物理学史上三次著名的科学争论

合集下载

爱因斯坦和玻尔的三次争论作文素材

爱因斯坦和玻尔的三次争论作文素材

爱因斯坦和玻尔的三次争论作文素材全文共8篇示例,供读者参考篇1【爱因斯坦和玻尔的三次争论作文素材】大家好,我是小明。

今天老师让我们写一篇关于爱因斯坦和玻尔的三次争论的作文。

我很喜欢学习科学知识,所以很高兴能写这个题目。

爱因斯坦和玻尔,你们听过这两个人吗?他们都是非常了不起的科学家。

爱因斯坦是大名鼎鼎的相对论创始人,玻尔则提出了量子论的理论。

第一次争论第一次争论发生在1920年代初期。

当时爱因斯坦提出了"上帝不掷骰子"的观点,他认为宇宙是遵循着确定性规律运行的。

但玻尔却坚持认为,在微观世界里存在着不确定性。

这次争论中,爱因斯坦持有传统的科学理念,坚信宇宙有一个内在的逻辑秩序。

而玻尔则代表了量子力学的革新思想,主张在微观世界存在着不可预测的随机性。

虽然当时爱因斯坦的声望很高,但玻尔的观点后来被实验所证实,这为量子理论在科学界站稳了脚跟。

第二次争论第二次争论发生在1927年。

那一年,爱因斯坦提出了一个著名的"EPR佯谬",试图找出量子理论的漏洞。

EPR佯谬描述了一种纠缠态的情况,爱因斯坦认为这种情况违背了相对论中"信息不能以超光速传播"的原理。

玻尔当时并没有直接回应爱因斯坦的挑战。

直到1935年,他提出了"量子不可分割性"来反驳EPR佯谬。

玻尔指出,在量子系统中,我们无法确定单个粒子的性质,只有将整个系统看作一个不可分割的整体才有意义。

这场争论虽然爱因斯坦占了先机,但后来被证实是玻尔更加正确。

这次争论进一步巩固了量子论的地位。

第三次争论第三次争论持续到1949年爱因斯坦去世。

这次争论的焦点是统一场论。

爱因斯坦希望能找到一个统一所有基本力(包括引力)的理论,但一直没有成功。

而玻尔则更关注量子论的发展和应用。

他指出量子力学只是一个统计理论,不可能完全描述微观世界的确定性运动过程。

在这场争论中,两人都没有说服对方。

但事实证明,量子理论在微观世界有着巨大的解释力和应用前景。

物理学史上的重要争议有哪些

物理学史上的重要争议有哪些

物理学史上的重要争议有哪些物理学作为一门探索自然规律的科学,其发展历程并非一帆风顺,充满了各种争议。

这些争议不仅推动了物理学的进步,也促使人们对自然界的认识不断深化。

其中一个著名的争议是关于光的本质。

在 17 世纪,牛顿提出了光的微粒说,认为光是由微小的粒子组成的。

而同一时期,惠更斯则主张光的波动说,认为光是一种波动现象。

微粒说能够很好地解释光的直线传播和反射现象,但对于光的折射和干涉等现象却难以解释。

波动说则能够解释光的折射和干涉,但在解释光的直线传播时存在困难。

这两种学说争论了很长时间,直到 19 世纪,随着电磁学的发展,麦克斯韦证明了光是一种电磁波,波动说才占据了主导地位。

然而,20 世纪初,爱因斯坦提出了光子的概念,成功解释了光电效应,又让人们认识到光具有粒子性和波动性的双重性质,即光的波粒二象性。

另一个重要的争议是关于热的本质。

在 18 世纪,有两种主要的观点:热质说和热动说。

热质说认为热是一种没有质量的流体,称为热质,可以从高温物体流向低温物体。

而热动说则认为热是物体内部分子无规则运动的表现。

在很长一段时间里,热质说占据了主导地位,因为它能够解释很多热现象,比如热传导和热容量。

但是,随着对热现象的深入研究,尤其是焦耳通过实验证明了热和功之间的等价关系,热动说逐渐被人们接受。

这一争议的解决,不仅让人们对热的本质有了更深刻的认识,也为热力学的发展奠定了基础。

相对论的提出也引发了巨大的争议。

在 19 世纪末,牛顿力学在解释宏观物体的运动时非常成功,被广泛认为是物理学的基石。

然而,爱因斯坦在 1905 年提出了狭义相对论,挑战了传统的时空观念。

狭义相对论指出,时间和空间不是绝对的,而是相对的,取决于观察者的运动状态。

这一理论与人们的日常经验和直觉相违背,因此在一开始遭到了很多质疑和反对。

后来,爱因斯坦又在 1915 年提出了广义相对论,进一步阐述了引力的本质是时空的弯曲。

广义相对论的预言,如光线在引力场中的弯曲和水星近日点的进动,在后来的观测中得到了证实,逐渐被科学界所接受。

爱因斯坦的科学贡献

爱因斯坦的科学贡献

爱因斯坦对科学的贡献量子论1905年3月写的论文《关于光的产生和转化的一个推测性的观点》,把普朗克1900年提出的量子概念扩充到光在空间中的传播,提出光量子假说,认为:对于时间平均值(即统计的平均现象),光表现为波动;而对于瞬时值(即涨落现象),光则表现为粒子。

这是历史上第一次揭示了微观客体的波动性和粒子性的统一,即波粒二象性。

以后的物理学发展表明:波粒二象性是整个微观世界的最基本的特征。

这篇论文还把L. 玻耳兹曼提出的“一个体系的熵是它的状态的几率的函数”命名为“玻耳兹曼原理”。

在论文的结尾,他用光量子概念轻而易举地解释了光电现象,推导出光电子的最大能量同入射光的频率之间的关系。

这一关系10年后才由R.A.密立根予以实验证实。

“由于他的光电效应定律的发现”,爱因斯坦获得了1921年的诺贝尔物理学奖。

分子运动论1905年4月、5月和12月他写了3篇关于液体中悬浮粒子运动的理论。

这种运动系英国植物学家R.布朗于1827年首先发现,称为布朗运动。

爱因斯坦当时的目的是要通过观测由分子运动的涨落现象所产生的悬浮粒子的无规运动,来测定分子的实际大小,以解决半个多世纪来科学界和哲学界争论不休的原子是否存在的问题。

3年后,法国物理学家J.B.佩兰以精密的实验证实了爱因斯坦的理论预测。

这使当时最坚决反对原子论的德国化学家、“唯能论”的创始者F.W.奥斯特瓦尔德于1908年主动宣布:“原子假说已成为一种基础巩固的科学理论。

创新纪元的狭义相对论1905年6月爱因斯坦写了一篇开创物理学新纪元的长论文《论动体的电动力学》,完整地提出狭义相对性理论。

这是他10年酝酿和探索的结果,它在很大程度上解决了19世纪末出现的古典物理学的危机,推动了整个物理学理论的革命。

为了克服新实验事实同旧理论体系之间的矛盾,以洛伦兹为代表的老一辈物理学家采取修补漏洞的办法,提出名目众多的假设,结果使旧理论体系更是捉襟见肘。

爱因斯坦则认为出路在于对整个理论基础进行根本性的变革。

科学史上的哪些事件引发了学术争论

科学史上的哪些事件引发了学术争论

科学史上的哪些事件引发了学术争论在科学的发展长河中,许多事件都引发了激烈的学术争论。

这些争论不仅推动了科学的进步,也促使我们对世界和真理有了更深入的思考。

首先,达尔文的进化论无疑是引发巨大学术争论的一个重要事件。

达尔文提出的自然选择学说认为,物种是通过逐渐的变异和自然选择而进化的。

这一观点在当时引起了轩然大波。

宗教界认为人类是由上帝创造的,而进化论直接挑战了这一宗教信仰的基石。

许多保守的学者和宗教人士对达尔文的理论进行了强烈的抨击,认为其违背了宗教教义和传统观念。

然而,支持进化论的科学家们则通过大量的观察、实验和研究来论证其合理性。

这场争论持续了很久,直到今天,关于进化论的某些细节和应用仍在学术界存在讨论。

另一个引发学术争论的事件是哥白尼的日心说。

在哥白尼之前,人们普遍接受的是托勒密的地心说,即地球是宇宙的中心,其他天体围绕地球旋转。

哥白尼提出太阳才是中心,地球和其他行星围绕太阳运行。

这一理论的提出彻底颠覆了当时人们的宇宙观,遭到了来自教会和传统学者的强烈反对。

他们认为日心说违背了宗教经典和人们的直观感受。

但随着科学的发展,越来越多的观测证据支持了日心说,最终使其成为了被广泛接受的科学理论。

还有爱因斯坦的相对论,也是科学史上引发激烈学术争论的重要事件之一。

相对论包括狭义相对论和广义相对论,其提出的一些概念,如时间和空间的相对性、等效原理等,与经典物理学的观念截然不同。

许多物理学家最初对相对论持怀疑态度,难以理解和接受这些看似违反常识的观点。

然而,随着一系列实验和观测结果验证了相对论的预测,它逐渐被科学界所认可,并对现代物理学产生了深远的影响。

但即使如此,对于相对论的一些深层次的理解和应用,至今仍在学术界存在不同的看法和争论。

在医学领域,疫苗的推广也常常引发学术争论。

例如,在麻疹疫苗的推广过程中,就有一些人担心疫苗的安全性和可能带来的副作用。

一些反疫苗运动者声称疫苗会导致自闭症等疾病,尽管这种说法没有科学依据,但却在社会上引起了广泛的关注和争论。

对于光本质的认识的争论

对于光本质的认识的争论

对于光本质的认识的争论人们对于光本质的认识,源于一个古老的问题“光究竟是什么?”。

历史上很多学者对这一问题进行过探索,十七世纪以来,随着伽利略近代物理学研究方法的确立,有关光学研究的各种实验开始涌现,过去零零散散的光学理论得以相互整合,于是对于光本质的认识成为光学理论发展过程中需要首先解决的问题。

17世纪以来关于光的本质的认识的大争论,总共包括了四次波动学说与微粒学说的交锋,其中包括以牛顿为代表的微粒说与以惠更斯为代表的波动说的交锋。

牛顿不仅擅长数学计算,而且能够动手制造各种设备和从事精细实验-色散实验,1672年,牛顿发表了《关于光和颜色的理论》提出了光的微粒说,认为光是由微粒形成的,并且走的是最快速的直线运动路径,认为光的复合和分解是不同颜色微粒混合在一起有被分开一样。

而惠更斯是著名的天文学家,物理学家和数学家,继承并完善了胡克的观点,对光的本性问题与牛顿的分歧激发了他对物理光学的热情,重复牛顿的光学实验,仔细研究了牛顿的实验和格里马第的实验,认为其中有很多现象都是微粒说所无法解释的,并认为:光是一种机械波;光是靠一种物质载体来传播的纵波,传播它的物质的载体是“以太”;波面上的各点本身就是引起媒质振动的波源。

1678年,惠更斯在法国科学院的一次演讲中,公开反对了牛顿的光的微粒说,他指出,如果光是微粒性的,那么光在交叉时就会因发生碰撞而改变方向,但当时并没有发生这种现象;而且用微粒说解释折射现象,得到的结果与实验相矛盾。

此后于1690年出版《光论》,正式提出了波动说,建立了惠更斯原理。

而牛顿反对惠更斯的理由是:如果光是一种波,它应该同声波一样可以绕过障碍物,不会产生影子;冰洲石的双折射现象说明光在不同的边上有不同的性质,而波动说无法解释其原因。

牛顿和惠更斯关于光的本质的认识之所以会各持己见,从自然辩证法的角度出发,主要表现在以下几个方面:首先,科学知识的构成不同。

科学认识过程的成果是科学事实,科学定律,科学假说以及由逻辑推理和实验检验而建立起来的科学理论。

物理学历史题目

物理学历史题目

第一章1、哥白尼提出日心说的科学根源、哲学根源和历史根源是什么?科学根源:随着天文学观察数据越来越多,为了给予解释,托勒密的地心说不断修补,越来越复杂,难以使人信服。

哲学根源:他接受毕达哥拉斯学派提出的“宇宙是和谐的,可用简单的数学关系来表达宇宙规律”的基本思想。

他也赞同柏拉图哲学,同柏拉图一样,高度赞美太阳,给予太阳“宇宙正中”的位置。

历史根源:在意大利留学10年,受到文艺复兴运动影响,思想解放,投身科学革命。

2. 伽利略在力学研究上作出了哪些重要的贡献?提出了:相对性原理,自由落体定律,惯性定律,运动叠加原理,机械能守恒的思想。

3. 伽利略的科学研究方法有什么特点?伽利略把实验和数学结合在一起,既注重逻辑推理,又依靠实验检验,他的研究方法大致如下:对现象的一般观察→提出假设→运用数学和逻辑进行推理→实验检验→形成理论4. 试说明引力思想的历史发展以及牛顿在建立万有引力定律中的工作和思考过程。

找不到!!!5. 牛顿的科学研究方法有什么特点?他的机械论观点表现在那些方面?牛顿在《原理》中写出4条“哲学的推理法则”,高度概括了他的研究方法法则一:寻求自然事物的原因时,除了真实的及解释不可少的以外,不必寻求其它原因;法则二:对于相同的自然现象,必须尽可能地寻求相同的原因;法则三:物体的属性,若不能增加也不能减少,且在实验所能达到的范围内为所有物体的属性,则应视为一切物体的普遍属性;法则四:在实验哲学中,我们必须将由现象所归纳出的命题看作是完全正确的或基本正确的,虽然可以想象出任何相反的假设,但是直到出现其他现象足以使其正确或出现例外之前,仍应如此看待。

(1)物质的粒子性。

物质是由不变的、不可入的、不可分割和具有惯性的原子组成的,物体的质量是不变的。

(2)时间的绝对性。

绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而均匀地与任何外界事物无关地流逝着。

(3)空间的绝对性。

绝对的空间,就其本性而言,是与任何外界事物无关而永远相同和不动的。

小度写范文科学史上学术论战的光辉典范_光辉典范模板

小度写范文科学史上学术论战的光辉典范_光辉典范模板

科学史上学术论战的光辉典范_光辉典范科学史上学术论战的光辉典范摘要:通过爱因斯坦和玻尔两位科学伟人在量子力学物理诠释问题上的学术论战,来展现老代科学家之间的友好、尊重对方同时在学术问题上绝不让步的学术风格,以期现代科学工作者从中得到有益的启示。

关键词:爱因斯坦:玻尔:量子力学:物理诠释:学术争论中图分类号:04-09文献标识码:A文章编号:1007-6573(2000)02--0041-05在科学史上,曾经发生过许多重大的学术论战,爱因斯坦(A.Einstein,1879~1955)和玻尔(N.Bohr,1885~1962)之间的论战可称得上是最深入、最精辟、最有代表性的,同时也是最友好、最尊重对方、最能体现科学精神的一次论战。

论战的直接问题是关于量了力学的物理诠释,但其意义已远远超出了量子力学的范围,直接关系到认识论的基本问题,因,这场论战受到了广泛的重视,引起了持久的兴趣。

尽管争论十分尖锐、十分激烈,但他们却终保持着深厚、真挚的友谊.这是一场真正的学术论战,是学术论战的一个光辉典范。

1.缘起1926年,维也纳理论物理学家队文.薛定博(ErviShdines18781961)发表了关物质液的理论,证明物质在原子水平上的行为可用波雨数米描述,薛定停的理论很优美,容易理解并且完全协调一致它的方积产生现尔原子的是子化能级,但表现为振动着的物质“波”的谐函数而不是跳跃的电子。

此后薛定得很快证明他的“波功力学”在数学上同“矩阵力学”等价的薛定博认为:即使在原子量级上,经典的连续过程和绝对的决定论照样成立,而量学的哥本哈根学派认为:在微观领域中,因存在肴测量程序对所论述的物理量赖以定义的条的影响,量了规律本质上是统计性的,非决定论的,波丽数的平方代表粒子在空间某点出现的概率。

哥本哈根学派的代表人物就是玻尔。

在夏季末,希望讨论这个问题的海森堡(W.K.Heasenberg,1901~1976)出现在慕尼的一个薛定愕将要发言的讨论会上,海森堡试图指出薛定愕观点中的问题并发表自己的见解,他回忆说:“显然,我的观点没有对任何人发生影响,包括平时对我关怀备至的索末菲(A.J.Sommerfeld,1868~1951)在内,大家都被薛定愕数学的巨大成功征服了.”海森堡在听了薛定愕的报告后非常兴奋,当天晚上就给在哥本哈根的玻尔写信。

物理学史上的重要问题有哪些

物理学史上的重要问题有哪些

物理学史上的重要问题有哪些物理学作为一门研究自然界基本规律的科学,其发展历程中充满了众多引人深思的重要问题。

这些问题不仅推动了物理学的进步,也深刻地改变了人类对世界的认识。

首先,“光的本质是什么”这一问题在物理学史上占据着重要地位。

从古希腊时期,人们就开始对光产生好奇和思考。

牛顿认为光是由微小的粒子组成,这种观点被称为“微粒说”。

而惠更斯则提出光是以波的形式传播的“波动说”。

这两种学说在很长一段时间内争论不休。

直到后来,爱因斯坦的光电效应理论表明,光既有粒子性又有波动性,即光具有“波粒二象性”,才为这个问题提供了更全面和深入的解释。

“热的本质是什么”也是一个关键问题。

早期,人们对热的理解非常有限。

直到热力学的发展,尤其是焦耳的实验工作,揭示了热是能量的一种形式,能量守恒定律(热力学第一定律)的建立,使得人们对热现象有了更为准确和深刻的认识。

“物质的结构是怎样的”同样是物理学一直探索的核心问题之一。

从古希腊的原子论到现代的粒子物理学,科学家们不断深入研究物质的构成。

汤姆逊发现了电子,卢瑟福提出了原子的核式结构模型,随后量子力学的发展又进一步揭示了微观粒子的行为和特性。

如今,通过大型强子对撞机等实验设备,科学家们仍在不断探索物质的最基本构成。

“万有引力定律的本质是什么”是另一个具有深远意义的问题。

牛顿提出的万有引力定律成功地解释了天体的运动,但直到爱因斯坦的广义相对论,人们才对引力有了更本质的理解。

广义相对论认为,引力是由于物质和能量弯曲时空而产生的几何效应。

“电磁现象的统一理论”也是物理学史上的重大成就。

麦克斯韦方程组成功地将电学和磁学统一起来,预言了电磁波的存在,为现代通信技术的发展奠定了基础。

“相对论与量子力学的统一”是当今物理学尚未完全解决的难题。

相对论主要适用于宏观高速的物体,而量子力学则在微观领域发挥着重要作用。

如何将这两个理论统一起来,形成一个更完整、更普适的理论,是当代物理学家们努力的方向。

科学史上的光的粒子性与波动性争论

科学史上的光的粒子性与波动性争论

科学史上的光的粒子性与波动性争论在科学史上,光的本质一直是一个备受争议的话题。

在17世纪,物理学家认为光是由许多微小的颗粒构成的,称之为“光子”。

直到19世纪初,科学家Michael Faraday和Augustin Fresnel证明了光波理论,认为光是由电磁波构成的。

虽然波动理论受到了公认,但是在20世纪初,科学家又发现了光的粒子性,这令曾经普遍认为的波动理论又陷入了争议。

粒子性假说出现光的粒子性在20世纪初首次被发现,这归功于物理学家Max Planck。

他的热辐射理论解释了热辐射的频谱。

但是,他却假设了一个假设,即为了解释能量的变化,能量只能被束缚在某些较小的包裹中。

这意味着能量量子化,即能量只能以离散的方式传播出去。

这个假设让他想到了光子的概念,即光是由一系列能量量子组成的,这些能量量子表现为以快速运动的粒子形式存在的光。

这一假设的结果是,Planck可以解释热辐射频谱,这使得他获得了Nobel物理学奖。

但是,这个假设对光的粒子性开辟了道路,他的理论在后来与波动理论的争论中一直被提到。

波动性假说的提出而在19世纪初,Augustin Fresnel和Thomas Young发现了光的波动性。

他们通过干涉和衍射实验证明了波动论的合理性。

使用这些观察和实验,他们成功地推导出光的波动假说,并阐明了波动论的特点和性质。

他们认为,光是一种波动,他们的理论非常完整并被广泛接受,成为物理学家们对光的理解的基础。

然而,当Planck提出了他的量子力学理论,将物理学推向了一个新的时代。

这个理论不仅改变了我们对物质的理解,还改变了我们对光的理解。

量子力学证明了物质和能量同时具有波动和颗粒的双重属性。

争论的继续在研究光学的过程中,科学家们不仅发现了光的粒子性和波动性,而且发现光在不同条件下的性质也具有微妙的变化。

例如,当光通过狭缝时,在屏幕上形成一个衍射图案。

但是,当进行双缝实验时,光在屏幕上没有衍射图案,而是形成了干涉条纹。

地心说和日心说争论的历史

地心说和日心说争论的历史

地心说和日心说争论的历史公元二世纪,古希腊天文学家托勒密(90—168年)创立了地心宇宙体系,提出地球静止在宇宙中心,日、月、星辰沿圆形轨道围绕地球作昼夜旋转。

在以后的一千多年里,托勒密的地心说被世人奉为经典,后来更被教会所利用,成为上帝创造世界的理论支柱。

在15、16世纪,随着社会生产力的提高和航海事业的发展,推进了对天象的观测,人们对宇宙的认识开始发生革命性的改变。

1543年,波兰天文学家哥白尼(1477—1543)出版了他的不朽著作《天体运行论》,提出了太阳中心说,认为:地球不是宇宙的中心,太阳是宇宙的中心,行星都绕太阳运转;地球是围绕太阳运转的一颗普通行星,本身在自转着;月球是地球的卫星,地球带着月球绕日运行;行星在太阳系中的排列次序是土、木、火、地、金、水,它们的绕日周期分别是30年、12年、2年、1年、9月、88天。

哥白尼的日心说比较合理地解释了行星的不规则运动及其他天体的运动现象,摧毁了地球居于宇宙中心是上帝安排的神学宇宙观,给宗教神学以沉重的打击。

因此引起教会的惊恐和不安,《天体运行论》也被教廷列为禁书。

后来,意大利学者布鲁诺因坚持日心说并宣扬宇宙无限的思想,在1600年被教会判火刑焚死在罗马。

德国天文学家开普勒(1571—1630)是哥白尼日心说的坚决拥护者。

他经过十几年的艰苦工作,发现了行星运动的三大定律:轨道定律、面积定律和周期定律。

这三条定律的发现,在理论上证明和发展了哥白尼学说。

也因此,开普勒被称为“天空立法者”。

伽利略(1564—1642)是科学革命过程中以及近代科学史上的一位关键性人物,在人类对宇宙的探索上起了重要作用。

1609年,伽利略把自制的望远镜指向了天空,发现了月球上的山脉和环形山;发现银河是由许许多多的恒星构成的;次年发现了木星的四颗卫星。

后来他又发现了金星的相位,说明行星也和地球一样,是被太阳照亮的。

这些发现为哥白尼的日心说提供了有力的证据。

由于伽利略的发现和积极宣扬,使哥白尼的日心说日渐深入人心,影响越来越大。

物理学史上三次著名的科学争论

物理学史上三次著名的科学争论

物理学史上三次著名的科学争论一、对热的本性的认识对热的本性的认识,在历史上有“热质说”与“热的运动说”之争,其间经历了两百余年.直到19世纪中叶热力学第一定律确立,热的运动说才获得决定性的胜利.热是组成物体的粒子的运动这一学说,使得热和机械功的等效性在概念上是可以理解的,并为机械功和热的相互转化提供了一个解释的基础,也为气体动理论奠定了基础.1热的运动说17世纪初,英国哲学家培根从摩擦生热等现象中得出“热是一种膨胀的、被约束的而在其斗争中作用于物体的较小粒子之上的运动”,这种看法影响了许多科学家.英国物理学家波意耳看到铁钉捶击后会生热,想到铁钉内部产生了强烈的运动,所以认为热是“物体各部分发生的强烈而杂乱的运动.”胡克用显微镜观察了火花,认为热“并不是什么其他的东西,而是一个物体的各个部分的非常活跃的和极其猛烈的运动.”牛顿也指出物体的粒子“因运动而发热.”洛克甚至还认识到“极度的冷是不可觉察的粒子的运动的停止.”俄国学者罗蒙诺索夫在18世纪40年代提出了如下的见解:“热的充分根源在于运动”,即热是物质的运动,运动着的是物体内部那些为肉眼所看不见的细小微粒.他认为热量从高温物体传给低温物体的原因是由于高温物体中的微粒把运动传给低温物体中的微粒造成的,它自身便会变冷.这些分析肯定了运动守恒在热现象中的正确性,表明了气体分子的运动呈现一种“混乱交错”的状态,是杂乱无规则的.但总的说来,当时热是运动的观点尚缺乏足够的实验根据,所以还不能形成为科学理论.2热质说的提出随着古希腊原子论思想的复兴,热是某种特殊的物质实体的观点也得以流传.法国科学家和哲学家伽桑狄认为,运动着的原子是构成万物的最原始的、不可再分的世界要素,同样,热和冷也都是由特殊的“热原子”和“冷原子”引起的.它们非常细致,具有球的形状,又非常活泼,因而能渗透到一切物体之中.这个观念把人们引向“热质说”,认为热是由无重量的某种特殊物质组成的.热质说的主要倡导者,英国化学家布莱克主张把热和温度两个概念区分开来.他引进了“热容”的概念,得出了量热学的基本公式ΔQ=cmΔt.其中c称为比热,表示单位质量物质温度升高1K所吸收的热量.他在研究冰和水的混合时发现,在冰的熔解中需要一些温度计觉察不出的热量,进而发现各种物质在发生物态变化时都存在这种效应,他由此引进了“潜热”的概念,指出使冰熔解的过程是潜热发生的过程,使水凝固的过程是潜热移出的过程.在热质说观点指引下,热学研究取得了一定的进展.在18世纪前半叶人们开始明白一个有意义的事实:在对混合物所做的实验中,亦即把温度不同的诸物体放到一起,热既不会被创生也不会被消灭.这就是说,不管热在混合物或保持密切接触的各种不同物体中间如何重新分布,热的总量保持不变.现在可以将这条热量守恒定律表述为:在一个不受外界影响的绝热系统中,物体A失去的热量等于物体B得到的热量,即ΔQA+ΔQB=0.这样一个热量守恒定律非常自然地使人联想到物质守恒的概念,有力地使热质说的观点占了上风.事实上,热质说对热传导现象给出了一个简单的可信的图像,即剩余的热质要从较热的物体不断地流向较冷的物体,直到达到平衡状态为止.而用那种把热视为粒子运动方式的观点来说明这一观察的结果确实很困难.除此之外,热质说还简易地解释了当时发现的大部分热学现象,比如物体温度的变化是吸收或放出热质引起的,对流是载有热质的物体的流动,辐射是热质传播,物体受热膨胀是因为热质粒子间的相互排斥,等等.热质说的成功,自18世纪80年代起几乎使整个欧洲都相信了热质说的正确性,从而压倒了热的运动说.但是,热质说对热学的发展又起着严重的阻碍作用.既然把热看成一种物质,而不是物质的一种运动形态,那就不可能有各种物质运动形态的转化.在热质说看来,摩擦所以生热,只是由于摩擦把“潜热”挤压出来,使潜热变成显热,使摩擦后物体的比热比摩擦前小,所以温度升高,而热质的量并没有增加.因此,在热质说占统治地位的18世纪,人们就不可能正确理解由蒸汽机的发明所揭示的热和机械运动之间的关系.3.运动说的复兴到了18世纪末,热质说受到了严重的挑战.随着实验材料的增多,越来越表明热质说不能说明物体因摩擦力做功而生热的现象.1798年英国物理学家伦福德伯爵向英国皇家学会提出了一个报告“论摩擦激起的热源”,说他在慕尼黑兵工厂监督大炮镗孔工作时,注意到炮筒温度升高,钻削下的金属温度更高,他提出了大量的热是从哪里来的这个问题.他敏锐地感觉到彻底研究这一课题,对热的本质可望获得进一步认识,从而对于热质存在与否这个自古以来哲学家们众说不一的问题做出合理的推测.接着,他写道:“热是否来自钻腔机所切开的金属片如果情形的确是这样的话,那么根据现代的潜热和热质学说,则金属片的热容不仅应该变化,而且此变化还应该大到足以成为产生所有热的源泉.”但是,他通过在绝热条件下所做的一系列钻孔实验,比较了钻孔前后金属和碎屑的比热,发现钻削不会改变金属的比热.他还用很钝的钻头钻炮筒,半小时后炮筒升高70°F,金属碎屑只有54g,相当于炮筒质量的1/948,这一小部分的碎屑能够放出这么大的“潜热”吗于是,他做出结论:“这些实验所产生的热,不是来自金属的潜热或综合热质.”他在论文的末尾写道:“看来在这些实验中,由摩擦产生热的源泉是不可穷尽的.不待说,任何与外界隔绝的物体或物体系,能够无限制提供出来的东西,决不可能是具体的物质实体;在我看来,在这些实验中被激出来的热,除了把它看做是运动以外,似乎很难把它看做是其他任何东西.”1799年,英国化学家戴维在论文中描述了实验:在一个同周围环境隔离开来的真空容器里,利用钟表机件使里面的29°F的两块冰互相摩擦而熔解为水.他在论文中写道:“如果热是一种物质的话,它一定是从这几种方式之一产生的:或者是由于冰的热容减少,或者是两物体的氧化,或者是从周围的物体吸引了热质.”可是明显的事实是,水的热容比冰的热容大得多,而冰一定要加上一定量的热才能变成水,所以摩擦并没有减少冰的热容.“也不是由于物体氧化引起的,因为冰根本不能吸引氧气.”最后,他得出结论:“既然这些实验表明,这几种方式不能产生热质,那么,即就不能当做物质.所以,热质是不存在的.”他明确指出热是物体微粒的运动.他说:物体因摩擦而膨胀,则很明显,它们的微粒一定会运动或相互分离.既然物体微粒的运动或振动是摩擦和撞击必然产生的结果,那么,我们就可以做出合理的结论:热是物体微粒的运动或振动.伦福德和戴维的实验与论证是令人信服的,可以说为以后热质说的最终崩溃和热的运动说的确立提供了最早的论据.但他们的实验在当时没有被人们所重视,大多数学者并没有因此而改变自己关于热的本性的观点.这个问题一直到19世纪热力学第一定律问世时,才真正得到解决.二、光的微粒说与波动说的论争光学是一门最古老的物理学分支之一.光的本性问题一直是人们十分关心和热衷探讨的问题.17世纪以来,随着科学技术的发展,这种争论达到了空前激烈的地步,也就是物理学史上著名的微粒说与波动说之争.1.根深蒂固的微粒说17世纪的科学巨匠牛顿,也是光学大师,关于光的本性,牛顿是这样认为的:光是由一颗颗像小弹丸一样的机械微粒所组成的粒子流,发光物体接连不断地向周围空间发射高速直线飞行的光粒子流,一旦这些光粒子进入人的眼睛,冲击视网膜,就引起了视觉,这就是光的微粒说.牛顿用微粒说轻而易举地解释了光的直进、反射和折射现象.由于微粒说通俗易懂,又能解释常见的一些光学现象,所以很快获得了人们的承认和支持.但是,微粒说并不是“万能”的,比如,它无法解释为什么几束在空间交叉的光线能彼此互不干扰地独立前时,为什么光线并不是永远走直线,而是可以绕过障碍物的边缘拐弯传播等现象.为了解释这些现象,和牛顿同时代的荷兰物理学家惠更斯,提出了与微粒说相对立的波动说.惠更斯认为光是一种机械波,由发光物体振动引起,依靠一种特殊的叫做“以太”的弹性媒质来传播的现象.波动说不但解释了几束光线在空间相遇不发生干扰而独立传播,而且解释了光的反射和折射现象,不过在解释折射现象时,惠更斯假设光在水中的速度小于在空气中的速度,这与牛顿的解释正好相反.谁是谁非,拉开了近代科学史上关于光究竟是粒子还是波动的激烈论争的序幕.尽管波动说可以解释不少光学现象,但由于它很不完善,解释不了人们最熟悉的光的直进和颜色的起源等问题,所以没有得到广泛的支持.再加上当时受实验条件的限制,还无法测出水中的光速,便无法判断牛顿和惠更斯关于折射现象的假设谁对谁错.尤其是牛顿在学术界久负盛名,他的拥护者对波动说横加指责,全盘否定,终于把波动说压了下去,致使它在很长时间内几乎销声匿迹.而微粒说盛极一时,居然在光学界称雄整个18世纪.2.英姿焕发的波动说进入19世纪以后,曾被微粒说压得奄奄一息的波动说重新活跃起来.一个个崭新的实验事实,使波动说雄姿英发,应付自如,进入了一个“英雄时期”.第一位向微粒说发起冲击的是牛顿的同胞托马斯•杨.1801年,年轻的托马斯•杨一针见血地说:“尽管我仰慕牛顿的大名,但我并不因此非得认为他是百无一失的.我遗憾地看到,他也会弄错,而他的权威也许有时阻碍了科学的进步.”托马斯•杨为了证明光是一种波,他在暗室中做了一个举世闻名的光的干涉实验.我们知道,干涉现象是波动的一个特性,托马斯•杨的成功,证明了光确实是一种波,它只有用波动说才能解释,微粒说对此一筹莫展.给微粒说以沉重打击的第二个实验是光的衍射实验.衍射现象也是波的基本特性之一,这是一种波在传播过程中可以绕过障碍物,或穿过小孔、狭缝而不沿直线传播的现象.法国物理学家菲涅尔设计了一个实验,成功地演示了明暗相间的衍射图样,在微粒说看来,光的衍射现象则是不可理解的.给微粒说以致命打击的是对光速值的精确测定.牛顿和惠更斯在解释光的折射现象时,对于水中光速的假设是截然相反的,谁是谁非,难以证实.到了19世纪中叶,法国物理学家菲索和付科,分别采用高速旋转的齿轮和镜子,先后精确地测出光在水中的传播速度只有空气中速度的四分之三.又一次证明了波动说的正确性.经过反复较量,波动说终于压过了微粒说,取得了稳固的地位.到19世纪60年代,麦克斯韦总结了电磁现象的基本规律,建立了光的电磁理论.到80年代,赫兹通过实验证实了电磁波的存在,并证明电磁波确实同光一样,能够产生反射、折射、干涉、衍射和偏振等现象.利用光的电磁说,对于以前发现的各种光学现象,都可以做出圆满的解释.这一切使波动说锦上添花,使它在同微粒说的论战中,取得了无可争辩的胜利.3重整旗鼓的微粒说正当波动说欢庆胜利的时候,意外的事情发生了,以太存在的否定和光电效应的发现,这些新的实验事实又一次要置波动说于死地.波动说认为,光是依靠充满于整个空间的连续介质——以太做弹性机械振动传播的.为了验证以太的存在,1887年,美国物理学家迈克尔逊和莫雷使用当时最精密的仪器,设计了一个精巧的实验.结果证明,地球周围根本不存在什么机械以太.没有以太,光波和电磁波是怎样传播的呢面对这一波动说难以克服的困难,微粒说跃跃欲试.光电效应的发现,使微粒说再次“复辟登基”.所谓光电效应,就是指金属在光的照射下,从金属表面释放出电子的现象,所释放的电子叫做光电子.大量的实验证明,光电效应的发生,只跟入射光的频率有关,只要入射光的频率足够高,不管它强度多弱,一旦照射到金属上,立刻就有光电子飞出.而从波动说的观点看,光电效应是绝对无法理解的.因此,波动说完全陷入了困境.而爱因斯坦运用光量子说——全新意义上的微粒说,把光电效应解释得一清二楚.至此,光的微粒说又昂首挺胸.活跃在科学的舞台上.但是,爱因斯坦并没有抛弃波动说,而是把二者巧妙地结合在一起,并辨证地指出:“光——同时又是波,又是粒子,是连续的,又是不连续的.自然界喜欢矛盾……”,这一思想充分体现在他的光量子理论的两个基本方程E=hν和p=h/λ中,把粒子和波紧密地联系在一起.三、爱因斯坦与玻尔的历史性论争20世纪最伟大的两位物理学家阿尔伯特•爱因斯坦和尼尔斯•玻尔对于量子力学的创立与发展,都做出了重大的贡献.有趣的是,在1927年9月科漠国际物理会议上,当玻尔正式提出了他有名的“互补原理”之后,受到了爱因斯坦的强烈反对.从此,这两位同时代、同行业的科学巨星,直到他们死去之前,共进行了近40年具有浓厚哲学色彩的大争论.即使是现在,仍可感到这一争论对现代物理学理论基础研究所产生的冲击.1.论争的渊源提及这场大争论,首先得从哥本哈根学派说起.在20世纪20年代,丹麦著名物理学家玻尔在哥本哈根理论物理研究所以其严谨的治学作风、尊重他人首创精神的领导作风,吸引了大批对量子物理学有着基本相同的理解的科学家,成为当时世界上力量最雄厚的物理学派.诸如,海森伯、泡利、狄拉克等年轻的物理学家都先后在这里工作着,其中,玻尔对海森伯提出的测不准关系非常赞赏.1927年9月在意大利科漠召开的国际物理学会议上,玻尔提出了著名的“互补原理”,从哲学上对测不准关系加以概括,用以解释量子理解的基本特征——波粒二象性.这一著名的互补原理,被称之为量子力学的哥本哈根解释,正是这一解释受到了爱因斯坦的尖锐批评,从而拉开了这场大争论的序幕.2论争的过程爱因斯坦与玻尔的论战持续了近40年之久,很令人瞩目.论战的内容是围绕着关于量子力学理论的特征和基本概念的解释问题,而这些问题又都属于哲学的领域,所以,争论的实质就是围绕着量子力学的方法论原理及其哲学诠释.论战曲折迂回,高潮迭起,大致分成两个阶段.1论战的第一阶段1927年科漠会议上玻尔提出“互补原理”,对量子力学第一次作了互补解释,玻尔是这样认为的:量子力学理论是一种以能量为动量的统计守恒为基础的纯几率观点,量子力学的规律具有统计性质.并且,他主张在量子物理中应当抛弃因果性和决定论的概念,而代之以互补原理.1927年10月,第五次索尔维国际物理学讨论会在布鲁塞尔召开,爱因斯坦在会上发言,第一次在公开场合下对量子力学的发展表示不满.他反对抛弃严格的因果性和决定论的概念,坚持基本理论不应当是统计性的,他认为在几率解释的后面应当有更深一层的关系,应当能够揭示微观世界的因果性联系,所以他在会议上支持德布罗意的导波理论.为了揭露量子力学理论的逻辑矛盾性,从而否定测不准关系,爱因斯坦还精心设计了一系列的理想实验,企图驳倒玻尔,玻尔据理力争,一次次巧妙地摆脱了困境.例如,爱因斯坦设计了一个可以称重量,且有可控快门的光箱子实验,并以此来否定能量对时间的测不准关系.而对此严重的挑战,玻尔经过一个不眠之夜的紧张思考,终于喜出望外地发现.可以“以其人之道还治其人之身”的办法回击爱因斯坦,即利用爱因斯坦广义相对论中时钟速率与引力势的关系,驳倒了爱因斯坦的挑战.因此,爱因斯坦不得不承认量子力学的逻辑一贯性.2论战的第二阶段当爱因斯坦试图从逻辑上反驳哥本哈根学派而遭受挫折后,便放弃了这方面的努力,转而集中于批评量子力学理论的不完备性.1931年2月26日,爱因斯坦等三人合作发表了“量子力学中过去和未来的知识”的文章,认为测不准关系式并不能提供量子力学的过去的确定知识.从而拉开了进一步的论战.1935年,爱因斯坦、波多尔斯基和罗森一起发表了题为“能认为量子力学对物理实在的描述是完备的吗”一文,提出了著名的以他们三人姓名头一个字母命名的“EPR悖论”,使这场论战再次出现了高峰.文章首先提出了理论的完备性和实在性的定义,并建立了一种“非此即彼”的抉择关系,即量子力学理论如果是完备的,则不可对易算子所表征的物理量不同时为实在;或者相反,如果理论是不完备的,则物理量同时为实在.其次,文章证明,如果波函数所提供的描述是完备的,那么所涉及的不可对易量必定是实在的.而根据前面所建立的“非此即彼”抉择关系,不难看出,其唯一可能的结论是波函数所提供的描述为不完备的.爱因斯坦等人通过对两个相干系统的分析,做到了不仅是完成了逻辑上的诘难,而且还具体地构造了一个满足“排除了干扰的测量”的要求的体系,用以说明量子力学对物理实在的描述是不完备的.这称之为“EPR悖论”.EPR悖论逻辑结构是十分严密的,要进行反驳是极其不易的.但EPR悖论中所提出的定义及观点,又必须最后诉诸“测定”,既然还有赖于测量,那就恰好为玻尔的反驳提供了突破点.1935年10月,玻尔以相同的标题公开回答了上述诸难.指出既然EPR的作者在“实在性”的定义中谈论了测量,那么就不应该把测量操作与被测对象割裂开来讨论,而必须把现象同获取现象的条件以及器械包括在内进行描述.所以,玻尔在文章中运用一种更为一般的方式构造了EPR的两粒子体系,使它们恰好满足EPR所设想的情形.玻尔列举了一个粒子穿过一窄缝的实验,并指出EPR诘难中对所需物理量的测量及计算所显示的在选择上的任意性,取决于实验装置的设置.所以,“排除一切干扰”的前提,对实验的要求是含糊的.为了进一步说明上述思想,玻尔把量子力学与经典物理学中的观察予以比较.他指出:在量子物理学中,对象与测量仪器之间的相互作用是量子现象中不可分的组成部分,从而对象与测量仪器构成一个不可分割的整体.由此可见,玻尔提出的量子现象的整体性特征,是对于EPR所默认的定域性假设的否定,也是对于EPR实在性判据的否定.这样,玻尔采用了抛弃EPR的逻辑前提,代之以确认量子现象的整体性特征的手段,拯救了量子描述的完全性.3论战的启示现在,爱因斯坦和玻尔虽然去世了,但他们之间为了探索科学真理而进行的论战,却推动着量子物理学深入发展;它一步步地揭示了量子力学的本质含义,前期的争论确立了量子力学及正统解释的逻辑自洽性;后期的争论则揭示了量子现象的整体性特征,同时更明确地提出了量子力学的理论地位问题.但是,两位大师的争论以分道扬镳而告终,这说明:这一争论对现代物理学理论基础的研究带来了冲击,就这个意义而言,这场争论还远远没有结束,它将激励着人们去重新审查现代物理学理论基础的分理解状况,寻找把这两个理论真正统一起来的途径,以促进物理学的进一步深入发展.除此之外,这场论战还给后人留下了十分有益的启示.首先,它说明学术上的争论有利于促进科学理论的发展;其次,学术争论的唯一正确态度就是坚持百家争鸣;再次,自然科学需要正确的哲学作指导.这一场发生于爱因斯坦和玻尔为代表的20世纪最伟大的两位物理学家之间的论战,是科学史上持续长久而激烈的著名的论战之一,它一直延续到今天,影响深远.。

历史上的重大科学实验

历史上的重大科学实验

历史上的重大科学实验科学实验是推动人类认识世界的重要手段,历史上有许多重大科学实验为人类文明的发展做出了巨大贡献。

本文将介绍几个在科学史上具有重要意义的实验,展示了科学家们在不同领域中的杰出成就。

第一部分:化学实验1. 米歇尔透镜实验米歇尔透镜实验是法国物理学家米歇尔于1851年进行的一项重要实验,用以证实光是波动概念。

通过将两个半透明的镜面反射光线并合成一束,米歇尔观察到了光的干涉现象。

这一实验为光的波动理论提供了有力的证据,对当时围绕光的性质的争论起到了重要消解作用。

2. 卢瑟福金箔实验卢瑟福金箔实验是英国物理学家卢瑟福于1911年进行的实验,用以验证原子核模型。

他将放射性物质的α粒子轰击金箔,结果发现大部分α粒子直线通过,但少数粒子反射角度很大,甚至出现反向反射。

这个意外的观察结果揭示了原子内存在一个微小且带正电的核心,卢瑟福因此提出了原子核模型,为后来的现代物理学奠定了基础。

第二部分:物理实验1. 托马斯·扬双缝干涉实验扬双缝干涉实验是托马斯·扬于1801年进行的经典实验,用以证明光既是粒子又是波动。

他利用几个狭缝为光源,通过观察到干涉条纹,证明了光的波动性。

这一实验证明了约翰·依弗里·斯涅耳提出的光波动理论,对于后来的光学研究有着深远的影响。

2. 爱迪生碳精灯实验爱迪生碳精灯实验是爱迪生于1879年进行的一项重要实验,用以改善发光电灯的工作原理。

通过尝试不同的填充物和电流强度,爱迪生最终成功发明了碳化纤维灯泡,改变了人类的照明方式。

这一实验不仅带来了重大的科技进步,也为后来的电力工业发展奠定了基础。

第三部分:生物学实验1. 伦琴和弗雷教化丧尸实验伊万·伦琴和阿尔弗雷德·弗雷于1901年进行了一系列实验,用来检验弗雷提出的“教化丧尸”理论。

他们在一具脑部被切断的狗身上进行实验,通过老化反应和环境变化来刺激狗的尸体。

实验结果显示,尽管没有中枢神经系统的控制,尸体的身体仍然会在某种程度上产生反应。

物理学的革命

物理学的革命

放射性
1. 结果大出所料,底片上有很多的阴影。 结果大出所料,底片上有很多的阴影。 2. 显然,这阴影与太阳无关、与荧光无关, 显然,这阴影与太阳无关、与荧光无关, 而与晶体本身有关。 而与晶体本身有关。 3. 贝克勒尔用的晶体是一种铀的化合物— 贝克勒尔用的晶体是一种铀的化合物— —硫酸双氧铀钾,这样他便发现了铀能 硫酸双氧铀钾, 自发辐射出能量。 自发辐射出能量。
两朵乌云
1. 但在展望20世纪物理学前景时,开尔文若 但在展望20世纪物理学前景时 世纪物理学前景时, 有所思地讲道: 有所思地讲道:动力理论肯定了热和光是运 动的两种方式,现在, 动的两种方式,现在,它的美丽而晴朗的天 空却被两朵乌云笼罩了, 空却被两朵乌云笼罩了,第一朵乌云出现在 光的波动理论上, 光的波动理论上,第二朵乌云出现在关于能 量均分的麦克斯韦-玻尔兹曼理论上。 量均分的麦克斯韦-玻尔兹曼理论上。 2. 正是这“两朵乌云”和“三大实验发现” 正是这“两朵乌云” 三大实验发现” 引起了“物理学革命” 引起了“物理学革命”。
两个诺贝尔奖
居里夫妇在1903年获得的诺贝尔奖证书 居里夫妇在1903年获得的诺贝尔奖证书 1903
著名学者爱因斯坦曾经这样评价居里夫人: 著名学者爱因斯坦曾经这样评价居里夫人: 在我所认识的所有著名人物里面, “在我所认识的所有著名人物里面,居里夫人 是唯一不为盛名所颠倒的人。 是唯一不为盛名所颠倒的人。” 居里夫人的大半生都是清贫的, 居里夫人的大半生都是清贫的,提取镭的艰苦 过程是在简陋的条件下完成的。 过程是在简陋的条件下完成的。居里夫人拒绝 为他的任何发明申请专利, 为他的任何发明申请专利,把诺贝尔奖金和其 奖金都用到了以后的研究中去了。 奖金都用到了以后的研究中去了。居里夫妇发 现镭以后,当百万法郎、 现镭以后,当百万法郎、灿灿的金质奖章向她 微笑的时候;当成功、荣誉、 微笑的时候;当成功、荣誉、祝贺象潮水般涌 来的时候,表现了他们具有高贵的品质: 来的时候,表现了他们具有高贵的品质:毫不 夸耀,谦虚忘我! 夸耀,谦虚忘我!

下列选项不属于科学史上著名的科学论战的是

下列选项不属于科学史上著名的科学论战的是

下列选项不属于科学史上著名的科学论战的是
下列选项不属于科学史上著名的科学论战的是()。

A、月圆说
B、月缺说
C、月圆说与月缺说
长期以来,人们过分理想化地将科学当成了远离失败的伟大历程。

几乎所有的教科书都按照学科的逻辑联系来设计框架和组织材料,这使那些没有机会了解科学理论、科学思想萌芽与成长艰辛历程的学生,在课本的教导下成了盲目崇拜的牺牲品。

《真实地带——十大科学争论》一书正是希望纠正人们对科学的这种一孔之见。

物理学史上三次著名的科学争论:
一、对热的本性的认识:
对热的本性的认识在历史上有“热质说”与“热的运动说”之争,其间经历了两百余年直到19世纪中叶热力学第一定律确立热的运动说才获得决定性的胜利。

二、光的微粒说与波动说的论争:
光学是一门最古老的物理学分支之一,光的本性问题一直是人们十分关心和热衷探讨的问题,17世纪以来随着科学技术的发展这
种争论达到了空前激烈的地步,也就是物理学史上著名的微粒说与波动说之争。

三、爱因斯坦与玻尔的历史性论争:
20世纪最伟大的两位物理学家阿尔伯特•爱因斯坦和尼尔斯•玻尔对于量子力学的创立与发展,都做出了重大的贡献。

有趣的是,在1927年9月科漠国际物理会议上,当玻尔正式提出了他有名的“互补原理”之后,受到了爱因斯坦的强烈反对。

从此,这两位同时代、同行业的科学巨星,直到他们死去之前,共进行了近40年具有浓厚哲学色彩的大争论.即使是现在,仍可感到这一争论对现代物理学理论基础研究所产生的冲击。

量子力学的世纪大论战(诺贝尔物理学期中)

量子力学的世纪大论战(诺贝尔物理学期中)

量子力学的世纪大论战量子力学与相对论是现代物理学的两大支柱.量子力学是20世纪20年代创立的阐述微观世界物质运动规律的一门学科.几十年来,量子力学理论已经被无数实验事实所证实,至今还没有一个实验结果与量子力学理论发生矛盾.量子力学理论获得了伟大的成功,并且在量子力学的基础上发展了许多相关的子学科.量子力学的正统的物理诠释是哥本哈根学派的诠释,其主要内容是波函数的几率解释、不确定原理和玻尔提出的互补原理,其代表人物是玻尔、海森堡、玻恩等人.今天的大多数物理学家都是在哥本哈根学派诠释的基础上来理解和阐述量子力学的,也是在此基础上来进行有关的科研工作的.然而,在哥本哈根学派提出量子力学的几率诠释之初,就遭到了爱因斯坦的尖锐批评,引起了一场大论战,这场论战推动了量子力学理论的进一步完善和发展,对整个物理学的发展和自然科学的哲学问题也产生了深远的影响.爱因斯坦与玻尔关于量子力学解释的不同观点之间的大论战是量子力学创建和发展过程中最具有代表性意义的一场争论.爱因斯坦认为以几率诠释为基础的量子力学理论是不完备的.从1927年到1955年爱因斯坦逝世,玻尔和爱因斯坦多次对量子力学完备性问题展开激烈的辩论,最终他们谁也没有说服对方.此后,关于量子力学的物理诠释的争论仍在继续进行,一直延续到21世纪的今天,所以这一场争论可以称为跨世纪之争.在爱因斯坦之后,在这一场争论中发生的最重要的事件是隐变量理论和贝尔不等式的提出.1920年4月,玻尔到爱因斯坦所在的德国柏林访问,第一次与爱因斯坦会面.他们两人就量子理论的发展交换了意见,谈话的主题是关于光的波粒二象性的认识问题.看起来,这次争论好象是爱因斯坦主张,完备的光理论必须以某种方式将波动性和粒子性结合起来,而玻尔却固守光的经典波动理论,否认光子理论基本方程的有效性.然而,仔细分析就会发现玻尔强调需要同经典力学的观念作彻底的决裂,而爱因斯坦则虽赞成光的波粒二象性,但却坚信波和粒子这两个侧面可以因果性地相互联系起来.爱因斯坦坚决反对量子力学的概率解释,不赞成抛弃因果性和决定性的概念.他坚信基本理论不应当是统计性的.他说,“上帝是不会掷骰子的.”他认为在概率解释的后面应当有更深一层的关系,把场作为物理学更基本的概念,而把粒子归结为场的奇异点,他还试图把量子理论纳入一个基于因果性原理和连续性原理的统一场论中去,因此他在第五届索尔威会议上支持德布罗意的导波理论,并且在发言中强调量子力学不能描写单个体系的状态,只能描写许多全同体系的一个系综的行为,因而是不完备的理论.爱因斯坦精心地设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾.玻尔和海森伯等人则把量子理论同相对论做比较,有力地驳斥了爱因斯坦.1930年10月第六届索尔威会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严重的挑战.玻尔经过一个不眠之夜的紧张思考,终于发现可以用爱因斯坦自己的广义相对论来回击爱因斯坦.在第二天的会议上,玻尔指出爱因斯坦在自己的理想实验中忽略了自己的红移公式.爱因斯坦的挑战再一次被驳倒,他不得不承认量子力学的逻辑一贯性.此后,爱因斯坦转而集中批评量子力学理论的不完备性.1935年5月,爱因斯坦同波多尔斯基和罗森一起发表了题为《能认为量子力学对物理实在的描述是完备的吗?》一文,提出了著名的以三位作者的姓的首个字母简称的“EPR悖论”,使这场论战再次出现了一个高潮.由于第二次世界大战,论战平息了一个时期.以爱因斯坦和玻尔为代表的两方论战是科学史上持续最久、斗争最激烈、最富有哲学意义的论战之一,它一直持续到今天.现在我们还不能作出谁是谁非的结论.因为物理学中不同哲学观点的争论不能单靠争论自身来解决,它最终要靠物理学的理论和实践的进一步发展来裁决.现在我们只能说,争论的双方都既有正确的一面,也有不足或错误的一面.哥本哈根学派对量子力学的统计解释是正确的,对微观客体波粒二象性的分析,以及互补原理的提出都对正确认识微观世界起了重大作用.互补原理是符合辩证法的.但是他们对微观客体的观测和仪器的作用夸大到不适当的程度而常有主客观不可分的实证主义色彩.哥本哈根学派对量子力学的正统解释,抛弃了机械的决定论和因果性无疑是正确的,但他们断言微观粒子只有统计规律,量子力学就是完备的描述、最终的描述似乎也为时过早.其实,量子力学作为人们对物质世界认识的一个阶段,不论将来是否有对单个粒子决定性规律的描述,它将永远作为一个相对真理而存在.正如量子力学的出现,并没有抛弃经典力学,只是说明了经典力学的适用范围,说明了它是一个相对真理一样.爱因斯坦的深刻批评和严格检验,推动了量子理论的进一步探讨,他对哥本哈根学派的实证主义倾向所进行的批评也不是无的放矢.但是,他把规律的统计性质排斥在基本理论之外是不正确的.由于他没有完全摆脱机械论的影响,对量子力学怀有明显的偏见,使他后来在某种程度上脱离了当时量子理论发展的主流,这对他统一场论的研究也带来了不良影响.这场争论也让我们意识到,基于辩证唯物主义的基本原理,现有的量子力学理论是一个相对真理,它不是完美无缺的,进一步完善量子力学的理论,探索新的理论是可能的.这种新的理论必须符合对立统一规律,不应该完全排除统计性,不可能是完全决定论的.企图建立完全决定论的、非统计的新微观理论,过去从来没有成功过,将来也不可能成功.总之,以玻尔为首的哥本哈根学派与爱因斯坦关于量子力学的解释的争论,不仅使他们的解释成为有关学派的主导思想,而且对于推动量子力学的进一步发展起了积极的、重大的推动作用.同时再一次佐证了科学是在学术争论和实践中向前发展的.。

物理学革命和现代科学的产生

物理学革命和现代科学的产生

太阳光下
1. 1896年2月,贝克勒尔把感光片包在黑纸里放到太阳下,再把荧光物质的晶体压 在上面。
2. 他的设想是:太阳光照射晶体产生荧光,如果荧光中有X射线,那么它就能穿透 黑纸使底片曝光。
3. 果然,底片冲洗出来后,上面有了阴影。这证明有放射线穿透了黑纸,贝克勒尔 断定荧光确实放出X射线。
阴天
第五,原来认为质量和能量不搭界,现在放射性物质因能量 不断释放,质量也不断减小。
三大实验发现诱发了经典物理学危机
1. 三大实验发现打开了经典物理学的缺口 2. 三大实验发现猛烈地冲击着牛顿力学的物质质
量、能量、动量等基本概念,经典物理学中质 量守恒、能量守恒、运动定律等基本定律也面 临严峻考验。面对物理学危机,一些抱残守缺 的物理学家悲观失望,唯心主义趁虚而入。
相对于牛顿的经典物理学(力学)而言的; 量子论和相对论是现代物理学的两大支柱;
两大理论的提出者分别是: • 德国理论物理学家普朗克 • 美籍德国科学家爱因斯坦
爱因斯坦和量子理论的创始人普朗克
普朗克生于基尔。1879年普朗
克在慕尼黑大学获得博士学位后,先 后在慕尼黑大学和基尔大学任教。 1900年12月14日提出量子概念。由于 量子论创立,普朗克获得1918年诺贝 尔物理学奖。他的父亲是一位杰出的 法律教授。普朗克是德国人所具有的 最好品质的范例:诚恳、忠于职守, 他的业余爱好是音乐,在这方面表现 了专业艺术才干;另一项业余爱好是 他一直坚持到晚年的登山运动。
关于阴极射线本性的争论
1. X射线的发现起源于对阴极射线的研究,1856年德国盖斯勒放电管的发明为 研究真空放电现象提供了实验手段;1859年德国普吕克发现了放电管阴极发 出的绿色辉光,1876年德国戈尔茨坦指出绿色辉光是由阴极的某种射线引起 的,命名为“阴极射线”。

真理与科学相冲突的例子

真理与科学相冲突的例子

真理与科学相冲突的例子
真理与科学相冲突的例子有很多,以下是两个例子:
1. 宗教信仰与科学发现相冲突:例如,伽利略通过研究天文现象和使用望远镜等工具,发现地球并不是宇宙的中心,而是围绕着太阳运动。

然而,这个发现与当时的教会教义相悖,因为教会认为地球是宇宙的中心。

这导致教会对伽利略进行了长时间的审判和迫害,最终他被迫害,并在1553年因为嫌疑成立而被教会判处终身监禁。

2. 理论物理学与实证经验相冲突:例如,英国剑桥大学理论物理学教授斯蒂芬·霍金在30年前提出著名的“黑洞悖论”,他认为黑洞一旦形成,就会开始向外辐射能量,但是这种辐射中并不包含黑洞内部物质的“信息”。

然而,这个观点与当时的主流理论相冲突,也与实证经验相冲突。

尽管霍金在争论中输了,但他最终战胜了自己,获得了对手最大的尊敬。

总之,真理与科学相冲突的例子很多,但随着科学的发展和认识的深入,这些冲突可能会得到解决。

概念规律:热动说与热质说之争

概念规律:热动说与热质说之争
到 18 世纪 80 年代,几乎整个欧洲都相信热质说是正确的。法国化 学家拉瓦锡(1743~1794)于 1777 年写出了《燃烧理论》,全面地阅述 了燃烧的氧化学说,推翻了燃素说。但是,他依然把热看成是一种特殊 的物质元素,并于 1787 年同他人一起把这种特殊的物质元素命名为“热 素”(热质)。 1789 年,拉瓦锡在他出版的《化学原理教程》一书中, 把“热素”和“光”一起列入无机界 23 种化学元素中。他认为,热质是 “没有重量不可称量”的流体。可见,热质说已经达到了它的鼎盛时期。
与此同时,关于热的运动说的思想萌芽也已产生。我国古代的“阴 阳学说”,从自然现象中抽象出阴和阳两个对立的基本范畴,用以解释 万物。在“阴阳学说”中,把热和动同归属于阳的范畴,把冷和静同归 属于阴的范畴,这实际上是把热和运动联系起来了。元气论的发展,形 成了一种认为包括冷热在内的一切自然现象都是元气的运动就提出,元气缓慢地吹动,造成炎热之气; 元气的迅速吹动,则造成寒冷之气;冷热交替而发生作用。柳宗元已明 确地把冷热变化,看作是元气的不同运动状态。古希腊哲学家也有类似 的见解,米利都学派从泰勒斯(约公元前 624~约前 547)开始,把水看 作万物的基原物质,并认为热本身是从湿气里产生靠湿气而维持的;阿 那克西曼德(约公元前 610~约前 545)认为自然现象的统一的和永恒的 基原是“无定”,从“无定”中产生出各种自然现象;阿那克西美尼(约 公元前 588~约前 524)则主张自然界的基原是气,气的浓缩和稀释形成 了各种实体:在浓缩时依次形成风、云、水、土和石头,它很稀时就形 成了火;总之,他们是把热(火)看作是由基原物质的运动变化产生出 来的。
起了推动作用,他对在热的本性上的两种不同看法之间的争论是有所了 解的,但他对热的运动说存有疑虑。他认为,如果说是由于在物体内部 粒子相互碰撞使它们的运动加剧而发生热,那么为什么同样锤击一块软 铁与弹性钢球,软铁会变得很热而钢球却一下热不起来?另外,他还想 到,如果热是由物体内部粒子的运动造成的,由于密度大的物质中粒子 之间的相互吸引力大,让它们振动起来也就比较难,因而它的比热应该 比较大。但是,实际上有些密度大的物质的比热却比密度小的物质的比 热要小。例如,水银的密度比水大,但是实际上水银的比热小于水的比 热。这样,布莱克就成了热质说的主要倡导者。

数学史上最精彩的纷争——莱布尼茨VS牛顿

数学史上最精彩的纷争——莱布尼茨VS牛顿

数学史上最精彩的纷争——莱布尼茨VS牛顿莱布尼茨(G.W.Leibniz,1646年-1716年)是德国最重要的数学家、物理学家、历史学家和哲学家,一个举世罕见的科学天才,和牛顿同为微积分的创建人。

莱布尼茨出生于莱比锡,卒于汉诺威。

他的父亲在莱比锡大学教授伦理学,在他六岁时就过世了,留下大量的人文书籍,早慧的他自学拉丁文与希腊文,广泛阅读。

莱布尼茨1661年进入莱比锡大学学习法律,又曾到耶拿大学学习几何,1666年在纽伦堡阿尔多夫大学通过论文“论组合的艺术”,获得法学博士,并成为教授,该论文及后来的一系列工作使他成为数理逻辑的创始人。

1667年,他投身外交界,游历欧洲各国,接触了许多数学界的名流并保持联系,在巴黎受惠更斯的影响下,决心钻研数学。

他的主要目标是寻求可获得知识和创造发明的一般方法,这导致了他一生中有许多发明,其中最突出的就是微积分。

与牛顿不同,莱布尼茨主要从代数的角度,把微积分作为一种运算的过程与方法;而牛顿主要从几何和物理的角度来思考和推理,把微积分作为研究力学的工具。

莱布尼茨于1684年发表了第一篇微分学的论文“一种求极大极小和切线的新方法”这是世界上最早的关于微积分的文献,虽然仅有6页,推理也不是很清晰,却含有现代微分学的记号与法则。

1686年,他又发表了他的第一篇积分论文,由于印刷困难,未用现在的积分记号“⎰”,但在他1675年10月的手稿中用了拉长的S—“⎰”,作为积分记号,同年11月的手稿上出现了微分记号“d x”。

有趣的是,在莱布尼茨发表了他的第一篇微分学的论文后不久,牛顿公布了他的私人笔记,并证明至少在莱布尼茨发表论文的10年之前就已经运用了微积分的原理,牛顿还说:“在莱布尼茨发表其成果的不久前,他曾在写给莱布尼茨的信中,谈起过自己关于微积分的思想”。

但是事后证实,在牛顿给莱布尼茨的信中有关微积分的几行文字几乎没有涉及这一理论的重要之处。

因此,他们是各自独立地发明了微积分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理学史上三次著名的科学争论一、对热的本性的认识对热的本性的认识,在历史上有“热质说”与“热的运动说”之争,其间经历了两百余年.直到19世纪中叶热力学第一定律确立,热的运动说才获得决定性的胜利.热是组成物体的粒子的运动这一学说,使得热和机械功的等效性在概念上是可以理解的,并为机械功和热的相互转化提供了一个解释的基础,也为气体动理论奠定了基础.1 热的运动说17世纪初,英国哲学家培根从摩擦生热等现象中得出“热是一种膨胀的、被约束的而在其斗争中作用于物体的较小粒子之上的运动”,这种看法影响了许多科学家.英国物理学家波意耳看到铁钉捶击后会生热,想到铁钉内部产生了强烈的运动,所以认为热是“物体各部分发生的强烈而杂乱的运动.”胡克用显微镜观察了火花,认为热“并不是什么其他的东西,而是一个物体的各个部分的非常活跃的和极其猛烈的运动.”牛顿也指出物体的粒子“因运动而发热.”洛克甚至还认识到“极度的冷是不可觉察的粒子的运动的停止.”俄国学者罗蒙诺索夫在18世纪40年代提出了如下的见解:“热的充分根源在于运动”,即热是物质的运动,运动着的是物体内部那些为肉眼所看不见的细小微粒.他认为热量从高温物体传给低温物体的原因是由于高温物体中的微粒把运动传给低温物体中的微粒造成的,它自身便会变冷.这些分析肯定了运动守恒在热现象中的正确性,表明了气体分子的运动呈现一种“混乱交错”的状态,是杂乱无规则的.但总的说来,当时热是运动的观点尚缺乏足够的实验根据,所以还不能形成为科学理论.2 热质说的提出随着古希腊原子论思想的复兴,热是某种特殊的物质实体的观点也得以流传.法国科学家和哲学家伽桑狄认为,运动着的原子是构成万物的最原始的、不可再分的世界要素,同样,热和冷也都是由特殊的“热原子”和“冷原子”引起的.它们非常细致,具有球的形状,又非常活泼,因而能渗透到一切物体之中.这个观念把人们引向“热质说”,认为热是由无重量的某种特殊物质组成的.热质说的主要倡导者,英国化学家布莱克主张把热和温度两个概念区分开来.他引进了“热容”的概念,得出了量热学的基本公式ΔQ=cmΔt.其中c 称为比热,表示单位质量物质温度升高1K所吸收的热量.他在研究冰和水的混合时发现,在冰的熔解中需要一些温度计觉察不出的热量,进而发现各种物质在发生物态变化时都存在这种效应,他由此引进了“潜热”的概念,指出使冰熔解的过程是潜热发生的过程,使水凝固的过程是潜热移出的过程.在热质说观点指引下,热学研究取得了一定的进展.在18世纪前半叶人们开始明白一个有意义的事实:在对混合物所做的实验中,亦即把温度不同的诸物体放到一起,热既不会被创生也不会被消灭.这就是说,不管热在混合物或保持密切接触的各种不同物体中间如何重新分布,热的总量保持不变.现在可以将这条热量守恒定律表述为:在一个不受外界影响的绝热系统中,物体A失去的热量等于物体B得到的热量,即 ΔQA+ΔQB=0.这样一个热量守恒定律非常自然地使人联想到物质守恒的概念,有力地使热质说的观点占了上风.事实上,热质说对热传导现象给出了一个简单的可信的图像,即剩余的热质要从较热的物体不断地流向较冷的物体,直到达到平衡状态为止.而用那种把热视为粒子运动方式的观点来说明这一观察的结果确实很困难.除此之外,热质说还简易地解释了当时发现的大部分热学现象,比如物体温度的变化是吸收或放出热质引起的,对流是载有热质的物体的流动,辐射是热质传播,物体受热膨胀是因为热质粒子间的相互排斥,等等.热质说的成功,自18世纪80年代起几乎使整个欧洲都相信了热质说的正确性,从而压倒了热的运动说.但是,热质说对热学的发展又起着严重的阻碍作用.既然把热看成一种物质,而不是物质的一种运动形态,那就不可能有各种物质运动形态的转化.在热质说看来,摩擦所以生热,只是由于摩擦把“潜热”挤压出来,使潜热变成显热,使摩擦后物体的比热比摩擦前小,所以温度升高,而热质的量并没有增加.因此,在热质说占统治地位的18世纪,人们就不可能正确理解由蒸汽机的发明所揭示的热和机械运动之间的关系.3.运动说的复兴到了18世纪末,热质说受到了严重的挑战.随着实验材料的增多,越来越表明热质说不能说明物体因摩擦力做功而生热的现象.1798年英国物理学家伦福德伯爵向英国皇家学会提出了一个报告“论摩擦激起的热源”,说他在慕尼黑兵工厂监督大炮镗孔工作时,注意到炮筒温度升高,钻削下的金属温度更高,他提出了大量的热是从哪里来的这个问题.他敏锐地感觉到彻底研究这一课题,对热的本质可望获得进一步认识,从而对于热质存在与否这个自古以来哲学家们众说不一的问题做出合理的推测.接着,他写道:“热是否来自钻腔机所切开的金属片?如果情形的确是这样的话,那么根据现代的潜热和热质学说,则金属片的热容不仅应该变化,而且此变化还应该大到足以成为产生所有热的源泉.”但是,他通过在绝热条件下所做的一系列钻孔实验,比较了钻孔前后金属和碎屑的比热,发现钻削不会改变金属的比热.他还用很钝的钻头钻炮筒,半小时后炮筒升高70°F,金属碎屑只有54g,相当于炮筒质量的1/948,这一小部分的碎屑能够放出这么大的“潜热”吗?于是,他做出结论:“这些实验所产生的热,不是来自金属的潜热或综合热质.”他在论文的末尾写道:“看来在这些实验中,由摩擦产生热的源泉是不可穷尽的.不待说,任何与外界隔绝的物体或物体系,能够无限制提供出来的东西,决不可能是具体的物质实体;在我看来,在这些实验中被激出来的热,除了把它看做是运动以外,似乎很难把它看做是其他任何东西.”1799年,英国化学家戴维在论文中描述了实验:在一个同周围环境隔离开来的真空容器里,利用钟表机件使里面的29°F的两块冰互相摩擦而熔解为水.他在论文中写道:“如果热是一种物质的话,它一定是从这几种方式之一产生的:或者是由于冰的热容减少,或者是两物体的氧化,或者是从周围的物体吸引了热质.”可是明显的事实是,水的热容比冰的热容大得多,而冰一定要加上一定量的热才能变成水,所以摩擦并没有减少冰的热容.“也不是由于物体氧化引起的,因为冰根本不能吸引氧气.”最后,他得出结论:“既然这些实验表明,这几种方式不能产生热质,那么,即就不能当做物质.所以,热质是不存在的.”他明确指出热是物体微粒的运动.他说:物体因摩擦而膨胀,则很明显,它们的微粒一定会运动或相互分离.既然物体微粒的运动或振动是摩擦和撞击必然产生的结果,那么,我们就可以做出合理的结论:热是物体微粒的运动或振动.伦福德和戴维的实验与论证是令人信服的,可以说为以后热质说的最终崩溃和热的运动说的确立提供了最早的论据.但他们的实验在当时没有被人们所重视,大多数学者并没有因此而改变自己关于热的本性的观点.这个问题一直到19世纪热力学第一定律问世时,才真正得到解决.二、光的微粒说与波动说的论争光学是一门最古老的物理学分支之一.光的本性问题一直是人们十分关心和热衷探讨的问题.17世纪以来,随着科学技术的发展,这种争论达到了空前激烈的地步,也就是物理学史上著名的微粒说与波动说之争.1.根深蒂固的微粒说17世纪的科学巨匠牛顿,也是光学大师,关于光的本性,牛顿是这样认为的:光是由一颗颗像小弹丸一样的机械微粒所组成的粒子流,发光物体接连不断地向周围空间发射高速直线飞行的光粒子流,一旦这些光粒子进入人的眼睛,冲击视网膜,就引起了视觉,这就是光的微粒说.牛顿用微粒说轻而易举地解释了光的直进、反射和折射现象.由于微粒说通俗易懂,又能解释常见的一些光学现象,所以很快获得了人们的承认和支持.但是,微粒说并不是“万能”的,比如,它无法解释为什么几束在空间交叉的光线能彼此互不干扰地独立前时,为什么光线并不是永远走直线,而是可以绕过障碍物的边缘拐弯传播等现象.为了解释这些现象,和牛顿同时代的荷兰物理学家惠更斯,提出了与微粒说相对立的波动说.惠更斯认为光是一种机械波,由发光物体振动引起,依靠一种特殊的叫做“以太”的弹性媒质来传播的现象.波动说不但解释了几束光线在空间相遇不发生干扰而独立传播,而且解释了光的反射和折射现象,不过在解释折射现象时,惠更斯假设光在水中的速度小于在空气中的速度,这与牛顿的解释正好相反.谁是谁非,拉开了近代科学史上关于光究竟是粒子还是波动的激烈论争的序幕.尽管波动说可以解释不少光学现象,但由于它很不完善,解释不了人们最熟悉的光的直进和颜色的起源等问题,所以没有得到广泛的支持.再加上当时受实验条件的限制,还无法测出水中的光速,便无法判断牛顿和惠更斯关于折射现象的假设谁对谁错.尤其是牛顿在学术界久负盛名,他的拥护者对波动说横加指责,全盘否定,终于把波动说压了下去,致使它在很长时间内几乎销声匿迹.而微粒说盛极一时,居然在光学界称雄整个18世纪.2.英姿焕发的波动说进入19世纪以后,曾被微粒说压得奄奄一息的波动说重新活跃起来.一个个崭新的实验事实,使波动说雄姿英发,应付自如,进入了一个“英雄时期”.第一位向微粒说发起冲击的是牛顿的同胞托马斯•杨.1801年,年轻的托马斯•杨一针见血地说:“尽管我仰慕牛顿的大名,但我并不因此非得认为他是百无一失的.我遗憾地看到,他也会弄错,而他的权威也许有时阻碍了科学的进步.”托马斯•杨为了证明光是一种波,他在暗室中做了一个举世闻名的光的干涉实验.我们知道,干涉现象是波动的一个特性,托马斯•杨的成功,证明了光确实是一种波,它只有用波动说才能解释,微粒说对此一筹莫展.给微粒说以沉重打击的第二个实验是光的衍射实验.衍射现象也是波的基本特性之一,这是一种波在传播过程中可以绕过障碍物,或穿过小孔、狭缝而不沿直线传播的现象.法国物理学家菲涅尔设计了一个实验,成功地演示了明暗相间的衍射图样,在微粒说看来,光的衍射现象则是不可理解的.给微粒说以致命打击的是对光速值的精确测定.牛顿和惠更斯在解释光的折射现象时,对于水中光速的假设是截然相反的,谁是谁非,难以证实.到了19世纪中叶,法国物理学家菲索和付科,分别采用高速旋转的齿轮和镜子,先后精确地测出光在水中的传播速度只有空气中速度的四分之三.又一次证明了波动说的正确性.经过反复较量,波动说终于压过了微粒说,取得了稳固的地位.到19世纪60年代,麦克斯韦总结了电磁现象的基本规律,建立了光的电磁理论.到80年代,赫兹通过实验证实了电磁波的存在,并证明电磁波确实同光一样,能够产生反射、折射、干涉、衍射和偏振等现象.利用光的电磁说,对于以前发现的各种光学现象,都可以做出圆满的解释.这一切使波动说锦上添花,使它在同微粒说的论战中,取得了无可争辩的胜利.3 重整旗鼓的微粒说正当波动说欢庆胜利的时候,意外的事情发生了,以太存在的否定和光电效应的发现,这些新的实验事实又一次要置波动说于死地.波动说认为,光是依靠充满于整个空间的连续介质——以太做弹性机械振动传播的.为了验证以太的存在,1887年,美国物理学家迈克尔逊和莫雷使用当时最精密的仪器,设计了一个精巧的实验.结果证明,地球周围根本不存在什么机械以太.没有以太,光波和电磁波是怎样传播的呢?面对这一波动说难以克服的困难,微粒说跃跃欲试.光电效应的发现,使微粒说再次“复辟登基”.所谓光电效应,就是指金属在光的照射下,从金属表面释放出电子的现象,所释放的电子叫做光电子.大量的实验证明,光电效应的发生,只跟入射光的频率有关,只要入射光的频率足够高,不管它强度多弱,一旦照射到金属上,立刻就有光电子飞出.而从波动说的观点看,光电效应是绝对无法理解的.因此,波动说完全陷入了困境.而爱因斯坦运用光量子说——全新意义上的微粒说,把光电效应解释得一清二楚.至此,光的微粒说又昂首挺胸.活跃在科学的舞台上.但是,爱因斯坦并没有抛弃波动说,而是把二者巧妙地结合在一起,并辨证地指出:“光——同时又是波,又是粒子,是连续的,又是不连续的.自然界喜欢矛盾……”,这一思想充分体现在他的光量子理论的两个基本方程E=hν和p=(h/λ)中,把粒子和波紧密地联系在一起.三、爱因斯坦与玻尔的历史性论争20世纪最伟大的两位物理学家阿尔伯特•爱因斯坦和尼尔斯•玻尔对于量子力学的创立与发展,都做出了重大的贡献.有趣的是,在1927年9月科漠国际物理会议上,当玻尔正式提出了他有名的“互补原理”之后,受到了爱因斯坦的强烈反对.从此,这两位同时代、同行业的科学巨星,直到他们死去之前,共进行了近40年具有浓厚哲学色彩的大争论.即使是现在,仍可感到这一争论对现代物理学理论基础研究所产生的冲击.1.论争的渊源提及这场大争论,首先得从哥本哈根学派说起.在20世纪20年代,丹麦著名物理学家玻尔在哥本哈根理论物理研究所以其严谨的治学作风、尊重他人首创精神的领导作风,吸引了大批对量子物理学有着基本相同的理解的科学家,成为当时世界上力量最雄厚的物理学派.诸如,海森伯、泡利、狄拉克等年轻的物理学家都先后在这里工作着,其中,玻尔对海森伯提出的测不准关系非常赞赏.1927年9月在意大利科漠召开的国际物理学会议上,玻尔提出了著名的“互补原理”,从哲学上对测不准关系加以概括,用以解释量子理解的基本特征——波粒二象性.这一著名的互补原理,被称之为量子力学的哥本哈根解释,正是这一解释受到了爱因斯坦的尖锐批评,从而拉开了这场大争论的序幕.2 论争的过程爱因斯坦与玻尔的论战持续了近40年之久,很令人瞩目.论战的内容是围绕着关于量子力学理论的特征和基本概念的解释问题,而这些问题又都属于哲学的领域,所以,争论的实质就是围绕着量子力学的方法论原理及其哲学诠释.论战曲折迂回,高潮迭起,大致分成两个阶段.(1)论战的第一阶段1927年科漠会议上玻尔提出“互补原理”,对量子力学第一次作了互补解释,玻尔是这样认为的:量子力学理论是一种以能量为动量的统计守恒为基础的纯几率观点,量子力学的规律具有统计性质.并且,他主张在量子物理中应当抛弃因果性和决定论的概念,而代之以互补原理.1927年10月,第五次索尔维国际物理学讨论会在布鲁塞尔召开,爱因斯坦在会上发言,第一次在公开场合下对量子力学的发展表示不满.他反对抛弃严格的因果性和决定论的概念,坚持基本理论不应当是统计性的,他认为在几率解释的后面应当有更深一层的关系,应当能够揭示微观世界的因果性联系,所以他在会议上支持德布罗意的导波理论.为了揭露量子力学理论的逻辑矛盾性,从而否定测不准关系,爱因斯坦还精心设计了一系列的理想实验,企图驳倒玻尔,玻尔据理力争,一次次巧妙地摆脱了困境.例如,爱因斯坦设计了一个可以称重量,且有可控快门的光箱子实验,并以此来否定能量对时间的测不准关系.而对此严重的挑战,玻尔经过一个不眠之夜的紧张思考,终于喜出望外地发现.可以“以其人之道还治其人之身”的办法回击爱因斯坦,即利用爱因斯坦广义相对论中时钟速率与引力势的关系,驳倒了爱因斯坦的挑战.因此,爱因斯坦不得不承认量子力学的逻辑一贯性.(2)论战的第二阶段当爱因斯坦试图从逻辑上反驳哥本哈根学派而遭受挫折后,便放弃了这方面的努力,转而集中于批评量子力学理论的不完备性.1931年2月26日,爱因斯坦等三人合作发表了“量子力学中过去和未来的知识”的文章,认为测不准关系式并不能提供量子力学的过去的确定知识.从而拉开了进一步的论战.1935年,爱因斯坦、波多尔斯基和罗森一起发表了题为“能认为量子力学对物理实在的描述是完备的吗?”一文,提出了著名的以他们三人姓名头一个字母命名的“EPR 悖论”,使这场论战再次出现了高峰.文章首先提出了理论的完备性和实在性的定义,并建立了一种“非此即彼”的抉择关系,即量子力学理论如果是完备的,则不可对易算子所表征的物理量不同时为实在;或者相反,如果理论是不完备的,则物理量同时为实在.其次,文章证明,如果波函数所提供的描述是完备的,那么所涉及的不可对易量必定是实在的.而根据前面所建立的“非此即彼”抉择关系,不难看出,其唯一可能的结论是波函数所提供的描述为不完备的.爱因斯坦等人通过对两个相干系统的分析,做到了不仅是完成了逻辑上的诘难,而且还具体地构造了一个满足“排除了干扰的测量”的要求的体系,用以说明量子力学对物理实在的描述是不完备的.这称之为“EPR悖论”.EPR悖论逻辑结构是十分严密的,要进行反驳是极其不易的.但EPR悖论中所提出的定义及观点,又必须最后诉诸“测定”,既然还有赖于测量,那就恰好为玻尔的反驳提供了突破点.1935年10月,玻尔以相同的标题公开回答了上述诸难.指出既然EPR的作者在“实在性”的定义中谈论了测量,那么就不应该把测量操作与被测对象割裂开来讨论,而必须把现象同获取现象的条件以及器械包括在内进行描述.所以,玻尔在文章中运用一种更为一般的方式构造了EPR的两粒子体系,使它们恰好满足EPR所设想的情形.玻尔列举了一个粒子穿过一窄缝的实验,并指出EPR 诘难中对所需物理量的测量及计算所显示的在选择上的任意性,取决于实验装置的设置.所以,“排除一切干扰”的前提,对实验的要求是含糊的.为了进一步说明上述思想,玻尔把量子力学与经典物理学中的观察予以比较.他指出:在量子物理学中,对象与测量仪器之间的相互作用是量子现象中不可分的组成部分,从而对象与测量仪器构成一个不可分割的整体.由此可见,玻尔提出的量子现象的整体性特征,是对于EPR所默认的定域性假设的否定,也是对于EPR实在性判据的否定.这样,玻尔采用了抛弃EPR的逻辑前提,代之以确认量子现象的整体性特征的手段,拯救了量子描述的完全性.3 论战的启示现在,爱因斯坦和玻尔虽然去世了,但他们之间为了探索科学真理而进行的论战,却推动着量子物理学深入发展;它一步步地揭示了量子力学的本质含义,前期的争论确立了量子力学及正统解释的逻辑自洽性;后期的争论则揭示了量子现象的整体性特征,同时更明确地提出了量子力学的理论地位问题.但是,两位大师的争论以分道扬镳而告终,这说明:这一争论对现代物理学理论基础的研究带来了冲击,就这个意义而言,这场争论还远远没有结束,它将激励着人们去重新审查现代物理学理论基础的分理解状况,寻找把这两个理论真正统一起来的途径,以促进物理学的进一步深入发展.除此之外,这场论战还给后人留下了十分有益的启示.首先,它说明学术上的争论有利于促进科学理论的发展;其次,学术争论的唯一正确态度就是坚持百家争鸣;再次,自然科学需要正确的哲学作指导.这一场发生于爱因斯坦和玻尔为代表的20世纪最伟大的两位物理学家之间的论战,是科学史上持续长久而激烈的著名的论战之一,它一直延续到今天,影响深远.。

相关文档
最新文档