高效液相色谱方法及应

合集下载

通则0512高效液相色谱法

通则0512高效液相色谱法

高效液相色谱法:系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。

注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。

1.对仪器的一般要求和色谱条件高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。

色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。

超高液相色谱仪:是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。

(1)色谱柱反相色谱柱:以键和非极性基团的载体为填充剂填充而成的色谱柱。

常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。

正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。

常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。

氨基键合硅胶和氰基键合硅胶也可用作反向色谱。

离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。

有阳离子交换色谱柱和阴离子交换色谱柱。

手性分离色谱柱:用手性填充剂填充而成的色谱柱。

色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。

温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。

为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。

残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。

残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。

(2)检测器最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。

高效液相色谱仪的四种检测方法及计算

高效液相色谱仪的四种检测方法及计算

高效液相色谱仪的四种检测方法及计算高效液相色谱仪(HPLC)在化学、生物学、制药、食品等领域都有广泛应用,其检测方法多种多样,以下将详细介绍四种常用的检测方法及其计算方式。

一、紫外-可见光检测法 (UV-Vis)紫外-可见光检测法是最常用的HPLC检测方法。

在此方法中,样品组分在紫外或可见光区域有吸收,因此可以被检测。

计算方法一般采用峰面积或峰高法定量。

峰面积法比峰高法更为准确,因为它同时考虑了峰的高度和宽度。

在计算时,首先需要获得标准品的校正曲线,然后根据未知样品的峰面积或峰高在校正曲线上找到对应的浓度。

二、荧光检测法 (Fluorescence)荧光检测法的灵敏度通常比紫外-可见光检测法更高,但并非所有化合物都能产生荧光。

在这种方法中,样品组分被激发光照射后发出荧光,荧光强度与组分浓度成正比。

计算方式与紫外-可见光检测法类似,也是通过校正曲线进行定量。

三、电化学检测法 (Electrochemical Detection)电化学检测法通常用于检测具有电化学活性的化合物,如许多药物和神经递质。

它可以在没有光学性质的情况下对物质进行检测,提高了HPLC的应用范围。

常见的电化学检测方法包括安培检测法和电导检测法。

定量计算通常基于法拉第定律,即电流与通过电解池的电荷量成正比。

四、质谱检测法 (Mass Spectrometry)质谱检测法是与HPLC连用的一种高级检测方法,可以提供待测物质的分子量信息,从而确定其化学结构。

在此方法中,HPLC分离后的组分直接进入质谱仪进行检测。

定量计算通常使用内标法或外标法,需要对待测物质进行同位素标记或使用已知量的内标物质。

此外,还可以使用多反应监测模式(MRM)进行更准确的定量。

以上四种方法各有优缺点,应根据具体的应用需求和样品性质选择合适的方法进行检测和计算。

同时,为了获得准确可靠的结果,还需要对HPLC系统进行适当的维护和校准。

[医学]中国药典-高效液相色谱

[医学]中国药典-高效液相色谱
由于C18链在水相环境中不易保持伸展状态,故对于十 八烷基硅烷键合硅胶为固定相的反相色谱系统,流动 相中有机溶剂的比例通常应不低于5%,否则C18链的 随机卷曲将导致组分保留值变化,造成色谱系统不稳 定。
14
二、系统适用性试验
色谱系统的适用性试验通包括 理论板数 分离度 重复性 拖尾因子 分离度和重复性是尤为重要。
4
色谱柱
填充剂的性能(如载体的形状、粒径、孔径、表面积 、键合基团的表面覆盖度、含炭量和键合类型等)以 及色谱柱的填充,直接影响供试品的保留行为和分离 效果。分析分子量小于2000的化合物应选择孔径在 15nm以下的填料,分析分子量大于2000的化合物则应 选择孔径在30nm以上的填料。
普通分析柱的填充剂粒径一般在3~10µm之间。粒径 更小(约2µm)的填充剂常用于填装微径柱(内径约 2mm)。
8
二极管阵列检测器 (diode array detector,DAD)
特点:在任一时间内,均可同时得到 物质在不同波长下的吸收情况,即三 维图谱
多组分混合物的三维图谱
流动相
反相色谱系统的流动相首选甲醇-水系统(采用紫外末 端波长检测时,首选乙腈-水系统),如经试用不适合 时,再选用其他溶剂系统。应尽可能少用含有缓冲液 的流动相
紫外、荧光、电化学检测器为选择性检测器,其响应值不仅与供 试品溶液的浓度有关,还与化合物的结构有关;
示差折光检测器和蒸发光散射检测器为通用型检测器,对所有的 化合物均有响应;
蒸发光散检测器对结构类似的化合物,其响应值几乎仅与供试品 的质量有关;
二极管阵列检测器可以同时记录供试品的吸收光谱,故可用于供 试品的光谱鉴定和色谱峰的纯度检查。
5
注意

高效液相色谱方法及应用

高效液相色谱方法及应用

28
专属型检测器
它对不同组成的物质响应差别极大,因此只能选 择性的检测某些物质,如紫外检测器、荧光检测 器和电导检测器。
通用型检测器
它对大多数物质的响应相差不大几乎适用于所有 物质,如示差折光化学检测器 。但它的灵敏度低, 受温度影响波动大、使用时有一定局限性。
29
紫外吸收检测器
简称紫外检测器( ultraviolet absorption detector , UV),是基于溶质分子吸收紫外光的原理设计的检测 器。 因为大部分常见有机物质和部分无机物质都具有紫外吸 收性质,所以该检测器是液相色谱中应用最广泛的检测 器,几乎所有液相色谱仪都配置了这种检测器。 它不仅有较好的选择性和较高的灵敏度,而且对环境温 度、流动相组成变化和流速波动不太敏感,因此既可用 于等度洗脱,也可用于梯度洗脱。
1、适用于分离几乎所有类型的化合物。一方面通过控制化学键合反应, 可以把不同的有机基团键合到硅胶表面上,从而大大提高了分离的选 择性;另一方面可以通过改变流动相的组成合乎种类来有效地分离非 极性、极性和离子型化合物。 2、由于键合到载体上的基团不易被剪切而流失,这不仅解决了由于固定 液流失所带来的困扰,还特别适合于梯度洗脱,为复杂体系的分离创 造了条件。 3、键合固定相对不太强的酸及各种极性的溶剂都有很好的化学稳定性和 热稳定性。 4、固定相柱效高,使用寿命长,分析重现性好。
9
HPLC与GC差别
相同:兼具分离和分析功能 均可以在线检测 不同:
1.分析对象的区别 2.流动相的区别 3.操作条件区别
10
HPLC与GC差别
1.分析对象的区别 GC:适于能气化、热稳定性好、且沸点较低的样品;但 对高沸点、挥发性差、热稳定性差、离子型及高聚物的样 品,尤其对大多数生化样品不可检测,占有机物的20% HPLC:适于溶解后能制成溶液的样品(包括有机介质溶 液),不受样品挥发性和热稳定性的限制,对分子量大、 难气化、热稳定性差的生化样品及高分子和离子型样品均 可检测,用途广泛,占有机物的80%

高效液相色谱方法及应用

高效液相色谱方法及应用
一、流动相脱气 (1)吹氦脱气法 (2)加热回流法 (3)抽真空脱气法 (4)超声波脱气法 (5)在线真空脱气法
高压输液泵及梯度洗脱装置
一、高压输液泵 高压输液泵可以分为以下两类: 1.恒流泵:可输出恒定体积流量的流
动相。 (1)注射式泵(又称注射式螺杆泵) (2)往复型泵 2.恒压泵:恒压泵又称气动放大泵,
一类是选择性检测器,如紫外一可 见分光光度检测器;
另一类是通用型检测器,如示差折 光检测器。
(1)紫外一可见分光光度检测器。
如今此技术已在分析咖啡中的黄嘌泠、调料中的核苷酸及核苷、果汁中的有机酸、米中的维生素、牛奶中的维生素D等都对食品营养价 值提供有效数据。 热不稳定物、离子型化合物及高聚物的分离及测量有困难,致使其应用受到了很大的限制。 又如止痛药或退烧药也可用此法分离并测得各组分的含量。 染料厂排出废水中的苯胺等。 用液相色谱分析简便迅速。 分析食品中的有毒成分,如苹果中农药萘乙酸、稻米中的黄曲霉素、鱼体中的有机汞等。是输出恒定压来自的泵。二、梯度洗脱装置
1.梯度洗脱(gradient elution)又称 停流进样是在高压泵停止供液、体系压力下降的情况下,将样品直接加到柱头。
一、与经典液相色谱法比较
为梯度淋洗或程序洗脱。在同一个分析 用离子交换柱和缓冲游泳梯度淋洗。
多种不同性能的配位体键联在固相基体上 分析食品中的有毒成分,如苹果中农药萘乙酸、稻米中的黄曲霉素、鱼体中的有机汞等。
高效液相色谱法的特点
一、与经典液相色谱法比较 经典液相(柱)色谱法使用粗粒多孔固定相,装
填在大口径、长玻璃柱管内,流动相仅靠重力流经 色谱柱,溶质在固定相的传质、扩散速度缓慢,柱 入口压力低,仅有低柱效,分析时间冗长。
高效液相色谱法使用了全多孔微粒固定相,装填 在小口径、短不锈钢柱内,流动相通过高压输液泵 进入高柱压的色谱柱,溶质在固定相的传质,扩散 速度大大加快,从而在短的分析时间内获得高柱效 和高分离能力。

高效液相色谱方法及应用

高效液相色谱方法及应用

高效液相色谱方法及应用摘要高效液相色谱(high performance liquid chromatography, HPLC)也叫高压液相色谱(high pressure liquid chromatography)、高速液相色谱(high speed liquid chromatography)、高分离度液相色谱(high resolution liquid chromatography)等。

使用高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待侧物所含有的物质。

高效液相色谱作为一种重要的分析方法,广泛的应用于化学和生化分析中。

高效液相色谱从原理上与经典的液相色谱没有本质的差别,它的特点是采用了高压输液泵、高灵敏度检测器和高效微粒固定相,适于分析高沸点不易挥发、分子量大、不同极性的有机化合物。

本文着重以分析赖氨酸铜为例介绍高效液相色谱方法及应用。

关键词:高效液相色谱法的发展历史;特点及应用;赖氨酸螯合铜一、高效液相色谱法的发展历史[1]1960年代,由于气相色谱对高沸点有机物分析的局限性,为了分离蛋白质、核酸等不易气化的大分子物质,气相色谱的理论和方法被重新引入经典液相色谱。

1960年代末科克兰(Kirkland)、哈伯、荷瓦斯(Horvath)、莆黑斯、里普斯克等人开发了世界上第一台高效液相色谱仪,开启了高效液相色谱的时代。

高效液相色谱使用粒径更细的固定相填充色谱柱,提高色谱柱的塔板数,以高压驱动流动相,使得经典液相色谱需要数日乃至数月完成的分离工作得以在几个小时甚至几十分钟内完成。

1971年科克兰等人出版了《液相色谱的现代实践》一书,标志着高效液相色谱法(HPLC)正式建立。

在此后的时间里,高效液相色谱成为最为常用的分离和检测手段,在有机化学、生物化学、医学、药物开发与检测、化工、食品科学、环境监测、商检和法检等方面都有广泛的应用。

高效液相色谱的使用方法

高效液相色谱的使用方法

高效液相色谱的使用方法高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种用于分离、分析和测定混合物中组分的技术。

以下是高效液相色谱的使用方法:1. 样品制备:根据需要,样品可以通过溶解、浸提、纯化等方法进行前处理。

确保样品是均匀的,并且符合HPLC分析要求。

2. 选择合适的色谱柱:根据分析目标,选择合适的色谱柱,包括固定相(C18、C8、氨基、芳基等)和柱型(反相、离子交换、排除等)。

色谱柱质量对分离和分析结果至关重要。

3. 准备移动相:根据色谱柱要求和分析目标,选择合适的移动相。

移动相通常由溶剂和缓冲液组成,可以通过改变溶剂的组成和比例来调节色谱条件。

4. 设定色谱条件:根据需要,设定合适的色谱条件,包括流动相速度、柱温、检测波长等。

这些条件将直接影响分离的效果和分析的准确性。

5. 校准仪器:在开始分析之前,校准色谱仪和检测器,确保其准确性和稳定性。

校准通常包括检测器灵敏度、波长、流速等参数。

6. 注样和运行:将样品注入色谱柱,启动色谱仪,使移动相通过柱子,分离出样品中的各组分。

根据需要,通过改变运行时间、流速等参数,调节分离和分析的效果。

7. 数据分析:通过检测器检测样品中各组分的吸光度或荧光强度,并记录数据。

可以使用特定的色谱软件对数据进行处理和解析,以获得准确的分析结果。

8. 数据解释:根据分析结果,对样品中的各组分进行定量或定性的解释。

可以使用标准品进行定量分析,或者与已知数据进行比对,以确认各组分的身份和浓度。

9. 清洗和维护:在完成分析后,及时清洗色谱柱和仪器,以保持其性能和寿命。

根据需要,使用适当的溶剂进行清洗,并使仪器处于良好的工作状态。

总之,高效液相色谱的使用方法包括样品制备、色谱柱选择、移动相准备、色谱条件设定、校准仪器、注样和运行、数据分析、数据解释以及清洗和维护等步骤。

熟练掌握这些方法能够有效地进行高效液相色谱的分离和分析。

高效液相色谱使用方法

高效液相色谱使用方法

高效液相色谱使用方法高效液相色谱(HPLC)是一种常用的分析技术,广泛应用于化学、生物、医药等领域。

本文将介绍高效液相色谱的基本原理、操作步骤以及一些常见的注意事项。

一、高效液相色谱的基本原理高效液相色谱是基于溶液通过固定相的柱子进行分离的原理。

通过控制溶液的流动速度,样品中的化合物将根据其化学特性在固定相上产生不同的保留时间,进而实现分离和定量分析。

在高效液相色谱中,离子交换、尺寸排除、亲和力、反相等不同的柱填料被广泛应用。

根据不同的样品性质和需要分离的化合物,选择合适的柱填料是非常重要的。

此外,流动相的选择也是影响分离效果的重要因素。

二、高效液相色谱的操作步骤1. 样品准备:样品应经过适当的前处理,如过滤、稀释等,以确保样品中的杂质不会影响分析结果。

需要注意的是,样品的pH值也会对分析结果产生影响,因此在样品准备过程中可根据需要进行调整。

2. 样品进样:将经过适当处理的样品注入进样器中,控制进样量和进样速度。

可以选择自动进样或手动进样的方式,保证样品的稳定和准确性。

3. 流动相的配制:根据分析需要,选择适当的溶剂组合并按照一定比例进行配制。

流动相的配制既要保证溶剂的纯度,又要考虑溶剂对柱填料的影响。

4. 柱温和流速的选择:根据柱填料的要求,选择合适的柱温和流速。

在进行分析前,需要对柱温和流速进行优化和调试,以获得较好的分离效果。

5. 检测器的选择和参数设置:根据需要分析的化合物特性,选择合适的检测器,并设置相应的参数。

常见的检测器包括紫外-可见光谱检测器、荧光检测器和质谱检测器等。

6. 数据分析与结果解释:根据检测器输出的信号,利用计算机软件对数据进行处理和分析。

根据不同的化合物特性,可以采用不同的数据分析方法和曲线拟合技术来定量分析目标化合物。

三、常见的注意事项1. 制备和使用流动相前,需仔细检查溶剂纯度,避免杂质对结果产生干扰。

2. 柱子的保养和维护非常重要,定期进行柱子的清洗和再生,以保证分离效果和柱寿命。

高效液相色谱法测定氨基酸含量的优化及应用

高效液相色谱法测定氨基酸含量的优化及应用

高效液相色谱法测定氨基酸含量的优化及应用一、前言氨基酸是构成生物体蛋白质的基本单元,具有重要的生物学功能,如构建细胞结构、参与免疫反应以及转运、储存等多种生命活动。

而测定氨基酸含量的方法有很多种,其中,高效液相色谱法(HPLC)具有高灵敏度、高分辨率、快速分离、定量准确、重现性好等特点,因此被广泛应用于氨基酸分析领域。

本文重点介绍了高效液相色谱法测定氨基酸含量的原理、优化及应用。

二、方法原理高效液相色谱法是利用固体相、液相以及流动相间相互作用的分离技术,它通过改变固体相和液相的化学性质和物理性质,通过不同流动相的渗透能力与氨基酸分子的分子量、极性、结构特征等因素的相互作用,实现对氨基酸化合物分离、检测和定量的目的。

三、优化方案1.色谱柱的选择色谱柱的选择直接影响着 HPLC 法测定氨基酸含量的敏感度和分离效果。

常用的色谱柱有离子交换柱、反相柱、手性柱。

2.氨基酸样品的制备氨基酸的提取方法主要有:硫酸-氯化氢法、热酸解法和酶切法。

其中前两种方法操作简单,容易控制,常用于高精度测定。

3.流动相的优化流动相中添加适量的酸或碱,有利于提高分离度和氨基酸的稳定性。

同时加入有机物质类的前处理,在未来进行样品的提取、清洗等操作,有助于减少基础样品产生。

4.色谱条件的优化尽量缩短柱温度,降低流速,减少相互扰动,提高分辨率。

通常,正向向柱洗液的浓度可逐渐提高,也可采用反向洗液以加速洗脱。

四、实验结果分析实验结果显示,优化后的 HPLC 法测定氨基酸含量其灵敏度、准确度、重现性等指标均有了明显的提高,特别是样品前处理及流动相的优化方案都有利于提高样品的稳定性和可检出性。

五、应用展望高效液相色谱法测定氨基酸含量的优化方案在氨基酸分析领域具有广泛的应用前景。

在临床医学、食品安全、环境污染等领域,测定氨基酸含量对于人类健康与生产活动具有重要意义,因此优化后的 HPLC 法测定氨基酸含量将被广泛应用于相关领域。

总之,高效液相色谱法测定氨基酸含量的优化方案既有理论指导又有实验可行性,为实现准确测定氨基酸含量提供了新思路和新途径。

高效液相色谱测定含量的方法

高效液相色谱测定含量的方法

高效液相色谱测定含量的方法
高效液相色谱(High-Performance Liquid Chromatography,HPLC)是一种广泛用于测定化合物含量的分析技术。

以下是一般的HPLC测定含量的步骤和方法:
1.样品制备:根据分析的目的,准备含有目标化合物的样品。


品制备可能涉及提取、溶解、过滤等步骤。

2.标准曲线制备:准备一系列已知浓度的标准溶液,用于建立标
准曲线。

标准曲线上的点数通常越多越好,以提高测定的准确
性。

3.HPLC系统设置:设置HPLC系统,包括选择合适的色谱柱、
移动相(流动相)和检测器。

根据样品性质和目标分析物,选
择适当的柱和检测条件。

4.进样:将标准溶液和待测样品注入HPLC系统。

通常使用自动
进样器,以提高精度和重复性。

5.色谱条件优化:通过调整流速、温度等条件,优化色谱分离,
使目标化合物得到良好的分离和峰形。

6.数据采集和分析:使用检测器(如紫外-可见(UV-Vis)检测
器)记录样品在色谱柱中的吸收峰,并使用标准曲线计算目标
化合物的浓度。

7.质量控制:包括在分析中加入质量控制样品,以确保实验的准
确性和可靠性。

8.结果报告:报告目标化合物的浓度,通常以样品中目标化合物
的峰面积或峰高度与标准曲线的关系来表示。

需要注意的是,HPLC分析的方法会因分析的具体目的和分析物的性质而有所不同。

因此,在进行HPLC分析之前,建议参考相关的方法学文献、标准操作程序(SOP)或咨询有经验的分析师。

高效液相色谱的原理和应用

高效液相色谱的原理和应用

高效液相色谱的原理和应用高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种常用的分离技术,广泛应用于化学、制药、食品科学、环境监测等领域。

本文将介绍高效液相色谱的原理、仪器组成、常见模式、样品制备及其应用。

一、高效液相色谱原理高效液相色谱的原理是利用液相在不同固相填料上的吸附和分配现象,将化合物在不同填充柱中发生分离和纯化。

通常,HPLC 固定相含有一些化学基团,如反相和离子交换基团,可与样品中的化合物进行吸附和分配。

液相进样、柱温及流动相的组成等因素均会影响HPLC分离效果。

二、高效液相色谱仪器组成高效液相色谱仪的组成一般包括进样器、色谱柱、泵、检测器和处理系统等部分。

进样器将样品喷射到柱口,色谱柱用于灌流梳理样品,其中固定填料用于分离和分析所需的化合物。

泵用于将流动相推动柱中的样品,检测器观察所需分析的化合物是否沿着柱流动。

高效液相色谱不仅提供精确且迅速的色谱分离,而且对各种检测器兼容,可选择性地检测各种目标物。

三、高效液相色谱常见模式高效液相色谱常见的模式有反相、离子交换、正相等。

其中,反相色谱在所有柱中应用最广,其固定相通常是羟基烷基硅胶(C18)。

反相色谱的原理在于样品溶解于亲水性较低的溶剂中排出;在色谱柱中遇到亲水性较高的固定相时,由于样品亲水性性质,样品在固定相上发生反相互相作用来获得分离。

离子交换色谱是通过离子交换基团分离化合物中的阴阳离子的;正相色谱固定相仅仅地与正离子发生斥力作用,使分离物在某些环境下进行发生分离和净化,通常情况下正相色谱的相相反色谱。

不过在实际操作过程中,某些离子需要离子交换色谱柱才能实现的很好地分离。

四、样品制备高效液相色谱之前样品制备可能是个需要重视的选项,由于HPLC是在溶液环境中进行的,所以所需的样品必须适合在液相中溶解。

当涉及到样品之前显微技巧之后有必要进行物质氨基酸或肽的酸性或碱性水解,用于小分子化合物的样品溶剂通常为方法文献所标示的洗涤剂和/或过滤剂; 在使用纯度高的离子液体进行样品溶解和/或抑制和保护剂。

高效液相色谱法及其在中药研究中的应用

高效液相色谱法及其在中药研究中的应用

一、概述高效液相色谱法(High Performance Liquid Chromatography,HPLC)是一种应用广泛的分离和分析技术,其在中药研究中扮演着重要角色。

本文将对HPLC技术及其在中药研究中的应用进行介绍和探讨。

二、高效液相色谱法的原理及技术特点高效液相色谱法是一种基于液相为分离介质的色谱分析技术。

其原理是将待分析物质溶解于流动相中,在固定的色谱柱中经过固定相的分离。

HPLC技术具有分离效率高、分析速度快、灵敏度高、分析准确等特点,因此在中药研究中得到了广泛应用。

三、高效液相色谱法的应用1. 中药质量控制HPLC技术可以对中药中的有效成分进行定量分析,为中药的质量控制提供了重要手段。

通过HPLC技术可以对中药中的多种成分进行快速、准确的分析,实现对中药质量的快速检测。

2. 药效成分分离HPLC技术可以有效分离药效成分中的杂质,提高药效成分的纯度。

通过HPLC技术可以对药效成分进行快速分离和检测,为药物研发提供了有力支持。

3. 药物代谢动力学研究HPLC技术可以对药物在体内的代谢过程进行分析,为药物代谢动力学研究提供了重要手段。

通过HPLC技术可以对药物在体内的代谢产物进行快速分离和检测,为药物代谢过程的研究提供了有力支持。

四、当前HPLC技术在中药研究中的挑战与发展1. 检测方法的标准化当前HPLC技术在中药研究中仍面临着检测方法标准化的问题,各种方法的标准化程度有待提高。

2. 技术发展趋势随着科学技术的不断发展,HPLC技术在分辨率、分析速度、检测灵敏度等方面仍有进一步提升的空间。

未来HPLC技术有望在中药研究中发挥出更大的作用。

3. 多样性应用未来HPLC技术有望在中药研究中实现多种成分同时分析、高通量检测等多样化应用,为中药研究提供更全面的支持。

五、结论HPLC技术作为一种高效、准确、灵敏的分析技术,在中药研究中发挥着重要作用。

当前HPLC技术仍面临着标准化、技术发展等问题,但未来有望在中药研究中发挥更大的作用,为中药研究提供更全面的支持和保障。

高效液相色谱方法及应用

高效液相色谱方法及应用
1.1.1 与经典液相色谱法比较:
高速、高效、高灵敏度、高自动化。
1.1.2 与气相色谱法比较
应用范围广、更利于选择最佳分离条件且可在常 温下操作。
1.1.3 高效液相色谱法的特点
(1)分离效能高 (2)选择性高 (3)检测灵敏度高 (4)分析速度快 适合于高沸点、热不稳定有机及生化试样的高效分离 分析方法。
1.2 高效液相色谱法的分类
按溶质在两相分离过程中的物理化学原理分类 1.2.1 吸附色谱(Adsorption
Chromatography) 1.2.2 分配色谱(Partition Chromatography) 1.2.3 离子色谱(Ion Chromatography) 1.2.4 体积排阻色谱(Size Exclusion
2.3.3 柱温箱的温度控制要求比较精确,因 为流体的粘度受温度的影响较大。
2.4 检测器
2.4.1 检测器的性能指标 (1)噪声 (2)基线漂移 (3)灵敏度 (4)线性范围 (5)检测器的池体积
2.4.2 检测器的种类
2.4.2.1 紫外吸收检测器
(ultraviolet-visible detector,UVD )
• 进样系统:进样器,进样阀。 • 分离系统:色谱柱,恒温箱。 • 检测系统记录系统:检测器、记录装置
2.1 高压输液系统
2.1.1 贮液罐 2.1.2 流动相脱气
(1)吹氦脱气法 (2)加热回流法 (3)抽真空脱气法 (4)超声波脱气法 (5)在线真空脱气法
2.1.3 高压输液泵
(1)恒流泵:输出恒定体积流量的流动相 (2)恒压泵:又称气动放大泵,输出恒定压力的泵。
Chromatography) 1.2.5 亲和色谱(Affinity Chromatography)

高效液相色谱方法

高效液相色谱方法

经典的LC色谱(柱色谱)
经典LC特点:仅做为一种分离手段 (1)柱内径1~3cm,固定相粒径>100μm 且不均匀 (2)常压输送流动相 (3) 柱效低(H↑,n↓) (4)分析周期长 (5),仅靠肉眼观测,且无法在线检测
HPLC的特点
HPLC:分离和分析 (1)柱内径2~6mm,固定相粒径<10μm(球形,匀浆 装柱) (2)高压输送流动相 (3)柱效高(H↓,n↑) (4)分析时间大大缩短 (5)靠仪器在线检测
下列优良常规操作能够最大限度降低 维修费用:
• 使用HPLC级试剂和流动相 • 清洁的仪器、流动相和样品,如果必要,进行 过滤 • 保证溶剂的相溶性 • 如果必要,冲洗整个系统,去掉盐,防止污染 • 对仪器的使用、维护和保养进行记录
高效液相色谱方法及应用
• • • • 液相色谱的发展史 液相色谱的基本概念 高效液相色谱的具体操作(Aglient1100) 本实验室应用HPLC的实验总结
历史回顾
• 1906年,俄国植物学家Tswett(茨维特)用碳酸钙作为 吸附剂,分离干燥叶子的石油醚萃取物,发现三种颜 色六条色带,他把这种色带称为“色谱”;属于液固 色谱。 • 1940年,Martin和Synge提出了液液分配色谱;1941年 提出了气相色谱可能性; 1949年,Macllean制作薄层 色谱板 • 1952年,Martin和Synge发展了气相色谱,并获得诺贝 尔奖。 • 60年代末,出现商业高效液相色谱(HPLC),但是由于 泵、检测器的发展滞后,使得HPLC在80年代以后才得 以迅速发展。
HPLC与GC差别
相同:兼具分离和分析功能,均可以在线检测 主要差别:分析对象的差别和流动相的差别
1.分析对象 GC:能气化、热稳定性好、且沸点较低的样品, 高沸点、挥发性差、热稳定性差、离子型及 高聚物的样品不可检测 占有机物的20% HPLC:溶解后能制成溶液的样品, 不受样品挥发性和热稳定性的限制 分子量大、难气化、热稳定性差及高分子 和离子型样品均可检测 用途广泛,占有机物的80%

中国药典-高效液相色谱

中国药典-高效液相色谱
16
分离度(R)

用于评价待测组分与相邻共存物或难分离物质之间的 分离程度,是衡量色谱系统效能的关键指标。可以通 过测定待测物质与已知杂质的分离度,也可以通过测 定待测组分与某一添加的指标性成分(内标物质或其 他难分离物质)的分离度,或将供试品或对照品用适 当的方法降解,通过测定待测组分与某一降解产物的 分离度,对色谱系统进行评价与控制。
8
二极管阵列检测器 (diode array detector,DAD)
特点:在任一时间内,均可同时得到
物质在不同波长下的吸收情况,即三
维图谱
多组分混合物的三维图谱
流动相


反相色谱系统的流动相首选甲醇-水系统(采用紫外末 端波长检测时,首选乙腈-水系统),如经试用不适合 时,再选用其他溶剂系统。应尽可能少用含有缓冲液 的流动相 由于C18链在水相环境中不易保持伸展状态,故对于十 八烷基硅烷键合硅胶为固定相的反相色谱系统,流动 相中有机溶剂的比例通常应不低于5%,否则C18链的 随机卷曲将导致组分保留值变化,造成色谱系统不稳 定。
27



ห้องสมุดไป่ตู้

正文规定的定量方法如果不是内标法,建议用固定体积的定量环 进样器; 色谱柱通常为不锈钢柱,其尺寸规定在正文中(长度和内径); 正文中规定的固定相如以字母表示,即指本节所附的固定相,该 固定相的粒度在字母后的括号内写明,有时标明适用牌号,并不 等于别的牌号不能用。 本节所附的固定相有:固定相A为硅胶颗粒,固定相B为表面化学 键合辛烷基硅烷的硅胶颗粒,固定相C为表面化学键合十八烷基 硅烷的硅胶颗粒。 除另有规定外,色谱分离是在恒定的室温下进行,光度检测器的 流通池体积以10ul为宜。对色谱条件的变更未作详细说明,但说 明了分析工作者改变色谱条件,应能得到与要求一致的结果。溶 剂和试剂的质量应适于液相色谱法的应用。

高效液相色谱法的常见问题及解决方法

高效液相色谱法的常见问题及解决方法

高效液相色谱法的常见问题及解决方法高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法,这些方法在使用的过程中往往会遇到诸如鬼峰、基线漂移、拖尾、分叉峰、保留时间漂移、柱压过高等系列问题,如何解决这些问题呢?1.用HPLC进行分析时保留时间有时发生漂移,有时发生快速变化,原因何在?如何解决?关于漂移问题:①温度控制不好,解决方法是采用恒温装置,保持柱温恒定;②流动相发生变化,解决办法是防止流动相发生蒸发、反应等;③柱子未平衡好,需对柱子进行更长时间的平衡;关于快速变化问题①流速发生变化,解决办法是重新设定流速,使之保持稳定;②泵中有气泡,可通过排气等操作将气泡赶出;③流动相不合适,解决办法为改换流动相或使流动相在控制室内进行适当混合;2.液相色谱中峰出现拖尾或出现双峰的原因是什么?①筛板堵塞或柱失效,解决办法是反向冲洗柱子,替换筛板或更换柱子;②存在干扰峰,解决办法为使用较长的柱子,改换流动相或更换选择性好的柱子;③可能柱超载,减少进样量;3.HPLC灵敏度不够的主要原因及解决办法①样品量不足,解决办法为增加样品量;②样品未从柱子中流出。

可根据样品的化学性质改变流动相或柱子;③样品与检测器不匹配。

根据样品化学性质调整波长或改换检测器;④检测器衰减太多。

调整衰减即可;⑤检测器时间常数太大,解决办法为降低时间参数;⑥检测器池窗污染。

解决办法为清洗池窗;⑦检测池中有气泡。

解决办法为排气;⑧记录仪测压范围不当。

调整电压范围即可;⑨流动相流量不合适。

调整流速即可;⑩检测器与记录仪超出校正曲线。

解决办法为检查记录仪与检测器,重作校正曲线。

4.做HPLC分析时,柱压不稳定,原因何在?如何解决?①泵内有空气,解决的办法是清除泵内空气,对溶剂进行脱气处理;②比例阀失效,更换比例阀即可;③泵密封垫损坏,更换密封垫即可;④溶剂中的气泡,解决的办法是对溶剂脱气,必要时改变脱气方法;⑤系统检漏,找出漏点,密封即可;⑥梯度洗脱,这时压力波动是正常的。

简述高效液相色谱法用于杂质检测的几种方法及适用条件

简述高效液相色谱法用于杂质检测的几种方法及适用条件

简述高效液相色谱法用于杂质检测的几种方法及适用
条件
高效液相色谱法(HPLC)是一种常用的分离和分析技术,可用于检测各种杂质。

以下是几种常见的HPLC检测杂质的方法及适用条件:
1. 离子对色谱法:适用于离子和极性化合物的检测,包括无机离子、有机酸、有机碱等。

通常使用离子对柱,并加入离子对试剂作为流动相添加剂,以提高分离度和灵敏度。

2. 反相色谱法:适用于极性和非极性化合物的检测,包括许多药品和农药等。

使用非极性反相柱,并使用有机溶剂作为流动相添加剂,以提高分离度和灵敏度。

3. 大孔毛细管色谱法(GPC):适用于分离高分子化合物的杂质,如聚合物和蛋白质。

使用大孔柱,并在流动相中加入钙离子等添加剂,以提高分离度和灵敏度。

4. 气化柱组合技术(GC):适用于检测挥发性和半挥发性化合物的杂质,如有机溶剂和挥发性芳香化合物。

使用毛细管柱与气相质谱仪(GC/MS)组合,可提高分离度和灵敏度。

以上几种方法在HPLC中广泛应用,适用条件包括样品的物化性质、温度、压力、流动相种类和浓度等。

选取合适的HPLC方法和条件可以有效地分离和检测各种
杂质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021/3/7
20
第四章 建立高效液相色谱分 析方法的一般步骤
通常在确定被分析的样品以后,要建立一种 高效液相色谱分析方法必须解决以下问题:
①根据被分析样品的特性选择适用于样品 分析的一种高效液相色谱分析方法。
②选择一根适用的色谱柱,确定柱的规格 (柱内径及柱长)和选用固定相(粒径及孔
径)。
2021/3/7
13
一、检测器的性能指标 (1)噪声 (2)基线漂移 (3)灵敏度 (4)线性范围 (5)检测器的池体积
2021/3/7
14
二、紫外吸收检测器 1.固定波长紫外吸收检测器 2.可变波长紫外吸收检测器 3.光二极管阵列检测器 三、折光指数检测器 四、电导检测器 五、荧光检测器
2021/3/7
15
第三章 键合相色谱法
根据键合固定相与流动相相对极性的强 弱,可将键合相色谱法分为正相键合相 色谱法和反相键合相色谱法。在正相键 合相色谱法中,键合固定相的极性大于 流动相的极性;在反相键合相色谱法中, 键合固定相的极性小于流动相的极性, 其应用范围比正相键合相色谱法更广泛。
2021/3/7
2021/3/7
18
第三节 流动相
一、在键合相色谱中选择流动相的一般 原则
二、改善色谱分离选择性的方法
1.调节流动相的极性
2.向流动相中加入改性剂
(1)离子抑制法
(2)离子强度调节法
三、溶质保留值随溶剂极性变化的一般 保留规律
2021/3/7
19
第四节 离子对色谱法
一、分离原理 二、固定相、流动相和对离子 三、影响离子对色谱分离选择性的因素 1.溶剂极性的影响 2.离子强度的影响 3.pH值的影响 4.温度的影响 5.离子试剂的性质和浓度的影响
一、贮液罐 二、流动相脱气 (1)吹氦脱气法 (2)加热回流法 (3)抽真空脱气法 (4)超声波脱气法 (5)在线真空脱气法
2021/3/7
8
第二节 高压输液泵及梯度洗脱装置
一、高压输液泵
高压输液泵可以分为以下两类:
1.恒流泵:可输出恒定体积流量的流 动相。
(1)注射式泵(又称注射式螺杆泵)
剂 孔性凝胶
多种不同 性能的配 位体键联 在固相基 体上
流动相
不同极性 有机溶剂
不同极性 有机溶剂 和水
不同pH值 有机溶剂
的缓冲溶 或一定pH

值的缓冲
溶液
不同pH值 的缓冲溶 液,可加 入改性剂
分离原理
2021/3/7
吸附与解 吸
溶解与挥 发
可逆性的 离子交换
多孔凝胶 的渗透或 过滤
具有锁匙 结构络合 物的可逆 性离解 5
③选择适当的或优化的分离操作条件,确 定流动相的组成、流速及洗脱方式。
④由获得的色谱图进行定性分析和定量分
析。 2021/3/7
21
第一节 样品的性质及柱 分离模式的选择
一、样品的溶解度 二、样品的分子结构和分析特性 1.同系物的分离 2、同分异构体(2)往复型泵
2.恒压泵:恒压泵又称气动放大泵, 是输出恒定压力的泵。
2021/3/7
9
二、输液系统的辅助设备 1.管道过滤器 2.脉动阻尼器 三、梯度洗脱装置 1.低压梯度(外梯度) 2.高压梯度(内梯度) 3.影响梯度洗脱的因素
2021/3/7
10
第三节 进样装置
一、停流进样装置 二、六通阀进样装置 三、自动进样器
高效液相色谱方法 及应用
主讲人:王英特
2021/3/7
1
第一章 绪论
色谱分析法是分析化学中获得广泛应用 的一个重要分支,是一个具有强大生命 力的分离分析技术。
2021/3/7
2
第一节 高效液相色谱法的特点
一、与经典液相色谱法比较 二、与气相色谱法比较 三、高效液相色谱法的特点 1.分离效能高 2 .选择性高 3 .检测灵敏度高 4 .分析速度快
2021/3/7
11
第四节 色谱柱
一、柱材料及规格 1.柱材料 2.柱规格 二、柱连接方式 三、柱温控制 四、柱填充技术
2021/3/7
12
第五节 检测器
常用的检测器为紫外吸收检测器 (UVD)、折光指数检测器(RID)、 电导检测器(ECD)和荧光检测器 (FD)。
近几年出现的蒸发激光散射检测器 (ELSD)有望成为高效液相色谱全新 的通用灵敏的质量检测器。
22
第二节 分离操作条件的选择
一、容量因子和死时间的测量 二、样品组分保留值和容量因子的选择
2021/3/7
23
下列优良常规操作能够最大限度降 低维修费用:
16
第一节 分离原理
一、正相键合相色谱法的分离原理 二、反相键合相色谱法的分离原理 以下简述三种影响溶质保留值的因素: 1.溶质分子结构对保留值的影响 2.烷基键合固定相特性对保留值的影
响 3.流动相性质对保留值的影响
2021/3/7
17
第二节 固定相
使用键合固定相应注意的问题: 1.硅胶键合相的稳定性 2.键合相色谱分离的重现性 3.键合相色谱分离的选择性 4.键合相色谱柱的再生
2021/3/7
3
第二节 高效液相色谱法的分类
按溶质在两相分离过程中的物理化学原理分类 1、吸附色谱(Adsorption Chromatography) 2、分配色谱(Partition Chromatography) 3、离子色谱(Ion Chromatography) 4 、 体 积 排 阻 色 谱 ( Size Exclusion
Chromatography) 5、亲和色谱(Affinity Chromatography)
2021/3/7
4
按分离过程物理化学原理分类的各种液相 色谱法的比较
吸附色谱 分配色谱 离子色谱 体积排阻 亲和色谱 色谱
固定相
全多孔固 固定液载 体吸附剂 带在固相
基体上
高效微粒 具有不同 离子交换 孔径的多
第三节 基本原理
一、色谱过程 二、分配系数与保留行为的关系 1.分配系数及容量因子 2.保留时间 3.tR与K的关系 4.分配系数不等是分离前提
2021/3/7
6
第二章 高效液相色谱仪简介
1.贮液瓶 2.高压输液泵 3.进样器 4.色谱柱 5.检测器 6.记录装置
2021/3/7
7
第一节 流动相及贮液罐
相关文档
最新文档