数学建模优秀模板
数学建模优秀论文模板(全国一等奖模板)
Haozl觉得数学建模论文格式这么样设置版权归郝竹林所有,材料仅学习参考版权:郝竹林备注☆※§等等字符都可以作为问题重述左边的。
一级标题所有段落一级标题设置成段落前后间距13磅二级标题设置成段落间距前0.5行后0.25行图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体Excel中画出的折线表字体采用默认格式宋体正文10号图标题在图上方段落间距前0.25行后0行表标题在表下方段落间距前0行后0.25行行距均使用单倍行距所有段落均把4个勾去掉注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前Dsffaf所有软件名字第一个字母大写比如E xcel所有公式和字母均使用MathType编写公式编号采用MathType编号格式自己定义公式编号在右边显示农业化肥公司的生产与销售优化方案摘 要 要求总分总本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。
针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。
我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。
针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。
并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-⨯,这充分说明残差波动不大。
全国大学生数学建模竞赛模板3篇
全国大学生数学建模竞赛模板第一篇:问题分析与建模问题背景与分析在我们生活中,电子商务绝对是不可避免的一个事物。
我们可以在家里通过手机或电脑上的网站购买许多我们需要的商品,这使得我们的生活更加便利。
但是,在电子商务中,涉及到的交易问题也不可忽略。
其中,一项重要的问题就是物流问题。
物流是电子商务中不可忽略的部分,对于所有电子商务交易来说,物流都是不可缺少的环节。
我们需要在电商平台上进行物流规划,使得发送仓库到达顾客地点的时间最短。
在电商平台上,从订单生成到物流出发需要一定的时间,这也就限制了物流的速度。
因此,确定出发送仓库和配送路线是保证顺利送达的重要因素。
问题描述在这个问题中,我们需要制定出一种方案,来优化电商平台上的物流配送问题。
具体来说,可以完成以下几个阶段的优化课题:1. 确定发送仓库的位置2. 确定货物的分配方式3. 确定配送路线在以上三个阶段中,配送路线是最关键的一部分。
如果能够找到最优的配送路线,可以将配送时间缩短到最短。
建模过程对于这个问题,我们可以进行如下的建模:不同的仓库可能会对应不同的快递公司,每个快递公司都有自己的服务区域。
因此,确定发送仓库的位置,也就注定了使用哪家快递公司来进行配送。
在确定仓库位置时,我们可以使用多种方法,如基于历史数据的分析,考虑客户量等因素。
2. 确定货物的分配方式电商平台中,货物的分配方式涉及到多个因素。
首先,需要考虑各个仓库的库存量和客户的需求量。
其次,还需要考虑货物的类型和性质,如食品、电子产品、生活用品等。
在确定货物的分配方式时,需要综合考虑多个因素。
3. 确定配送路线最后,需要确定配送路线。
这个过程中,需要考虑到多种因素。
首先,需要考虑路程的长度,因为路程长度对配送时间有较大的影响。
其次,需要考虑城市交通状况,如拥堵情况等。
还需要考虑到各个地点的重要性和紧急程度,这些因素也会影响到配送的速度和效率。
模型应用我们的模型可以使用多种优化算法来得到最优的配送方案。
数学建模优秀论文模板(新)
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他我赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)内容要点:1、研究目的:本文研究……问题。
2、建立模型思路、:首先,本文……。
然后针对第一问……问题,本文建立……模型:在第一个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型在第二个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型3、求解思路,使用的方法、程序针对模型的求解,本文使用什么方法,计算出,并只用什么工具求解出什么问题,进一步求解出什么结果。
4、建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验等)5、在模型的检验模型中,本文分别讨论了以上模型的精度和稳定性6、最后,本文通过改变,得出什么模型。
关键词:结合问题、方法、理论、概念等一、问题重述(第二页起黑四号)内容要点:1、问题背景:结合时代、社会、民生等2、需要解决的问题问题一:问题二:问题三:二、问题分析内容要点:什么问题、需要建立什么样的模型、用什么方法来求解三、模型假设与约定内容要点:1、根据题目中条件作出假设2、根据题目中要求作出假设写作要求:细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。
将一些问题理想化、简单化。
1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考3、假设应验证其合理性。
数学建模万能模板
K:学科评价模型学科的水平、地位是高等学校的一个重要指标,而学科间水平的谈论对于学科的发展有重视要的作用,它可以使得各学科能更加深入的认识本学科 ( 与其他学科对照较 ) 的地位及不足之处,可以更好的促进该学科的发展。
因此,如何给出合理的学科谈论系统或模型素来是学科发展研究的热点问题。
现有某大学(科研与授课并重型高校)的13 个学科在一段时期内的检查数据,包括各种建设见效数据和先期投入的数据。
1、依照已给数据建立学科谈论模型,要求必要的数据解析及建模过程。
2、模型解析,给出建立模型的适用性、合理性解析。
3、假设数据来自于某科研型或授课型高校,请给出相应的学科谈论模型。
承诺书页编号学科谈论大纲(一)对问题的基本认识或办理整个问题的基本框架,思路(简短简要,要点,亮点突出)研究目的,意义要求)本文研究。
问题。
即数学种类的归纳(一)(建模思路)(1. 每题数据性质等大概解析)第一,本文分别解析每个小题的特点:。
(2. 建立模型的思路:)针对第一问。
问题,本文建立。
模型;在第一个。
模型中,本文对。
问题进行简化,利用。
什么知识建立什么模型;在对。
模型改进的基础上建立了。
模型Ⅱ。
针对第二。
针对第三。
(三)算法思想,求解思路,使用方法,程序)1)针对模型求解, ( 设计。
求解思路 ) 。
本文使用。
什么算法,。
软件工具,对附件中所给的数据进行精选,去除异常数据,对残缺数据进行合适的补充,求解出什么问题,进一步求解出。
什么结果。
(方法,软件,结果清楚写出来)2)建模特点,模型检验)对模型进行合理的理论证明和推导,所给出的理论证明结果大体为。
模型优点。
,建模思想方法。
,算法特点。
,结果检验。
,。
,模型检验。
从中随机抽取了 3 组(每组 8 个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果切合。
等等3)在模型的检验模型中,本文分别谈论了以上模型的精度,牢固性,矫捷度平解析。
(四)(数据结果,结论,回答所问道全部问题)最后,归纳全文,突出亮点,指出不足,提出本文经过改进或扩展。
美赛数学建模模板
摘要:第一段:写论文解决什么问题1.问题的重述a. 介绍重点词开头:例1:“Hand move” irrigation, a cheap but labor-intensive system used on small farms, consists of a movable pipe with sprinkler on top that can be attached to a stationary main.例2:……is a real-life common phenomenon with many complexities.例3:An (effective plan) is crucial to………b. 直接指出问题:例 1:We find the optimal number of tollbooths in a highway toll-plaza for a given number of highway lanes: the number of tollbooths that minimizes average delay experienced by cars.例2:A brand-new university needs to balance the cost of information technology security measures with the potential cost of attacks on its systems.例3:We determine the number of sprinklers to use by analyzing the energy and motion of water in the pipe and examining the engineering parameters of sprinklers available in the market.例4: After mathematically analyzing the …… problem, our modeling group would like to present our conclusions, strategies, (and recommendations )to the …….例5:Our goa l is... that (minimizes the time )……….2.解决这个问题的伟大意义反面说明。
2023年华为杯数学建模写作模板
2023年华为杯数学建模写作模板尊敬的评委们:感谢您们百忙之中抽出时间来审阅我们的数学建模报告。
本文档将向您展示我们团队在2023年华为杯数学建模竞赛中所完成的工作,并详细介绍我们对于问题的解决方案和模型的建立与验证过程。
在这篇报告中,我们将按照以下的结构来展示我们的研究成果:第一部分:问题分析与建模思路在这一部分,我们将对于竞赛问题进行详细的分析,并分析问题的关键点与难点。
我们会给出我们的建模思路,并解释为什么我们选择了特定的建模方法来解决这一问题。
通过这一部分的介绍,您能够清晰地了解我们团队在问题分析和建模思路上所做的工作。
第二部分:模型建立与求解这一部分是我们报告的核心部分。
我们将详细地介绍我们建立的数学模型,并解释模型中每个变量和参数的含义与作用。
我们还会逐步展示模型求解的过程,包括数据的预处理、数值计算的方法与步骤。
通过这一部分的介绍,您能够了解我们是如何通过数学方法来解决这一问题的。
第三部分:模型验证与灵敏度分析为了验证我们建立的模型的有效性和准确性,我们进行了详细的模型验证过程。
我们将给出模型验证的指标和方法,并展示实际数据与模型结果的对比。
同时,我们还进行了灵敏度分析,以评估模型对于参数变化的敏感程度。
这一部分将展示我们模型的可靠性和鲁棒性。
第四部分:结果分析与优化方案在这一部分,我们将对模型的求解结果进行详细的分析,并给出针对不同情况下的优化方案。
我们将考虑实际应用中的限制和约束条件,并提出可行的解决方案和策略。
我们的目标是通过科学合理的分析和优化来达到问题的最佳解决方案。
最后,我们将通过总结来总结我们的研究成果,并对未来的工作和改进方向提出建议。
我们感谢您的审阅,并诚挚希望我们的报告能对您有所启发。
如果您在审阅过程中有任何问题或建议,我们将非常欢迎您的反馈和指导。
数学建模论文模板及套路
数学建模论文模板及套路
一、摘要
内容:
•用1、2句话说明原问题中要解决的问题;
•建立了什么模型(在数学上属于什么类型),建模的思想(思路),模型特点;
•算法思想(求解思路),特色;
•主要结果(数值结果,结论);(回答题目的全部“问题”)
•模型优点,结果检验;模型检验,灵敏度分析,有无改进,推广
要求
•特色和创新之处必须在这里强调;
•长度
•要确保准确、简明、条理、清晰、突出特色和创新点;
二、问题的提出
内容:用自己的语言阐述背景,条件,要求;重点列出‘问题’也即要求;
要求:
•不是题目的完整拷贝
•根据自己的理解,用自己的语言清楚简明的阐述背景、条件和要求;
三、条件假设
内容
•根据题目中的条件做出假设
•根据题目中的要求做出假设;
要求
•合理性最重要;
•假设合理且全面,但不欣赏罗列大量的无关假设,关键性假设不能缺;
•合理假设作用:
简化问题,明确问题,限定模型的适用范围。
数学建模 优秀论文模板PPT
论文写作要点
7、引用现成定理时,要先验证满足定理的条件。 8、论文中用到的各种数学符号,须在第一次出现时加以说明。 9、计算过程,中间结果可要可不要的,不要列出。 10、引用的参考文献最好写10个左右,且需在文中标注。 11、不太重要的表格以及复杂的编程均要放在附录中。 12、文章结束后一定要查重,一般查重率低于30%。
(第1段)简介背景和整体的问题方向。 (第2段)针对问题一,使用……方法……建立了……模型,得出……结论。(然后简述建 模过程)首先……,然后,……,最后…… (第3段)针对问题二,……(格式同上,内容充实、语言简洁,方法、软件、结果都 必须清晰描述)
最后一段可以是总结和建议,使文章更加丰满。 关键词:方法、理论、概念等。
查找数据
中国统计信息网:汇集了海量的全国各级政府各年度的国民经济和社会发 展统计信息,建立了以统计公报为主,统计年鉴、阶段发展数据、统计分 析、经济新闻、主要统计指标排行等。/
查找数据
GitHub:包含各个细分领域的数据库资源,自然科学和社会科学的覆盖都 很全面,简直是做研究和数据分析符号,不宜自己乱定义符号,对于改进的一些模型, 符号可以适当自己修正(下标、上标、参数等可以变,主符号最好与经典模型符号靠 近)。格式示例如下:
模型假设
内容: (1)根据题目中的条件作出假设; (2)根据现实中的情况作出假设。 要求: (1)合理性最重要; (2)假设合理且全面,但不欣赏罗列大量的无关假设,关键性假设不能缺; (3)合理假设作用: 简化问题,明确问题,限定模型的适用范围。
即本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,一般5个 左右。
问题重述
内容: 1、用自己的语言阐述背景:结合时代、社会、民生; 2、重点列出需要解决的“问题”;
数学建模范文模板
数学建模范文模板一、问题分析1. 问题的背景与意义:(1)简要介绍问题的相关背景与意义;(2)问题的研究价值和应用前景。
2. 问题的具体描述:(1)详细描述问题的具体内容,包括已知条件和需要求解的问题;(2)对问题进行可视化分析,如示意图、数据表格等。
3. 问题的假设:(1)对问题进行一些合理的假设,以简化问题;(2)明确各种假设的合理性和局限性。
二、模型的建立1. 模型的基本思路:(1)根据问题的具体情况,提出解决问题的基本思路、方法或策略;(2)形成数学模型的核心思想。
2. 模型的符号定义:(1)对模型中所用到的符号进行明确的定义;(2)解释符号的含义和用途。
3. 模型的建立与求解:(1)根据问题的具体要求,建立相应的数学模型;(2)通过数学方法对模型进行求解,得到问题的最优解或近似解。
三、模型的验证与分析1. 模型的验证:(1)对建立的数学模型进行验证,检验模型的合理性;(2)通过比较模型的预测结果与现实数据或实验结果的吻合程度,判断模型的有效性。
2. 模型的结果与讨论:(1)分析模型的求解结果,阐述其具体含义和实际意义;(2)对模型的局限性和改进方向进行讨论。
四、模型的应用与推广1. 模型的应用:(1)对模型的应用范围和条件进行说明;(2)通过实际案例分析,探讨模型在解决问题中的实际应用。
2. 模型的推广:(1)对模型的推广适用性进行分析;(2)针对其他类似问题,探讨模型的推广和改进方向。
五、总结与展望1. 研究总结:(1)对已完成的研究工作进行总结,强调研究的主要成果和创新之处;(2)指出问题研究中的不足和需要进一步探索的方向。
2. 研究展望:(1)对未来的研究方向和重点进行展望;(2)对进一步提高模型的精度、拓宽应用范围等方面提出建议。
数学建模万能模板
“中国矿大出版杯”第五届苏北数学建模联赛题 目 A 题:私家车保有量增长及调控问题 摘 要私人汽车保有量与社会经济发展有着密切的联系,然而,私人汽车保有量的剧增给能源、环境带来了巨大的压力,因此调控汽车保有量显得尤为重要。
本文通过对已有数据的统计分析,根据相关的数学建模知识,解决了题目要求的实际问题。
针对问题一,通过建立并求解熵值法确定了汽车保有量的影响因素。
并以此分别建立了灰色预测模型、BP 神经网络模型,在这两种模型的基础上,进行了优化处理,建立了灰色-神经网络组合模型,并求解出2008-2010年的预测值(见得知加息、上调存款准备金率对私人汽车保有量的影响是温和轻微的。
针对问题三,根据汽车尾气的排放情况,分析了两类汽车的数量、运营里程与废气排放之间的关系,建立了LEAP 模型,并提出可行性方案。
在理想的排放尾气状况下,得到了合理的调控汽车保有量方案。
随后给出了模型的改进方案,并指出模型的优缺点。
最后,结合本文的优越性,我们给政府和消费者提出了一些建议。
关键词: 汽车保有量预测 熵值法 灰色-神经网络 权系数Logistic 关系 LEAP 模型参赛队号 1503目录一、问题的提出 (2)二、背景简述 (2)三、基本假设与符号说明 (3)3.1. 基本假设 (3)3.2. 符号说明 (4)四、问题分析与建模流程 (4)4.1. 问题一的分析 (4)4.2. 问题二、三的分析 (5)五、数学模型的建立与求解 (6)5.1. 确定影响因素模型(熵值法)的建立 (6)5.2. 影响因素的确定 (7)5.3. 私人汽车保有量预测模型的建立 (9)5.4. 私人汽车保有量的预测 (16)5.5. 升息等因素对汽车保有量的影响 (18)5.6. 调控汽车保有量 (21)六、模型的改进 (27)七、模型的评价 (28)八、相关建议 (28)参考文献 (29)附录 (30)一、问题的提出我国经济的快速发展为私人汽车提供了巨大的发展空间。
数学建模的万能模板
(3.问题一,问题二。。。。)
1、根据已给数据建立学科评价模型,要求必要的数据分析及建模过程。
2、模型分析,给出建立模型的适用性、合理性分析。
2.(根据题目条件作出假设);
3.(跟据题目要求作出假设);
4.。。。
5,。。。
(要求:1.大量数据中筛选最能表现问题本质变量,理想化,简化关系,
2.假设严格确切,不模糊,不曲解
3.模型必需的,不是无关假设
4.合乎常识
5.假设不要太具体,不要把某些重要参数定死为只能取某些值)
四.符号说明(及名词定义)
3、假设数据来自于某科研型或教学型高校,请给出相应的学科评价模型。
二.问题分析
(一)问题1的分析
对问题1研究的意义分析。
问题1属于。。。。数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给的数据特点的分析。
对问题1所要求的结果进行分析。
由于以上原因,我们可以首先对。。问题进行简化。。。并用。。。数学知识。。。。建立一个。。。。数学模型Ⅰ,然后对模型Ⅰ进行改进。。。。将建立一个。。。的数学模型Ⅱ,。。。。。对结果分别进行预测,并将结果进行比较。
K:学科评价模型
学科的水平、地位是高等学校的一个重要指标,而学科间水平的评价对于学科的发展有着重要的作用,它可以使得各学科能更加深入的了解本学科(与其他学科相比较)的地位及不足之处,可以更好的促进该学科的发展。因此,如何给出合理的学科评价体系或模型一直是学科发展研究的热点问题。现有某大学(科研与教学并重型高校)的13个学科在一段时期内的调查数据,包括各种建设成效数据和前期投入的数据。
数学建模的经典模板
一、摘要内容:(1)用1、2句话说明原问题中要解决的问题;(2)建立了什么模型(在数学上属于什么类型),建模的思想(思路),模型特点;(3)算法思想(求解思路),特色;(4)主要结果(数值结果,结论);(回答题目的全部“问题”)(5)模型优点,结果检验;模型检验,灵敏度分析,有无改进,推广要求(1)特色和创新之处必须在这里强调;(2)长度(3)要确保准确、简明、条理、清晰、突出特色和创新点;二、问题的提出内容:用自己的语言阐述背景,条件,要求;重点列出‘问题’也即要求;要求:(1)不是题目的完整拷贝(2)根据自己的理解,用自己的语言清楚简明的阐述背景、条件和要求;三、条件假设内容(1)根据题目中的条件做出假设(2)根据题目中的要求做出假设;要求(1)合理性最重要;(2)假设合理且全面,但不欣赏罗列大量的无关假设,关键性假设不能缺;(3)合理假设作用:简化问题,明确问题,限定模型的适用范围四、符号约定五、问题分析1.名词解释2.问题的背景分析3.问题分析六、模型建立抽象要求(1)模型的主要类别:初等模型、微分方程模型、差分方程模型、概率模型、统计预测模型、优化模型、决策模型、图论模型等(2)几种常见的建模目的:(对应相对(1)的方法)描述或解释现实世界的各类现象,常采用机理型分析方法,探索研究对象的内在规律性;预测感兴趣的时间爱你是否会发生,或者事物的房展趋势,常采用数理统计或模拟的方法;优化管理、决策或者控制事物,需要合理地定义可量化的评价指标及评价方法;(3)建模过程常见的几个要点:模型的整体设计、合理的假设、建立数学结构、建立数学表达式;(4)模型的要求:明确、合理、简洁、具有一般性;例如:有些论文不给出明确的模型,只是就赛题所给的特殊情况,用凑得方法给出结果,虽然结果大致对,但缺乏一般性,不是建模的正确思路;((与第三点对应))(5)鼓励创新,特别欣赏独树一帜、标新立异,但要合理(6)避免出现罗列一系列的模型,又不做评价的现象;具体要求:(1)基本模型:首先要有数学模型:数学公式、方案等;基本模型,要求完整,正确,简明(2)简化模型:要明确说明,简化思想,依据;简化后的模型尽可能给出;七、模型求解每一块内容包括:计算方法设计或选择、算法设计或选择、算法思想依据、步骤及实现、计算框图、所采用的软件名称写作要求:1、需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密2、需要说明计算方法或算法的原理、思想、依据、步骤。
数学建模的经典模板
一、摘要我们解决了洗澡时水温不能维持初温的问题,并在解决问题的同时尽可能减少水的浪费。
我们主要通过热传导公式及傅里叶定律推导出适合解决此问题的推导公式,并建立起完整的基于时间发散的热量流失积分模型,根据生活经验等方面的知识综合合理地解决了这一问题,模型简单但严谨,利于用户理解和操作,由最基本最简单的条件入手,逐步增加变量,逐步深入思考问题的本质,通过这种思考方式更有利于发现问题的根本,从问题的根源给出最便捷最有效的解决方案。
模型的简化利于用户的理解,并使用户清晰了解解决问题的困难程度。
通过建立这样一个数学模型,通过代入实际数据,我们得出每12分钟通入30L50℃的热水为最佳解决方案。
因为这样做不仅有效维持了水的初始温度,而且操作简单合理,同时避免了水的浪费。
经实践检验,结果较适合实际应用。
用户可根据自己的个人需要灵活处理,可将洗澡时间定为12分钟的整数倍,以便节省最后一次加水的步骤。
二、问题的提出三、条件假设四、符号约定五、问题分析1.问题的背景分析2.问题分析六、模型建立七、模型求解八、结果分析。
结果检验。
模型检验及修正、结果表示。
九、模型评价1.模型优点(突出)2.模型缺点(不回避)十一、参考文献分工的目的:分工是为了抢时间;建模的后续工作:(重要)(1)论文的检查:模型的正确性、合理性、创新性;结果的正确性、合理性;文字表述清晰,分析精辟,摘要精彩;建模前的思考:答卷需要回答那几个问题——建模需要解决那些问题;问题以怎样的方式回答——结果以怎样的形式表示;每个问题要列出那些关键数据——建模需要计算那些关键数据每个量要列出一组还是多组数——要计算一组还是多组数;答卷要求原理:准确——科学性条理——逻辑性简洁——数学美创新——研究应用目标之一实用——建模● 1. 应用意识:要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。
● 2. 数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。
数学建模优秀论文模板
数学建模优秀论文模板《基于深度学习的图像语义分割方法研究》摘要:图像语义分割在计算机视觉领域中占有重要地位,对于图像中的每个像素进行分类,能够为图像理解与分析提供更精确的信息。
本文基于深度学习方法,提出了一种高效准确的图像语义分割模型。
首先,对于输入图像,我们采用了深度卷积神经网络(DCNN)进行特征抽取,以捕捉图像中的局部和全局信息。
接着,我们引入了转置卷积层和跳跃连接,以融合不同尺度的特征并提高细节识别能力。
最后,利用全连接的条件随机场(CRF)来对分割结果进行优化,提升边界的准确性。
在公开数据集上的实验证明,我们的模型在性能和效率方面均超越了其他经典方法,达到了较好的分割效果。
关键词:深度学习,图像语义分割,卷积神经网络,转置卷积,跳跃连接,条件随机场1.引言随着计算机视觉的迅速发展,图像语义分割成为了一个热门的研究领域。
传统的图像分割方法通常依赖于手工设计的特征和分类器,这些方法在处理复杂场景时存在一定的局限性。
近年来,基于深度学习的图像语义分割方法不断涌现,通过利用深度卷积神经网络(DCNN)对图像进行特征抽取和分类,取得了显著的分割效果。
本文旨在研究一种高效准确的图像语义分割模型,通过引入转置卷积层和跳跃连接来提高模型的性能。
2.相关工作目前,各种基于深度学习的图像语义分割算法已经被提出。
例如,FCN(Fully Convolutional Network)算法通过使用全卷积神经网络实现了图像像素级别的分类。
SegNet算法引入了编码器-解码器结构,并利用了池化操作的索引来进行上采样。
这些方法在一定程度上改善了图像语义分割的效果,但仍然存在一定的局限性,如模型准确性和边界识别能力不足。
3.方法介绍本文提出的图像语义分割模型主要包括以下几个步骤:(1)使用深度卷积神经网络(DCNN)对输入图像进行特征抽取,以捕捉图像中的局部和全局信息。
(2)引入转置卷积层和跳跃连接,以融合不同尺度的特征并提高细节识别能力。
数学建模 范文模板
乒乓球新老赛制对比定量分析余意指导老师:詹棠森摘要:本文主要采用的概率论的相关知识,先用正态分布的形式来表示了运动员的临场发挥水平,以均值μ表示运动员的综合技术水平,以均方差σ表示运动员水平发挥的稳定性,从而得出运动员之间相互的单回合胜率,再利用古典概率和N重伯努利实验的理论,求出运动员相对独立的单局胜率和单场胜率。
针对题目中“三个有利于”对于比赛的检验标准和每个赛制都应有的合理偶然性,故将其问题简化为比较并量化赛制间精彩程度比和赛制的偶然性的问题。
本文通过计算机求解得到的结论为11分制5局3胜对于21分制3局2胜的精彩程度更高,11分制7局4胜对于21分制5局3胜的精彩程度更高,并且在11分的赛制下,偶然性更大,使三四流的运动员战胜一二流的运动员有了更大的可能。
同时,经过证明可知,三四流的运动员进入决赛的概率很小,11分制的实行不会导致此类事件的发生。
关键词:乒乓球赛制概率论精彩程度比偶然性一、问题重述球类运动以其参加人数之多、影响广泛而堪称世界性的运动项目,加之其休闲性和娱乐性使其不仅丰富了大众的业余文化生活,同样成为社会文化乃至经济活动的重要组成部分。
自2001年10月1日起,国际乒联改用11分制等新规则。
中国乒乓球老将王家声认为,规则改变的实践效果的检验标准是三个有利于:要有利于运动的推广,有利于形成对抗激烈,场面精彩的比赛,有利于它的市场开发和赞助商利益。
11分制的实行,使比赛增加偶然性增加,让一些二三流选手也有机会战胜一流选手。
“但这个偶然性应有个度”王家声说:“如果这个偶然性大到世界顶尖高手也纷纷被无名小卒淘汰,三四流选进决赛,那它就不是好规则了。
”乒乓球11分制利弊如何,是否会象羽毛球7分制一样实行不久就取消呢?请研究下列问题:1.试对11分制的5盘3胜与21分制的3盘2胜制作定量的比较分析;2.试对11分制的7盘4胜和21分制的5盘3胜制作定量的比较分析;3.综合评价及建议。
二、问题分析赛制改变的实践效果的检验标准有:有利于运动的推广,有利于形成对抗激烈,场面精彩的比赛,有利于它的市场开发和赞助商利益。
数学建模经典模型
正规战争模型 双方均以正规部队作战
• 甲方战斗减员率只取决于乙方的兵力和战斗力
f(x, y)=ay, a ~ 乙方每个士兵的杀伤率
a=ry py, ry ~射击率, py ~命中率
xayxu(t) ybxyv(t) gb,x brxpx
x ay
• 忽略非战斗减员
y bx
• 假设没有增援
x(0) x0, y(0) y0
1)总人数N不变,病人和健康
人的 比例分别为 i(t),s(t) .
SI 模型
2)每个病人每天有效接触人数 ~ 日
为, 且使接触的健康人致病.
接触率
N [ i( t t) i( t) [ ]s ( t)N ] ( t) ti
di si
dt
s(t)i(t)1
di dt
i (1 i )
f0
K0 K 0
y(t) f0
[1(1 K K 0 0)e (1 )t] 1 1
3) 经济增长的条件 产值Q(t)增长 dQ/dt > 0
Q f0L(y g )g ,(y)y
d dQ tf0Lg(y)d dy t f0g(y)d dL tf0 L2 1 y [f0 (1 )y 1 ]
y(t) f0
[1(1 K K 0 0)e (1 )t] 1 1
d dQ t0 1K 0 /K 0 e(1)t 1 1
0 d/Q d t0 ~ 劳动力相对增长率
0 当 t ( 1 1 )l1 n )( 1 (K 0 /K 0 )d ,/d Q 0 t
3) 经济增长的条件
有效接触人数,称为接触数.
模型3
di/dt
dii[i(11)]
dt
接触数 (感染期内每个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承诺书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):
我们的参赛报名号为(如果赛区设置报名号的话):
所属学校(请填写完整的全名):
参赛队员 (打印并签名) :1.
2.
3.
指导教师或指导教师组负责人 (打印并签名):
日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):
2010高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):
题目(黑体不加粗三号居中)
摘要(黑体不加粗四号居中)
(摘要正文小4号,写法如下)
容要点:
1、研究目的:本文研究……问题。
2、建立模型思路、:首先,本文……。
然后针对第一问……问题,本文建立……模型:
在第一个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型
在第二个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型
3、求解思路,使用的方法、程序
针对模型的求解,本文使用什么方法,计算出,并只用什么工具求解出什么问题,进一步求解出什么结果。
4、建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型
检验等)
5、在模型的检验模型中,本文分别讨论了以上模型的精度和稳定性
6、最后,本文通过改变,得出什么模型。
关键词:结合问题、方法、理论、概念等
一、问题重述(第二页起黑四号)
容要点:
1、问题背景:结合时代、社会、民生等
2、需要解决的问题
问题一:
问题二:
问题三:
二、问题分析
容要点:什么问题、需要建立什么样的模型、用什么方法来求解
三、模型假设与约定
容要点:
1、根据题目中条件作出假设
2、根据题目中要求作出假设
写作要求:
细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。
将一些问题理想化、简单化。
1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解
2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考
3、假设应验证其合理性。
假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设,或者由观察所给数据的图象,得到变量的函数形式,也可以参考其他资料由类推得到。
对于后者应指出参考文献的相关容
四、符号说明及名词定义
容要点:包括建立方程符号、及编程中用到的符号等
五、模型建立
容要点:
1、模型一
2、模型二
3、模型三
对于每一个模型的建立,需要写出的容:问题分析→公式推导→基本模型→最终或简化模型。
基本模型要有数学公式、方案等。
简化模型要明确说明简化思想、依据。
写作要点:
数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大)。
模型要实用,有效,以解决问题有效为原则。
1、能用初等方法解决的、就不用高级方法
2、能用简单方法解决的,就不用复杂方法
3、能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法
4、鼓励创新,但要切实,不要离题搞标新立异
六、模型求解
容要点:
1、模型一的求解
2、模型二的求解
3、模型三的求解
每一块容包括:计算方法设计或选择、算法设计或选择、算法思想依据、步骤及实现、计算框图、所采用的软件名称
写作要求:
1、需要建立数学命题时:命题叙述要符合数学命题的表述规,尽可能论证严密
2、需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称
3、计算过程,中间结果可要可不要的,不要列出
4、设法算出合理的数值结果
5、最终数值结果的正确性或合理性是第一位的
6、对数值结果或模拟结果进行必要的检验。
结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进
7、题目中要求回答的问题,数值结果,结论,须一一列出
8、列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据
9、结果表示:要集中,一目了然,直观,便于比较分析
▲数值结果表示:精心设计表格;可能的话,用图形图表形式
▲求解方案,用图示更好
10、必要时对问题解答,作定性或规律性的讨论。
最后结论要明确
七、模型检验
容要点:结果分析、检验;模型检验及模型修正;结果表示
写作要求:
1、最终数值结果的正确性或合理性是第一位的
2、对数值结果或模拟结果进行必要的检验。
结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进
3、题目中要求回答的问题,数值结果,结论,须一一列出
4、列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据
5、结果表示:要集中,一目了然,直观,便于比较分析
▲数值结果表示:精心设计表格;可能的话,用图形图表形式
▲求解方案,用图示更好
八、模型评价
容要点:
1、优点
2、缺点(结合模型假设)
3、改进方法
写作要求:
优点突出,缺点不回避。
改变原题要求,重新建模可在此做。
推广或改进方向时,不要玩弄新数学术语。
九、模型推广
结合社会实际问题
十、参考文献
(书写格式如下)
[1] 作者名1,作者名2.文章名字.杂志名字,年,卷(期):起始页码-结束页码
[2] 作者名1,作者名2.书名.出版地:,年,起始页码-结束页码
[3] 作者名1,作者名2.文章名字. 年,卷(期):起始页码-结束页码,网页地址。
[4] 传鹏,什么是中国标准书号,
/mypage/page2.asp?pgid=51440&pid=46275 ,
2006-9-18。
[5] 徐玖平、胡知能、军,运筹学(II类),:科学,2004。
[6] Ishizuka Y, AiyoshiE. Double penalty method for bilevel optimization problems. Annals of Operations Research, 24: 73- 88,1992。
十一、附录
(正文中不许出现程序,如果要附程序只能以附件形式给出)
2013年数学建模评分参考标准:
摘要(很重要) 5分
数据筛选 35分
数学模型 35分
数据模拟 15分
总体感觉 10分
特别注意:
1、问题的结果要让评卷人好找到;显要位置---独立成段
2、摘要中要将方法、结果讲清楚;
3、可以有目录也可以不要目录;
4、建模的整个过程要清楚,自圆其说,有结果、有创新;
5、采样要足够多,每组不少于7 个;
6、模型要与数据结合,用数据验证过;
7、如果数学方法选错,肯定失败;
8、规、整洁;总页数在25~30之间为宜。
9、必须有数学模型,同一问题的不同模型要比较;
10、数据必须有分析和筛选;
11、模型不能太复杂,若用多项式回归分析,次数以3次为好。