物理硕士专业及研究方向

合集下载

天津大学 物理系研究生招生专业介绍

天津大学 物理系研究生招生专业介绍

天津大学物理系研究生招生专业介绍物理系有光学、材料物理与化学、理论物理、凝聚态物理和生物物理等五个硕士点,拥有雄厚的师资力量。

光学硕士点☆专业介绍:1986年获理学硕士授予权,现有教授3人,副教授1人,主要学术方向包括:生物医学光子学、现代光学测试学与图像处理、量子光学与量子通讯、集成光电子学与导波光学、衍射光学及其应用。

这些学术方向涉及了目前光学前沿最活跃的研究领域,80年代刘书声、马世宁、胡洪璋、李希曾等教授后奠定的基础,20多年培养了近百名硕士研究生,承担了国家级国家各部委项目、国际自然科学基金、天津市自然科学基金、天津市科技攻关项目、横向研究课题等数十项。

目前有教授3人,副教授1人,讲师2人。

学科方向一、生物医学光子学生物医学光子学是光学与生物和生命科学交叉的新兴学科,它涉及光子与生物系统相互作用,以及这些光子携带的有关生物系统的结构与功能信息,还包括利用光子对生物系统进行的加工与改造等。

近期开展的研究工作侧重在研究用于生物医学测量的光谱技术。

学科方向二、量子光学与量子通讯由于量子信息处理的过程遵从量子物理原理,如叠加性、相干性、纠缠性、不可克隆定理等会在信息过程中发挥重要作用,使得量子信息系统的功能可突破现有的经典信息系统的极限。

因此量子信息技术的研究已引起各国政府,科学界和信息产业界的高度重视,成为当前量子信息科学研究的热点。

我们对量子光学的研究工作开始于80年代中期,近期的研究工作侧重在量子计算机和量子通讯中的纠缠光子的产生机制和特性。

学科方向三、现代光学测试学与图像处理本研究方向是(1)不同尺度现代光学测试方法与应用研究,以及与之密切相关的图像处理技术的研究。

包括光干涉信息的快速提取、计算及相应软件的编制。

(2)基于偏微分方程的图像分析方法的研究,包括图像识别、图像分割、图像重建、图像边缘提取等图像处理领域。

以及在光干涉图像、指纹和医学图像处理中应用研究。

学科方向四、集成光电子学与导波光学集成光电子学是光学的新兴分支,是与光子学、固体物理、材料科学密切相关的综合性学科。

理论物理专业070201培养方案

理论物理专业070201培养方案

理论物理专业(070201)培养方案(学术型硕士研究生)一、培养目标和要求1.努力学习马列主义、毛泽东思想和邓小平理论,坚持党的基本路线,热爱祖国,遵纪守法,品德良好,学风严谨,具有较强的事业心和献身精神,积极为社会主义现代化建设服务。

2. 培养掌握坚实宽广的理论基础和系统深入的专门知识,能将物理理论与实际问题关联起来的、具有理论与实践相结合能力的研究与应用性专业人才.3。

积极参加体育锻炼,身体健康.4。

硕士研究生应达到的要求:(1)掌握本学科的基础理论和相关学科的基础知识,有较强的自学能力,及时跟踪学科动态;能广泛获取各类相关知识,对科技具有敏感性.(2)具有项目组织综合能力和团队工作精神,具有强烈的责任心和敬业精神.(3)有扎实的英语基础知识,能流利阅读专业文献,有较好的听说写译综合技能。

(4)获得具有创新价值的研究结果.5。

本专业的主要学习内容有:高等量子力学,群论,广义相对论,统计物理和多体理论,量子场论,宇宙学,物理中的数学方法,激光物理,光电子物理,计算物理,专业英语等课程,另外还要参加教学实习,全国性学术交流会议,撰写毕业论文等实践环节.硕士生毕业可以继续深造攻读博士学位,或从事中学教学以及在相关企事业任职.二、学习年限1。

培养方式采用课堂教授、讨论、专题发言与课后自学、写读书笔记;社会调研与教学实习;参与科研与学术活动相结合的培养模式。

在学习年限内,要求学生保证规定的在校学习时间。

2。

学习年限硕士研究生:学制3年,培养年限总长不超过5年。

在完成培养要求的前提下,对少数学业优秀的研究生,可申请提前毕业。

三、研究方向与导师(一)研究方向1.引力与宇宙学,导师主要有翟向华教授、张宏升研究员、冯朝君副研究员等.2。

量子宏观效应与量子场论,导师主要有刘道军研究员、奚萍副研究员等.3.光与物质相互作用,导师主要有张敬涛研究员、冯勋立研究员、张一副教授等。

4。

计算物理,导师主要有叶翔研究员、谢逸群副教授、吉凯副教授、梁云烨副教授等。

物理化学专业硕士研究生培养方案(070304)

物理化学专业硕士研究生培养方案(070304)

物理化学专业硕士研究生培养方案(070304)物理化学专业硕士研究生培养方案一、培养目标为了适应我国社会主义建设事业的需要,培养德、智、体全面发展的物理化学化学专业人才,所培养的研究生应达到如下水平:1、具有高度的政治理论水平和觉悟,能够用辩证唯物主义观点观察和分析事物。

遵纪守法,有良好的道德品质和团结合作精神。

爱祖国、爱人民、热爱社会主义。

2、具有严谨的治学态度,实事求是的科学精神,坚实的理论基础和广泛的专业知识以及熟练的实验技能。

能够独立进行科学研究,勇于探索、创新、刻苦勤奋,并能胜任高等学校化学基础课和物理化学专业课的教学工作。

能够熟练地阅读英文专业书刊,并能用英文撰写物理化学专业方面的研究论文。

3、身心健康。

二、研究方向A、绿色物理化学B生物物理化学 C. 化学电源材料D. 计算化学与分子设计 E 催化化学F. 纳米材料化学三、学习年限学习年限为三年。

一年半时间完成硕士学位的必修课和选修课,至少获得35学分。

剩余一年半时间从事科学研究,完成硕士学位论文,并通过论文答辩。

如果研究生能在较短的时间内将规定的课程学完,并得到足够的学分,通过论文答辩,可提前毕业。

必要时,研究生经批准也可适当延长学业,但最多不超过一年。

四、课程设置见课程设置表。

五、考核方式研究生的必修课均为考试课程,采取试卷的形式进行笔试,选修课可以根据情况采取考试或考查的方式进行考核。

考试课程成绩按百分制,75分为合格;考查课程按优秀、良好、及格和不及格四级记分制评定成绩。

主讲教师出卷并批改给出成绩,考后及时把成绩上报研究生学院,登记在《研究生考试考查成绩登记表》〉中并主讲教师签名。

六、学位论文硕士研究生用不少于一年的时间参加科学研究及撰写学位论文,不计学分。

硕士研究生一般应在第三学期内完成论文的选题工作,要求最迟于第四学期开学后的前两个月内提交学位论文计划,并向所属教研室或指导小组做开题报告,经讨论认为选题合适且计划切实可行者,方能正式开展论文工作。

物理主要研究方向简介

物理主要研究方向简介

物理主要研究方向简介1)新型功能材料与器件方向本研究方向主要研究凝聚态物质的新结构、新性质,新型功能材料、纳米材料的研发与制备;研究极端条件下原子分子相互作用、量子行为调控和新奇物性;高压等极端条件下实验方法和实验技术的建立与创新等。

具有良好的材料制备检测条件,具有硕士指导教师共2名(张海明教授,王辅忠教授),目前在研国家自然科学基金2项2)计算物理研究方向该方向主要对一些新型功能材料进行理论模拟计算,研究材料的物理性质,对实验进行理论解释进而指导材料研发。

该方向已经与材料学院和纺织学院建立联系,进行院际科研合作与交叉。

具有良好的材料制备检测条件和计算设备,具有硕士指导教师2名(张永红副教授,刘光华副教授),目前在研国家自然科学基金1项。

3)量子信息与光学研究方向量子信息研究是20世纪末期新生的交叉学科,它为信息科学技术的持续发展开辟了新的原理和方法。

《自然》杂志发表评论时说,多粒子纠缠以及终端开放的量子态隐形传输将在计算和网络化的量子通信中有重要的应用。

目前我国在多光子操纵方面已经是非常领先了,但是在现实世界中,如何把量子纠缠应用到量子计算和量子通信中还面临着巨大挑战。

另外我们还对光学有关的前沿课题进行了一定的研究,该研究方向与实际应用结合非常紧密。

这两个研究方向具有硕士指导教师3名(胡占宁教授,戚桢教授,闫学群副教授),在研省部级项目1项。

4)强关联电子系统、量子纠缠与量子相变研究强关联电子系统由于具有强烈的量子涨落而呈现出各种奇异的量子物态。

量子相变是量子多体系统在零温条件下完全由体系量子涨落导致的从一种量子物态向另外一种物态的转变。

这种状态的变化是由体系内部相互作用的竞争而引发的。

在量子临界区域,体系存在着长程关联,并导致体系量子纠缠表现出奇异的行为。

我们研究团队成员主要研究兴趣在于利用量子纠缠的奇异行为来刻画描述量子相变,进而研究临界点附近量子纠缠的标度行为。

该研究方向目前具有硕士导师2名(刘光华副教授,闫学群副教授),在研国家自然科学基金项目1项。

动力工程及工程热物理专业硕士研究生培养方案

动力工程及工程热物理专业硕士研究生培养方案

动力工程及工程热物理专业硕士研究生培养方案
(专业代码:0807 授工学学位)
一、培养目标
1. 掌握动力工程及工程热物理专业较坚实的基础理论和较系统的专门知识,掌握一门外国语,能熟练地进行专业阅读和初步写作;
2. 培养严谨求实的科学态度和作风,掌握科学研究的基本方法与技能,具备一定的从事本学科科学研究的能力;
3. 可胜任本学科及相近学科的教学、工程技术工作以及相关的科技管理工作。

二、主要研究方向
1.工程热物理2.热能工程3.动力机械及工程
4.流体机械及工程5.制冷及低温工程
6.化工过程机械7.新能源科学与工程
三、学习年限
全日制攻读学术型硕士学位的学习年限为3年(以学校批准年限为准)。

四、学分要求与分配
总学分要求≥36学分,其中学位课学分要求≥24学分,研究环节要求≥12学分,具体学分分配如下表:
五、课程设置及学分分配
六、研究环节与学位论文
执行学校有关规定。

物理电子学专业硕士研究生培养方案

物理电子学专业硕士研究生培养方案

物理电子学专业硕士研究生培养方案
(专业代码:080901 授工学学位)
一、培养目标
1. 掌握物理电子学与光电子专业坚实的基础理论和系统的专门知识,了解本学科有关研究领域国内外的学术现状和发展方向。

2. 掌握一门外国语,能熟练地进行专业阅读和初步写作,具备一定的听说及交流能力。

3. 培养严谨求实的科学态度和作风,具有探索创新的科学精神和良好的科研道德,具备独立从事科学工作的能力。

4. 能熟练运用计算机和信息化技术,解决本学科领域的问题并有新的见解。

5. 可胜任本专业或相邻专业的教学、科研和工程技术工作以及相关的科技管理工作。

二、主要研究方向
1. 光电子科学与技术
2. 光电通信与信息处理技术
3. 激光科学与技术
4. 激光医学工程
5. 激光先进制造技术
6. 半导体光电材料与器件
三、学习年限
全日制攻读学术型硕士学位的学习年限为3年。

四、学分要求与分配
总学分要求≥36学分,其中学位课学分要求≥24学分,研究环节要求≥12学分,具体学分分配如下表:
五、课程设置及学分分配
物理电子学专业硕士研究生课程设置
注:硕士生修课应从硕士生课程中选择(课程代码最后三位为500~799);
博士生修课应从博士生课程中选择(课程代码最后三位为800~999)。

六、研究环节与学位论文
执行学校有关规定。

物理学专业硕士研究生培养方案

物理学专业硕士研究生培养方案

物理学专业硕士研究生培养方案(2017级研究生开始使用)一、专业学科、学制、学习方式一级学科:物理学(代码:0702 )二级学科:凝聚态物理(代码:070205 )理论物理(代码:070201 )学制:三年学习方式:全日制二、本学科情况介绍:物理学是研究物质的结构、相互作用和运动规律以及它们的各种实际应用的科学。

它是自然科学的基础,是近代科学技术的主要源泉。

物理学是基础学科也是发展最快的学科之一,是与产业联系最密切的理学学科。

物理学科是广州大学最早建立重点学科之一,属广州市人才培养的重要基地,1996年获二级学科硕士授予权,已经培养了50多名硕士,许多人已成为重要学术和技术骨干。

经过多年的努力,学科已经形成了若干个稳定的研究方向。

理论物理专业的研究方向有:受限小量子系统、磁性与强关联多电子系统的理论研究。

凝聚态物理专业的研究方向有:半导体纳米结构中的电子性质研究、信息光电子研究方向、信息功能材料与计算机辅助设计.学科的研究特色是与国际该领域的研究接轨,所有的成果都将在国内外权威刊物上发表,绝大部分论文被《SCI》所收录,有相当部分论文被国内外同行引用。

近年来学科承担了国家自然科学基金10项,广东省自然科学基金重点项目1项,广东省自然科学基金和计划项目20多项。

2000年3月以来获省部级奖励6项,其中教育部科学技术二等奖1项,广东省科学技术一等奖1项,三等奖3项,2005年以来本学科获得国家发明专利5项。

本学科除取得一些科学成果外,还取得了一些社会效益。

学科已经培养硕士研究生50多人,毕业生全部就业,且有多名毕业生在山西大学、安徽大学、中山大学、华南师范大学等211工程学校及新加坡科技学院从事教学科研工作。

有些研究生的毕业论文发表在“Phys. Rev. B”,“J. Appl. Phys.”,“J. Phys.: Condens. Matter”,“Eur. Phys. J”等国际权威刊物上,毕业生中有多人分别考上北京大学、上海交大、中国科学院、南京大学、中山大学、北京理工大学和华中科技大学等学校博士研究生,8人被评为“南粤优秀研究生”。

无线电物理专业各研究方向硕士研究生课程设置与教学计划

无线电物理专业各研究方向硕士研究生课程设置与教学计划
40

考查
SX1307020802
智能仪器系统设计
2
2
40

考查
SX1307020803
无线通信系统DSP技术
2
2
40

考查
SX1307020804
光电信息技术
2
2
40

考查
SX1307020805
其它学科专业开设的课程
2
考查
注:总学分数不少于32学分,其中学位课程类不少于20学分,非学位课程类不少于12学分。
数字通信技术





2
2
40

考试
SB1307020802
现代数字信号处理
2
2
40

考试
SB1307020803
专业文献阅读
2
考查
SB1307020804
学术报告
1
考查
SB1307020805
开题报告
1
考查
SB1307020806
教学实践
--
考查



SX1307020801
微机系统与接口技术
2
2
无线电物理专业各研究方向硕士研究生课程设置与教学计划


编号
课程名称
适用
研究
方向








开课时间
(学期)
考核
方式




公共学位课
SG0000000001
硕士生英语

【研究生】物理学学科硕士研究生培养方案

【研究生】物理学学科硕士研究生培养方案

【关键字】研究生
物理学学科硕士研究生培养方案
学科代码:070200
一、培养目标:
1.认真掌握马克思主义基本理论,树立爱国主义和集体主义思想,遵纪守法,具有较强的事业心和责任感,具有良好的道德品质和学术修养,身心健康。

2.在物理学科上掌握坚实宽广的根底理论和系统深入的专业知识,具有从事科学研究工作或独立担任专门技术工作的能力。

掌握与物理相关学科的根底知识和专业知识,具有将物理理论根底应用于其它领域的能力。

能够在教育部门、科研机构、高新技术企业、工程技术领域从事教学、科研、技术开发、管理等工作。

3.掌握一门外语,能熟练阅读专业外文资料,并具有较好的科技写作能力。

二、培养方向:
1.理论物理
2.粒子物理与原子核物理
3.凝聚态物理
4.电磁理论与应用技术
5.物理探测方法与技术
6.油气藏物理理论与技术
三、学习年限:3年
四、学分要求:总学分最低修满30学分,必修课不得低于16学分。

备注:
1.对跨学科报考或同等学力录取的研究生,由导师指定补修本专业的本科主干课程2门,最多不超过4学分。

补修课所取得学分不记入总学分。

2.专业外语课程作为必修环节,由导师指导查阅一定数量的专业外文文献资料,在第三学期开题阶段提交一份外文文献阅读报告,交导师审查并评定成绩,通过后记1学分。

3.根据各培养方向的具体情况,可选修学校其它专业的硕士研究生课程。

六、科学研究与学位论文:
执行《中国石油大学(华东)学术型硕士研究生培养工作有关规定》和《中国石油大学(华东)硕士研究生论文和答辩工作的有关规定》。

此文档是由网络收集并进行重新排版整理.word可编辑版本!。

凝聚态物理专业硕士研究生培养方案

凝聚态物理专业硕士研究生培养方案

凝聚态物理专业硕士研究生培养方案(0020)清晨的阳光透过窗帘的缝隙,洒在了书桌上,那些关于凝聚态物理的书籍显得格外耀眼。

我想起了自己曾经走过的十年方案写作之路,那一刻,灵感如泉水般涌动,我决定用意识流的方式,来完成这份“凝聚态物理专业硕士研究生培养方案(0020)”。

一、培养目标1.理论基础:使学生掌握凝聚态物理的基本理论,包括量子力学、固体物理、统计物理等。

2.实验技能:培养学生具备凝聚态物理实验的基本技能,如样品制备、物性测量、数据分析等。

3.科研能力:锻炼学生的独立思考能力和创新意识,使其具备从事科研工作的能力。

二、课程设置1.公共课程:政治、英语、数学、物理等。

2.专业课程:固体物理、量子力学、统计物理、计算物理、材料物理等。

3.实验课程:凝聚态物理实验、现代物理实验、材料物理实验等。

4.选修课程:纳米材料、低维物理、超导物理、光电子学等。

三、实践教学1.实验室轮转:安排学生在多个实验室进行轮转,了解不同研究方向的研究内容和方法。

2.科研项目:鼓励学生参与导师的科研项目,锻炼科研能力。

3.学术交流:组织学生参加国内外学术会议,拓宽学术视野。

4.实习实践:安排学生到相关企业进行实习,了解产业发展现状。

四、科研训练2.学术报告:组织学生进行学术报告,提高口头表达能力。

3.科研竞赛:鼓励学生参加各类科研竞赛,激发创新精神。

4.学术评价:对学生的科研成果进行评价,激励学生进步。

五、国际交流1.国际合作:与国外知名高校和研究机构开展合作,为学生提供国际交流机会。

2.短期访学:选拔优秀学生赴国外进行短期访学,了解国际科研动态。

3.国际会议:组织学生参加国际会议,提高国际交流能力。

4.外籍教师:聘请外籍教师为学生授课,提高英语水平。

六、毕业要求1.学术论文:提交一篇学术论文,通过评审。

2.科研成果:取得一定的科研成果,如专利、获奖等。

4.毕业论文:完成一篇高质量的毕业论文,通过答辩。

就这样,一份充满创新和实用的“凝聚态物理专业硕士研究生培养方案(0020)”完成了。

物理学硕士课程设置

物理学硕士课程设置

物理学硕士课程设置物理学硕士课程设置通常会根据学校和专业的要求而有所不同。

以下是一个典型的物理学硕士课程设置的示例,涵盖了核心课程和选修课程。

1. 硕士核心课程(必修课程):理论力学:介绍牛顿力学的基本原理和应用,包括质点和刚体的运动学和动力学。

电磁学:研究电荷和电磁场之间的相互作用,涵盖电场、磁场、电磁波等内容。

量子力学:介绍微观粒子的行为和性质,包括波粒二象性、薛定谔方程、量子力学的基本原理等。

热力学和统计物理:探讨宏观系统的热力学性质和微观粒子的统计行为,包括热力学定律、熵、配分函数等。

实验物理学:培养实验设计和数据分析的能力,包括实验技术、测量方法和数据处理等。

2. 选修课程:根据个人的研究兴趣和专业方向,学生可以选择以下方向的选修课程:材料科学与固体物理:研究材料的结构、性质和应用,包括半导体器件、光电子学、凝聚态物理等。

粒子物理与核物理:研究基本粒子和原子核的结构和相互作用,包括高能物理实验、量子场论等。

生物物理学:研究生物系统中的物理学原理和技术应用,包括蛋白质结构、生物分子动力学等。

计算物理学:应用计算方法和数值模拟研究物理问题,包括计算电磁学、计算量子力学等。

天体物理学:研究宇宙的物理学性质和天体现象,包括宇宙学、恒星演化、宇宙射线等。

3. 研究项目:物理学硕士课程通常还包括独立的研究项目,学生将在指导教师的指导下进行研究并撰写硕士论文。

研究项目可以是实验研究、理论模型构建或计算模拟等,旨在培养学生的科研能力和解决问题的能力。

4. 学术研讨和学术活动:学术研讨和学术活动是物理学硕士课程的重要组成部分,学生将参加学术会议、研讨会、学术报告等,与其他研究人员交流和分享研究成果,拓宽学术视野。

理论物理专业硕士研究生培养方案

理论物理专业硕士研究生培养方案

理论物理专业硕士研究生培养方案一、培养目标培养符合国家建设需要, 为祖国和人民服务的, 具有良好道德品质和科学素质的, 具有集体主义精神, 实事求是, 追求真理, 献身科学教育事业的, 具有扎实基础知识和良好科研能力的理论物理专门人才和高等院校师资.获得本专业硕士学位的研究生应掌握理论物理学科坚实、宽厚的基础知识,较全面和深入的专业知识,熟悉本专业研究方向的发展前沿和热点. 硕士论文选题时,应对国内外研究现状进行较全面的调研和分析,在此基础上,完成具有创造性的研究成果。

熟练掌握一门外语, 包括专业阅读和写作,以及能用外语进行简单的学术交流。

二、本专业总体概况、优势与特色理论物理是研究物质结构、性质及其相互作用的基本规律的一门基础学科。

本学科于1990年获得硕士学位授予权,1996年成为湖南省重点学科,1999年其中的“非线性物理”成为“211工程”重点学科,1995年起招收博士生,2000年获得博士学位授予权。

该学科现已形成四个稳定的研究方向。

其特色在于抓住当前和未来高技术领域中的关键问题和物理学中的基本问题开展基础研究,把基础研究与高技术问题的探索相结合,在多个学科前沿领域的交叉点寻找突破。

三、本专业研究方向及简介本学科分四个方向,方向一:光与物质的的相互作用物理。

方向二:原子分子理论。

方向三:非线性理论。

方向四:引力与相对论天体物理。

五、专业课程开设具体要求课程编号:001课程名称:高等量子力学英文名称:Advanced Quantum Mechancs教学内容:第一章:量子态的描述;第二章:量子力学与经典力学的关系;第三章:路径积分;第四章:量子力学中的相位;第五章:二次量子化;第六章:角动量理论;第七章:量子体系的对称性;第八章:时空反演;第九章:散射理论;第十章:相对论量子力学预修课程:大学本科物理专业课程主要教材及参考文献:1、曾谨言.量子力学(卷Ⅱ) [M].2、余寿绵.高等量子力学[M].3、P.Roman, Advanced Quantum Theory[M].4、J.Bjorken etal.Relativistic Quantum Mechanics[M].课程编号:002课程名称:群论英文名称:Group Theory教学内容:第一章:群的基本知识10学时,第二章:群的线性表示10学时;第三章:对称群及其表示10学时;第四章:点群及其表示10学时;第五章:连续群和李代数10学时;第六章:转动群的表示论10学时;第七章:Lorentz群的表示论10学时。

080901物理电子学专业硕士研究生培养方案

080901物理电子学专业硕士研究生培养方案

40 2 3 面授讲课
211080901013 小波分析与应用
40 2 3 面授讲课
211080901014 光电子技术
40 2 1 面授讲课
211080901015 DSP 技术与应用实验
40 2 2 讲座与实验
211080901016 接口技术实验
40 2 2 讲座与实验
211080902003 集成电路测试技术
三、学制与学习年限
学制为 3 年。在达到学校规定的提前毕业的条件下,允许提前毕业,但最短学习年限不 得少于 2 年;在学制规定的基本年限内,未能完成全部学业,可适当延长学习年限,但在校 最长学习年限不得超过 4 年(不含休学时间)。提前毕业及延长学习年限的要求参照《湖南 师范大学研究生提前毕业及延长学习年限的有关规定》。
080901 物理电子学专业硕士研究生培养方案
一、学科简介
物理电子学是近代物理学、电子学、光学、光电子学、量子电子学及相关技术的交叉学 科,主要在电子工程和信息科学技术领域内进行基础和应用研究。近年来本学科发展特别迅 速,不断涵盖新的学科领域,促进了电磁场与微波技术、电路与系统等二级学科及信息与通 信系统、光学工程等相关一级学科的拓展,形成了许多新的学科增长点。本学科于2003年获 得硕士学位授予权,现有导师8人,其中教授8人、博士7人,师资力量雄厚;拥有量子结构 与调控教育部重点实验室和电子技术与信息处理校级重点实验室,实验设备先进。近五年, 本学科承担国家自然科学基金、湖南省自然科学基金等各类课题8项,在《Nanoscale Research Letters》、《Ultrasonics》、《电子学报》、《系统仿真学报》等刊物上发表了 一系列高水平的学术论文。学位点负责人钱盛友教授在高强度聚焦超声治疗设备研制及疗效 评价等方面有深入研究,在同行中有较好影响;唐东升教授在纳米材料制备及新型传感器研 究等方面取得了许多重要成果,获得了教育部新世纪优秀人才支持计划和湖南省杰出青年基 金项目;谢可夫教授提出了量子衍生的图像边缘检测和去噪新方法。本学科既重视理论研究, 又重视应用开发,通过理工融合取得了一系列重要成果,在纳米电子学、超声技术、噪声电 子学、信号及图像处理等方向已形成了自己的特色。

中科大理论物理专业硕士研究生培养方案

中科大理论物理专业硕士研究生培养方案

中科大理论物理专业硕士研究生培养方案一、培养目标1.掌握扎实的物理学基本理论知识和研究方法;2.具备独立开展理论物理研究工作的能力;3.具备科学研究的创新思维和科学问题解决能力;4.具备良好的科研素养和团队合作精神。

二、学业课程1.基础课程:量子力学、统计力学、电动力学、固体物理学等;2.专业课程:理论物理前沿、高能物理、凝聚态物理、量子信息等;3.选修课程:根据个人兴趣和研究方向选择合适的课程;4.科研课程:学术报告、研究生学术论坛等。

三、研究生科研要求1.导师指导下,参与科研项目并完成相关研究任务;2.积极参加学术会议、学术交流和学术竞赛,提升自身学术能力;3.发表学术论文,掌握科学研究的方法和撰写论文的能力。

四、学位论文1.根据研究方向和科研成果,撰写学位论文;2.学位论文应具有一定的学术创新性和科研贡献;3.按照学校要求,通过答辩获得学位。

五、培养模式1.导师制度:每位研究生需在导师指导下进行科研工作;2.学术导师:导师具有丰富的科研经验和教学实践,指导学生选择课程、科研方向和学术发展;3.学术讨论:组织定期的学术研讨会,促进学生与导师、同门相互交流和学术共同进步;4.学术资源:学校提供优秀的实验设备、图书馆资源和学术资助,满足学生科研需求。

六、期望就业方向1.学术界:在高校、研究机构从事科研工作,推动理论物理学科发展;2.企事业单位:在相关领域从事理论物理应用研究和技术开发工作;七、培养过程管理1.学业管理:学校建立健全的学业导师制度,导师负责指导学生的学业发展和科研工作,学生需按时完成学校规定的学业要求;2.研究生管理:学校建立研究生管理体制,负责学籍、成绩、奖助金等管理工作;3.综合素质培养:学校鼓励学生积极参与各类学术和文体活动,提高综合素质和团队合作精神。

总结:中科大理论物理专业硕士研究生培养方案以培养具备深厚的物理理论基础、创新思维和解决实际问题能力的理论物理研究人员为目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理所硕士招生专业及研究方向理论物理主要研究方向1、高温超导体机理、BEC理论及自旋电子学相关理论研究。

2、凝聚态理论;3、原子分子物理、量子光学和量子信息理论;4、统计物理和数学物理。

5、凝聚态物理理论、计算材料、纳米物理理论6、自旋电子学,Kondo效应。

7、凝聚态理论、第一原理计算、材料物性的大规模量子模拟。

8、玻色-爱因斯坦凝聚, 分子磁体, 表面物理,量子混沌。

凝聚态物理主要研究方向1、非常规超导电性机理,混合态特性和磁通动力学。

(1)高温超导体输运性质,超导对称性和基态特性研究。

(2)超导体单电子隧道谱和Andreev反射研究。

(3)新型Mott绝缘体金属-绝缘基态相变和可能超导电性探索。

(4)超导体磁通动力学和涡旋态相图研究。

(5)新型超导体的合成方法、晶体结构和超导电性研究。

2、高温超导体电子态和异质结物理性质研究(1)高温超导体和相关氧化物功能材料薄膜和异质结的生长的研究。

(2)铁电体极化场对高温超导体输运性质和超导电性的影响的研究。

(3)高温超导体和超大磁电阻材料异质结界面自旋极化电子隧道效应的研究。

(4)强关联电子体系远红外物性的研究。

3、新型超导材料和机制探索(1)铜氧化合物超导机理的实验研究(2)探索电子―激子相互作用超导体的可能性(3)高温超导单晶的红外浮区法制备与物理性质研究4、氧化物超导和新型功能薄膜的物理及应用研究(1)超导/介电异质薄膜的制备及物性应用研究(2)超导及氧化物薄膜生长和实时RHEED观察(3)超导量子器件的研究和应用(4)用于超导微波器件的大面积超导薄膜的研制5、超导体微波电动力学性质,超导微波器件及应用。

6、原子尺度上表面纳米结构的形成机理及其输运性质(1)表面生长的动力学理论;(2)表面吸附小系统(生物分子,水和金属团簇)原子和电子结构的第一性原理计算;(3)低维体系的电子结构和量子输运特性(如自旋调控、新型量子尺寸效应等)。

.7、III-V族化合物半导体材料及其低维量子结构制备和新型器件探索(1)宽禁带化合物(In/Ga/AlN,ZnMgO)半导体及其低维量子结构生长、物性、微结构以及相互关系的研究,宽禁带化合物半导体新型微电子、光电子器件探索;(2)砷化镓基、磷化铟基新型低维异质结材料的设计、生长、物性研究及其新型微电子/光电子器件探索;(3)SiGe/Si应变层异质结材料的制备及物性研究。

8、新颖能源和电子材料薄膜生长、物性和器件物理(1)纳米太阳能转换材料制备和器件研制;(2)纳米金刚石薄膜、碳氮纳米管/硼碳氮纳米管的CVD、PVD制备和场发射及发光性质研究;(3)负电亲和势材料的探索与应用研究;(4)纳米硅基发光材料的制备与物性研究;(5)有序氧化物薄膜制备和催化性质。

9、低维纳米结构的控制生长与量子效应(1)极低温强磁场双探针扫描隧道显微学和自旋极化扫描隧道显微学;(2)半导体/金属量子点/线的外延生长和原子尺度控制;(3)低维纳米结构的输运和量子效应;(4)半导体自旋电子学和量子计算;(5)生物、有机分子自组装现象、单分子化学反应和纳米催化。

10、生物分子界面、激发态及动力学过程的理论研究(1)生物分子体系内部以及生物分子-固体界面(主要包括氧化物表面、模拟的细胞表面和离子通道结构)的相互作用的第一原理计算和经典分子动力学模拟;(2)界面的几何结构、电子结构、输运性质及对生物特性的影响;(3)纳米结构的低能激发态、光吸收谱、电子的激发、驰豫和输运过程的研究,电子-原子间的能量转换和耗散以及飞秒到皮秒时段的含时动力学过程的研究。

11、表面和界面物理(1)表面原子结构、电子结构和表面振动;(2)表面原子过程和界面形成过程;(3)表面重构和相变;(4)表面吸附和脱附;(5)表面科学研究的新方法/技术探索。

12、自旋电子学;13、磁性纳米结构研究;14、新型稀土磁性功能材料的结构与物性研究;15、磁性氧化物的结构与物性研究;16、磁性物质中的超精细相互作用;17、凝聚态物质中结构与动态的中子散射研究;18、智能磁性材料和金属间化合物单晶的物性研究;19、分子磁性研究;20、磁性理论。

21、纳米材料和介观物理研究内容:发展纳米碳管及其它一维纳米材料阵列体系的制备方法;模板生长和可控生长机理研究;界面结构,谱学分析和物性研究;纳米电子学材料的设计、制备,纳米电子学基本单元器件物理。

22、无机材料的晶体结构,相变和结构-性能的关系研究内容:在材料相图相变研究的基础上,探索合成新型功能材料,为先进材料的合成和性能优化提供科学依据;在晶体结构测定的基础上,探讨材料结构-性能之间的内在联系,从晶体结构的微观角度阐明先进材料物理性质的机制,设计合成具有特定功能性结构单元的新型功能材料;发展和完善粉末衍射结构分析方法。

23、电子显微学理论与显微学方法研究内容:电子晶体学图像处理理论和方法研究,微小晶体、准晶体的结构测定;系统发展表面电子衍射及成像的理论和实验方法,弹性与非弹性动力学电子衍射的一般理论,高能电子衍射的张量理论,动力学电子衍射数据的求逆方法。

24、高分辨电子显微学在材料科学中的应用研究内容:利用高分辨、电子能量损失谱、电子全息等电子显微分析方法,研究金属/半导体纳米线的生长机制及结构与性能间的关系;复杂晶体结构中新型缺陷研究;结合其他物理方法,研究巨磁电阻、隧道结、半导体量子阱/点等薄膜材料的显微结构及其对物理性能的影响;低维材料界面势场的测量及与物理性能的相互关系;磁性材料中磁畴结构、各向异性场与波纹磁畴测定。

25、强关联系统微观结构,电子相分离和轨道有序化研究研究内容:高温超导体的结构分析;强关联系统的电子条纹相和电子相分离研究;电荷有序化和JT效应;探索低温LORENTZ电子显微术,电子全息和EELS 在非常规电子态系统的应用。

26、纳米晶及光电功能晶体生长;27、纳米离子学的材料、表征与器件;28、化学法制备纳米功能材料及其化学物理特性;29、纳米电子器件的构造与物性研究;30、纳米电子器件的集成与纳米电路特性的研究;31、强关联电子体系的低温物性研究;32、凝聚态物质中量子相干行为的研究;33、低维和纳米材料的电子态性质;34、非晶、纳米晶在极端条件下的物性;35、高压及相关过程的固体新材料研究;36、超导隧道结物理与技术。

37、生物大分子的动力学研究;38、对颗粒物质的集团动力学性质的研究;39、溶体及固、液结构和性质的研究;40、对电流变液的机理研究和应用开发;41、利用声波波动方程进行的反问题的研究;42、软物质体系中的分子组装:研究两亲分子在固液界面的组装及其在材料和生命科学中的应用;43、单分子生物物理:用单分子微操纵技术研究染色质的组装、DNA与蛋白质的相互作用;44、结构生物学中的衍射相位问题;45、结构生物学实验分析方法;46、蛋白质折叠的成核理论和结构预测;47、蛋白质-蛋白质相互作用。

48、THz远红外时域光谱和成象技术及其应用;49、量子结构制作与物理表征;50、功能薄膜材料制备、纳米人工结构的物性与器件。

光学主要研究方向1、光子晶体特性及其在光电器件中的应用;光镊在生物及物理中的应用;2、光子晶体的非线性光学效应;3、光子晶体、近场光学和衍射光学理论和实验研究。

4、THz远红外时域光谱和成象技术及其应用;5、时间分辨超快激光光谱仪的研制;光合作用系统及人工模拟系统能量和电荷转移的超快光谱研究;蛋白质快速折叠动力学的实验研究;6、用激光法探索制备低维材料及其物性研究7、用激光分子束外延技术探索磁性/介电、磁性/铁电异质结;8、研究磁性/压电、铁电/压电等氧化物异质结及其相关物性;9、结合纳米无机/有机复合薄膜研制及其光电性质研究;10、探索能快速检测分子生物学DNA的光学与电学新方法,从事跨越物理学、医学与生物学的交叉课题研究;11、研究用于微波通信的铁电薄膜;12、用多体理论从头计算低维体系的物理特性;13、研究用光反射差发探测薄膜外延生长的动态过程;14、开发出不依赖高真空条件的外延薄膜制备的监测方法;15、采用激光脉冲沉积技术制备高性能的高温超导薄膜;16、研究第二类高温超导带材。

17、原子相干;18、飞秒超快过程;19、强场物理;20、时间分辨超快激光光谱仪的研制;光合作用系统及人工模拟系统能量和电荷转移的超快光谱研究;21、蛋白质快速折叠动力学的实验研究。

22、强场物理、超短超强激光物理、超快相互作用物理、强激光天体物理、X射线激光。

23、产生超快超强激光脉冲的新原理及新技术研究;24、相对论强激光与等离子体相互作用中的高能密度物理,以及强场和超快物理。

25、光学非线性过程;26、调谐激光;27、全固态激光的研究和应用。

该专业有博士生导师15名(其中中科院院士2名、工程院院士1名)等离子体物理主要研究方向1、聚变等离子体;2、低温等离子体与材料表面相互作用无线电物理主要研究方向1、电子学与科学仪器研制;2、根据科学研究的需要,以弱信号检测技术、计算机技术为基础,研制特殊的专用设备。

-----------------------------------------------------------------1只要是考理工科的研究生,数学是必不可少的。

尤其是物理,机械,计算机,自动化;2化学对数学的要求不高。

3一般大三的后半学期开始准备。

数学,外语大四的前半学期准备专业课。

-----------------------------------------------------------------在大三第二学期开始准备考研最好。

最好不要跨专业跨的太远,否则学起来比较吃力免费考研网一.凝聚态物理1. 概况凝聚态物理学是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其与宏观物理性质之间的联系的一门学科。

凝聚态物理是以固体物理为基础的外向延拓。

凝聚态物理的研究对象除晶体、非晶体与准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。

经过半个世纪的发展,目前已形成了比固体物理学更广泛更深入的理论体系。

特别是八十年代以来,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。

一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理与团簇物理等。

从而使凝聚态物理学成为当前物理学中最重要的分支学科之一,从事凝聚态研究的人数在物理学家中首屈一指,每年发表的论文数在物理学的各个分支中居领先位置。

相关文档
最新文档