子的配位,具有独特的结构和性质。
既然我们谈到了有机化学基础知识点,让我们来深入了解一下配位化合物的结构和性质。
一、配位化合物结构的基本特点配位化合物通常由一个中心金属离子和一些称为配体的分子或离子组成。
配体通常是有机化合物,具有不同的配位原子,如氮、氧、硫等。
它们通过配位键与中心金属离子结合。
1. 配位键的形成配位键是指配体的一个或多个配位原子与中心金属离子之间的共有电子对。
配位键的形成通常是由配位原子上的孤对电子(孤对电子是未参与共价键形成的电子对)与金属离子形成的。
例如,以水合铜离子Cu(H2O)6^2+为例,氧原子上的孤对电子直接与铜离子形成了配位键。
2. 配位数与配位体配位数是指配位原子或配体与中心金属离子之间的配位键数量。
根据配位数的不同,配位体可以分为双齿配体、三齿配体、四齿配体等。
例如,以乙二胺(NH2CH2CH2NH2)为配体的四氯合铜(II)配合物[CuCl2(NH2CH2CH2NH2)2]的配位数是六。
3. 配位化合物的空间构型配位化合物的空间构型由配位体的取向和排布所决定。
常见的空间构型有正方形平面型、八面体型等。
这些不同的空间构型会影响到化合物的性质和反应性。
二、配位化合物的性质配位化合物由于金属离子与配体之间的配位键的形成,使其具有一些独特的性质。
1. 形成稳定的络合化合物由于配位键的形成,配位化合物通常具有较高的稳定性。
这使得它们在催化、溶剂选择性和聚合物合成等方面具有广泛的应用。
2. 形成具有特定功能的配位聚合物配位化合物的结构可以通过合适的选择和设计配体,形成具有特定功能的配位聚合物。
这些聚合物在催化、传感、光电子等领域中有广泛的应用。
3. 光谱性质配位化合物常常具有丰富的光谱性质,如紫外可见吸收光谱、红外光谱、荧光光谱等。
这些光谱性质对于研究配位化合物的结构和反应机制具有重要意义。
高中化学配位化学知识点归纳总结
高中化学配位化学知识点归纳总结配位化学是化学中一个重要的分支领域,主要研究金属与配体之间的相互作用、配合物的结构、性质和反应机理等内容。
在高中化学课程中,学生通常会接触到与配位化学相关的一些基本概念和理论。
本文将对高中化学配位化学的知识点进行归纳总结,以便学生们更好地理解和应用此部分内容。
一、配位键和配位数配位键是指金属离子与配体之间形成的键。
在配位化合物中,金属离子与配体通过共价键或者均衡键形成配位键。
金属离子和配体之间的配位键数量被称为配位数,常用符号为CN。
常见的配位数有2,4,6等。
二、配体配体是指能够与金属离子形成配位键的小分子或者离子。
配体通常通过给出一对电子与金属离子形成配位键,其中配位键电子对可以是成键电子对、孤立电子对或者共享电子对。
常见的配体包括水分子(H2O)、氨分子(NH3)、硝酸根离子(NO3-)等。
在配合物中,一个或者多个配体与金属离子形成配位键,形成了配合物的结构。
三、配合物的结构配合物的结构受到金属离子和配体之间配位键的类型和数目的影响。
常见的配合物结构有以下几种:1. 线性结构:当金属离子的配位数为2时,配合物的结构呈线性结构。
2. 正方形平面结构:当金属离子的配位数为4时,配合物的结构呈正方形平面结构。
3. 八面体结构:当金属离子的配位数为6时,配合物的结构呈八面体结构。
4. 五边形平面结构:当金属离子的配位数为5时,配合物的结构呈五边形平面结构。
四、配位反应配位反应是指配合物中金属离子与配体之间发生的化学反应。
常见的配位反应有配体置换反应和配合物的还原氧化反应。
在配体置换反应中,一个配体离开配合物,而另一个新的配体进入配合物。
此类反应常用于合成新的配合物或者改变已有配合物的性质。
在配合物的还原氧化反应中,金属离子的氧化态或还原态发生变化,配位键和配位数也可能发生改变。
此类反应常见于电化学反应或催化反应中。
五、配位化学的应用配位化学在生物学、药物学、环境科学等领域具有广泛的应用。
配合物理论简介
一、配合物——配合物的化学键
配位键 成键的两个原子一方提供孤电子对,另一 方提供空轨道而形成的共价键。 把接受孤电子对的金属离子(或原子)与某 些提供孤电子对的分子或离子以配位键结合形 成的化合物称为配位化合物,简称配合物。 內界 组成 外界
猜想:在溶液中可能存在着两种配离子,如果溶液较
浓,则主要显示四氯合铜配离子的棕黄色,如果水多, 则主要显示四水合铜配离子的蓝色,介于二者之间,会 呈现绿色。
【结论】
Cu2+ + 4ClCu2+ + 4H2O
[CuCl4]2[Cu(H2O)4]2+
棕黄色 蓝色
二、配合物中的化学平衡—铜离子与氯离子的配合
人教版高中化学选修三 第二章第二节第3课时
顺铂—美丽的错误,伟大的发现
同学们,你们知道吗?
据报道,全国每6分钟就有一人被确诊为癌症,每七到八 人中就有一人死于癌症。
随着顺铂药物的发现,人类开启了抗癌的新篇章。
顺铂—美丽的错误,伟大的发现
磁力线
细胞有丝分裂
一、配合物——配合物的化学键
配合物距离我们并不遥远 !
【实验2】向蓝色的氯化铜溶液中加一药匙NaCl固体。
NaCl
水
【结论】 加大Cl-浓度能生成更多的[CuCl4]2-,证明存在
一个平衡: Cu2+ + 4Cl-
[CuCl4]2-
二、配合物中的化学平衡—铜离子与氯离子的配合
小结
1、内界中心离子和配体之间是配位键,能电离, 但是微弱的,可逆的!
3配位化学
3).在d0的情况下, 金属仅以dz2和s形成ds杂 化轨道,配体沿z轴与这个杂化轨道形成配 键, 与此同时金属的dxz和dyz原子轨道分别 和配体在x和y方向的px、py轨道形成两条p -d键。结果是能量降低, 加强了配合物的 稳定性。
2 三配位配合物
KCu(CN)2, 聚合阴离子,
其中每个Cu (I)原子与两个C原子和一 个N原子键合。 [Cu(Me3PS)3]Cl 中的Cu也是三配 位的。 在所有三配位的情况下, 金属原 子与三个直接配位的配位原子都是共 平面的, 有平面三角形的结构。 ◆并非化学式为MX3都是三配位的。如, CrCl3为层状结 构, 是六配位的;而CuCl3是链状的, 为四配位, 其中含有氯桥 键, AuCl3也是四配位的, 确切的分子式为Au2Cl6。
(帽在八面体的 (帽在三棱柱的 一个三角面上) 矩形面上)
(正方形-三角形帽结构投影)
高配位数配合物
八配位和八配位以上的配合物都是高配位化合物。
一般而言, 形成高配位化合物必须具行以下四个条件。 ① 中心金属离子体积较大, 而配体要小, 以便减小空间位阻; ② 中心金属离子的d电子数一般较少,一方面可获得较多的 配位场稳定化能 , 另一方面也能减少 d电子与配体电子间的相互 排斥作用; ③ 中心金属离子的氧化数较高; ④ 配体电负性大, 变形性小。
最典型的是Pt(NH3)2Cl2, 其中顺式结构的溶解度较大, 为 0.25 g/100g水, 偶极矩较大, 为橙黄色粉末, 有抗癌作用。反式难溶, 为0.0366 g/100g, 亮黄色, 为偶极矩为0, 无抗癌活性。 含有四个不同配体的[MABCD]配合物有三种异构体, 这是因 为B、C、D都可以是A的反位基团。
A M D B D C A M C C B A M D B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热水瓶胆镀银
②配位体:配位体可以是阴离子,如X-、OH-、 SCN-、CN-、C2O42-、PO43-等;也可以是中性分子, 如H2O、NH3、CO、醇、胺、醚等。配位体中直接 同中心原子配合的原子叫做配位原子。配位原子 是必须含有孤对电子的原子,如NH3中的N原子, H2O分子中的O原子,配位原子常是VA、VIA、 VIIA主族元素的原子。
深蓝色的晶体: [Cu(NH3)4] SO4·H2O
思考:
Fe3+是如何检验的? 活动探究[2-3]鉴定水样是否被Fe3+污染?
Fe3++3SCN- = Fe(SCN)3
配位数可为1--6
Fe3++2SCN- = Fe(SCN)2 +
配合物的形成引起离子颜色的改变
练习有Fe2+ Cu2+ Zn2+ Ag+ H2O NH3
[Cu(NH3)4] SO4 硫酸四氨合铜(Ⅱ)
4、配合物的应用
叶绿素
a 在生命体中的应用
血红蛋白 酶 含锌的配合物
含锌酶有80多种
b 在医药中的应用
维生素B12 抗癌药物
钴配合物
c 配合物与生物固氮 固氮酶
王 照水 相溶 技金 术的定H[影AuCl4]
d 在生产生活中的应用
电解氧化铝的助熔剂 Na3[AlF6]
深Cu褐Br色2
NaCl
白色
K白2S色O4
KBr
白色
溶液 颜色 天蓝色 天蓝色 天蓝色 无色 无色 无色
无色离子: Na+ Cl- K + SO42 – Br - K +
什么离子呈蓝
色:
[Cu(H2O)4]2+
[Cu(H2O)4]2+
平面正方形结构
思考与 Cu2+与H2O是如何结合的呢?
交流3
请根据H3O+的形成提出
CH4 Cl
CO CN 微粒
可以作为中心离子的是 Fe2+ Cu2+ Zn2+ Ag+ 可以作为配体的是 H2O NH3 Cl CN CO
实验探究[2—4]
向实验[2—2]深蓝色溶液中滴加硫酸,观察 实验现象,由此现象变化说明了什么
天蓝色 溶液
H2O
2+
H2O Cu OH2 H2O
深蓝色 溶液
NH3 2+ H3N Cu NH3
课堂反馈
2、有Fe2+ Cu2+ Zn2+ Ag+ H2O NH3 CH4 Cl CO CN CO2 微粒
可以作为中心离子的是 Fe2+ Cu2+ Zn2+ Ag+ 可以作为配体的是 H2O NH3 Cl CN CO 常见的中心离子 过渡金属原子或离子
常见的配位体 配位数
H2O NH3 X- CO CN SCN通常是中心离子化合价的二倍
第二节 分子的立体结构 四、配合物理论简介
思考与 交流1
在强酸溶液电离的过程中, H2O能与H+结合 形成H3O+,请用电子式表示H与O形成H2O的过 程,比较H2O和H3O+的电子式,讨论H2O与H+ 是如何形成H3O+?
•
••
O
• +2H X
••
H
X
•
••
O
••
X
•
H
H
X
•
••
O
••
X
•
H
Hቤተ መጻሕፍቲ ባይዱ
四、配合物理论简介
(一)配位键 1、概念:成键的两个原子一方提供孤对电 子,一方提供空轨道而形成的共价键 2、形成条件:一方提供孤对电子
一方提供空轨道
3、配位键的表示方法 AB
HOH H
请你写出NH4 +的配位键的表示法?
课堂反馈
讨论在NH3•BF3中,何种元素的原子提供 孤对电子,何种元素的原子接受孤对电子? 写出NH3•BF3的结构式
2、配合物的组成
内界 外界 配离子
[Cu(NH3)4] SO4
中心原子 配体 配位数
思考与 除水外,是否有其它电子给予体? 交流4 实验探究[2—2] (取实验[2-1]所得硫酸铜溶
液1/3实验)根据现象分析溶液成分的变化并说 明你的推断依据,写出相关的离子方程式
天蓝色 溶液
蓝色 沉淀
H2O
2+
③配位数:直接同中心原子(或离子)配位的 原子(离子或分子)总的数目。一般中心原子 (或离子)的配位数为2、4、6、8。在计算中 心离子的配们数时,一般是先在配离子中找出 中心离子和配位体,接着找出配位原子数目。 如: [Co(NH3)4Cl2]Cl配位数是6。
(3) 配合物的性质
①在晶体、气态或溶液中配离子的存在状态不变 化,配位化合物内界和外界为离子键完全电离。
例题1:下列不属于配合物的是 (C、E)
A.[Cu(H2O)4]SO4·H2O B.[Ag(NH3)2]OH
C.Na2CO3·10H2O
D.Na[Al(OH)4]
E.NH4Cl
F. CuSO4·5H2O
例题2:有两种配合物都为:CoCl3·5NH3·H2O 试根据 下面的实验结果,确定它们的组成。 (1)A和B的水溶液呈微酸性,向其中加入强碱并加热 至沸,有放NH3出,同时有Co2O3沉淀 (2)向A和B的溶液中,加入过量AgNO3 后均有AgCl 沉淀; (3)沉淀分别过滤后,将滤液加热至沸,B溶液又有 AgCl沉淀生成,沉淀量为原来的一半。
②配合物也有异构现象。如Pt(NH3)2Cl2分子有 二种结构 ③配合物具有一定的稳定性,配合物中配位键 越强,配合物越稳定。配位原子的电负性越大 或配位体的碱性越强,配合物越不稳定。
④配离子在改变条件时可能被破坏。(加强热、 形成溶解度很小的沉淀、加入氧化剂和还原剂、 加入酸或碱)
叶绿素中心离子: Mg2+ 血红素中心离子: 亚铁离子 维生素B12中心离子: 钴离子 卟啉配合物叶绿素的结构
例题3:指出下列配合物的配位体、配位数, 并写出它们在溶液中的电离方程式。
(NH4)3[SbCl3] [Co(NO2)6]Cl3 [Pt(NH3)6]Cl K3[Fe(CN)6] [Co(NH3)4Cl2]Cl [Cr(H2O)4Br2]Br
例题4:
下列现象与形成配合物无关的是 (C)
A、向FeCl3溶液中滴加KSCN,出现血红色 B、向Cu与Cl2反应后的集气瓶中加入少量H2O, 呈绿色,再加水,呈蓝色
H2O Cu OH2 Cu(OH)2 H2O
深蓝色 +乙醇 深蓝色
溶液
静置 晶体
NH3 2+
H3N
Cu NH3 NH3
[Cu(NH3) 4 ] SO4•H2O
产生现象的原因:
Cu2++2NH3·H2O===Cu(OH)2↓+2NH4+ Cu(OH)2+4NH3===[Cu(NH3)4]2++2OH-
[Cu(H2O)4]2+中 Cu2+与H2O结合方 式的设想。
H2O 提供孤对电子
H+
提供空轨道接
受孤对电子
H2O Cu2+
HOH H
H2O
2+
H2O Cu OH2
H2O
(二)配合物
1、定义
通常把接受孤电子对的金属离子(或原子) 与某些提供孤电子对的分子或离子以配位 键结合形成的化合物称为配位化合物,简 称配合物。
C、Cu与浓HNO3反应后,溶液呈绿色;与稀HNO3 反应后,溶液呈蓝色
D、向AlCl3中逐滴加入NaOH到过量,先出现白 色沉淀,继而消失
NH3
天蓝色 溶液
H2O
2+
H2O Cu OH2 H2O H+
HNH
H
配位键的稳定性
Cu2+ OH2 < Cu2+ NH3 < H+ NH3
3、配合物的命名 (1)配离子(从右向左,配位数→配体→合→ 中心原子或中心离子→化合物) (2)配合物→类似于酸、碱、盐
练习:
K3[Fe(CN)6] 六氰合铁(Ⅲ)酸钾 [Ag(NH3)2]OH 氢氧化二氨合银(Ⅰ) K[Pt(NH3)Cl3] 三氯一氨合铂(Ⅱ)酸钾
NH3中N原子提供孤对电子 BF3中的B原子提供空轨道接受孤对电子
HF
HN B F
HF
思考与 交流2
为什么CuSO4 •5H2O晶体是蓝 色而无水CuSO4 是白色?
实验探究[2—1]
向盛有固体样品的试管中,分别加1/3试管
水溶解固体,观察实验现象并填写下表
固体
C白uS色O4
Cu绿Cl色2•2H2O