焊接机器人应用现状及发展趋势

合集下载

焊接机器人现状及发展趋势探究

焊接机器人现状及发展趋势探究

焊接机器人现状及发展趋势探究摘要:在现阶段的工业生产实践过程中,焊接机器人已经得到了普遍的推广运用。

焊接机器人由于具备自动化与智能化的焊接操作特征,因此能够有效取代人工焊接操作的传统工艺方法。

近些年以来,焊接机器人的系统组成结构正在趋向于日益获得完善,焊接机器人在工业领域的实践运用范围也得到了明显的扩大。

因此,本文探讨了焊接机器人在当前时期阶段的技术发展总体状况,探究焊接机器人的工艺技术未来发展趋势。

关键词:焊接机器人;实践运用现状;技术发展趋势焊接工序构成了工业生产必不可少的工序组成部分,焊接工序的操作实施过程表现为人身伤害风险较高的特征。

并且,人工进行零部件的焊接操作处理还会导致产生较多的人力资源成本以及生产时间成本,不利于促进工业企业获得最大化的经济效益。

由此能够判断得出,焊接机器人在目前的企业焊接生产操作过程中需要得到更大范围的普及运用,切实控制焊接操作的人工实施成本,促进企业达到更高层次的经济效益利润目标。

一、焊接机器人的基本组成结构对于焊接机器人而言,目前机器人的基本系统组成结构应当包含机器人的控制柜、本体结构、焊接系统、示教器、传感监测系统、辅助焊接设备、自动化的综合控制处理系统等。

焊接机器人的核心设备部件主要集中在机器人的本体结构中,重点包含示教器与控制柜等,焊接系统可以划分为焊枪焊钳、焊接电源、供气机构与送丝机构,辅助焊接设备主要为焊接工装夹具以及自动化的移动控制系统。

此外,系统外部的自动传感监测装置能够重点针对于电弧焊的焊缝缺陷、空间环境数据等进行实时性的采集反馈,有效确保了焊接操作全面实施中的系统电压变化波动状况能得到完整的监测[1]。

自动化的视觉传感器可以接收实时性的外部环境传输数据,然后将现有的焊接监测数据反馈给综合性的自动控制处理系统。

在此前提下,具有综合控制处理功能的机器人系统就会协调控制现有的机器人运行状况,确保经过传感器采集获得的各项数据信息都能得到完整的反馈。

焊接自动化技术的现状与发展趋势

焊接自动化技术的现状与发展趋势

焊接自动化技术的现状与发展趋势引言概述:焊接自动化技术是现代制造业中的重要技术之一,它可以提高生产效率、降低成本、提高焊接质量和减少人为操作的危险。

本文将就焊接自动化技术的现状和未来发展趋势进行详细探讨。

一、现状1.1 焊接机器人的应用范围不断扩大随着焊接机器人技术的不断发展,其应用范围也在不断扩大。

除了传统的焊接作业外,焊接机器人还可以用于各种复杂的焊接作业,如曲面焊接、异形焊接等。

1.2 焊接自动化技术的智能化水平不断提高随着人工智能、机器学习等技术的应用,焊接自动化技术的智能化水平也在不断提高。

焊接机器人可以通过学习和优化算法,不断提升焊接质量和效率。

1.3 焊接自动化技术的成本逐渐降低随着焊接机器人技术的普及和成熟,其价格逐渐下降,使更多的企业可以承担起焊接自动化技术的投资成本。

这也进一步推动了焊接自动化技术在制造业中的应用。

二、发展趋势2.1 智能化焊接技术将成为未来的发展趋势随着人工智能、大数据等技术的不断发展,智能化焊接技术将成为未来的发展趋势。

焊接机器人将能够实现更加智能化的焊接操作,提高生产效率和焊接质量。

2.2 焊接自动化技术将更加注重环保和节能未来的焊接自动化技术将更加注重环保和节能。

通过优化焊接工艺和材料,减少焊接废气和废渣的排放,实现更加环保的生产方式。

2.3 焊接自动化技术将与其他制造技术融合发展未来的焊接自动化技术将与其他制造技术如3D打印、激光切割等技术融合发展。

这将进一步提升焊接自动化技术的灵活性和适用性,推动制造业的数字化转型。

结语:焊接自动化技术在现代制造业中发挥着重要作用,其发展趋势也将不断向着智能化、环保化和融合化的方向发展。

企业应积极应用焊接自动化技术,提高生产效率、降低成本,推动制造业的升级和转型。

焊接机器人的发展现状与趋势

焊接机器人的发展现状与趋势

焊接机器人的发展现状与趋势焊接机器人是指一种自动化的焊接设备,它可以根据预先设定的程序完成焊接工作,具有高效、精准、稳定的特点。

目前,焊接机器人主要应用于汽车、航空航天、电子、冶金等行业的焊接生产线上,其中以汽车制造业为主要应用领域。

1. 技术水平不断提高随着科技的不断进步,焊接机器人的技术水平也在不断提高。

目前,国内外焊接机器人已经具备了高速、高精度、多功能等特点,可以完成各种不同材料、不同形状的焊接工作。

科技的发展也带动了焊接机器人控制系统、传感器、焊接工艺等相关领域的技术进步,使得焊接机器人在各个方面的性能都得到了提升。

2. 应用范围不断扩大随着技术的不断进步,焊接机器人的应用范围也在不断扩大。

除了传统的汽车、航空航天、电子、冶金等行业,焊接机器人还开始在建筑、桥梁、船舶等领域逐渐得到应用。

随着人工智能、物联网等技术的发展,焊接机器人还可以与其他设备、系统进行联网,实现智能化生产,提高生产效率。

3. 研发投入不断增加近年来,国内外焊接机器人行业的研发投入不断增加,各种新型焊接机器人不断涌现。

一方面,一些大型企业不断加大对焊接机器人的研发投入,推动了焊接机器人技术的不断进步;一些小型企业也开始涉足焊接机器人领域,推动了行业的竞争,促进了焊接机器人市场的良性发展。

二、焊接机器人的发展趋势1. 智能化发展目前,人工智能、物联网等技术的飞速发展,正推动着焊接机器人的智能化发展。

未来,焊接机器人将更加智能化,可以实现自主学习、自主决策,甚至可以与其他设备、系统进行联网,实现智能化生产。

随着传感器、控制系统等技术的不断发展,焊接机器人的精准化也将不断提升。

未来,焊接机器人将具备更高的焊接精度,可以完成更复杂、更精细的焊接工作,提高产品质量。

未来,焊接机器人将不仅具备焊接功能,还将具备更多的功能,比如搬运、装配、检测等。

焊接机器人将在生产线上承担更多的任务,实现多功能化发展。

未来,焊接机器人将更加具备柔性生产的能力,可以根据不同的生产需求,自由调整焊接路径,更快地适应新产品的生产工艺要求。

焊接机器人的发展现状与趋势

焊接机器人的发展现状与趋势

焊接机器人的发展现状与趋势
焊接机器人是工业机器人应用中的一种,主要用于工业焊接生产线上的操作。

随着技
术的不断进步,焊接机器人的应用范围越来越广泛,技术水平也在不断提高。

目前,全球焊接机器人市场规模已经达到了250亿美元,并且在不断扩张。

其中,以
中国为代表的亚洲市场增长速度尤为迅速。

据预测,未来几年内,全球焊接机器人市场规
模将继续稳步增长。

发展趋势上,焊接机器人将会呈现以下几个方向:
1. 自主化水平持续提升:
焊接机器人在自主化方面的水平越来越高,主要得益于技术的不断推广和应用,包括
3D视觉、人工智能、机器学习等。

未来,焊接机器人的运动控制和轨迹规划能力将会更加精准和智能。

2. 精度和速度大幅提升:
随着对生产成本和效率要求的不断提高,焊接机器人的生产速度和精度也需随之提高。

为了实现精度高、速度快的能力,部分厂商已经在机器人控制系统和传感器方面进行了升级。

3. 更加灵活的应用场景:
传统的焊接机器人主要应用于生产线上的固定作业。

但随着企业在生产过程中要求更
加灵活,机器人同样也需要适应多样化的生产环境。

众多厂商已经在研究如何将焊接机器
人应用于更多场景中,包括可移动式焊接机器人等。

4. 多项技术的融合:
总体而言,焊接机器人的发展将会更加多元化、智能化和自主化。

未来,焊接机器人
的性能、精度、速度和应用场景等方面都将得到进一步提升和完善,为生产制造带来更多
便利和优势。

焊接机器人技术的应用前景

焊接机器人技术的应用前景

焊接机器人技术的应用前景随着科技的不断发展,机器人技术已经逐渐涉及到制造业等各个领域之中,成为了产品生产过程中的重要组成部分,其中焊接机器人尤为突出。

焊接机器人是目前大量应用于电子电器、汽车、船舶、航空航天、建筑和桥梁工程等领域的一种工业机器人。

由于焊接机器人具有高速度、准确性、精度和稳定性等优势,因此在工业制造中的应用前景非常广阔。

一、优势突出的焊接机器人技术首先,焊接机器人的速度快,可大大提升生产生产效率。

因为焊接机器人精度高,能够进行高质量的焊接,避免出现人工焊接中的误汛、沾效等质量问题,从而降低了人工焊接的成本,提高了焊接效率。

其次,由于焊接机器人采用高科技装备,自带纠错功能,因此稳定性非常高,几乎不会出现因设备运行不稳定而导致的焊接质量差的问题。

最后,由于焊接机器人的灵活性非常高,具备高度的自主性,可以根据生产线上的具体情况进行灵活的调整,保证焊接生产线的顺畅运行。

总的来说,焊接机器人技术的优势包括:速度快、精度高、稳定性好、可靠性高、灵活性强、安全性高等方面,广泛应用于制造业等领域中。

二、应用前景广阔的焊接机器人技术难能可贵的是,焊接机器人已经成为了制造行业中的必备技术之一。

尤其是在汽车制造行业中,焊接机器人的应用非常广泛,能够实现车身焊接、车架焊接、发动机组装等多种方式。

同时,在船舶制造及修造领域中,焊接机器人还能够实现沉船修复工作。

因为焊接机器人可根据所需精确定位,动作快速稳定,大大提高了焊接质量和工作效率,减少了人为失误造成的浪费。

不仅如此,在建筑和桥梁工程中,也可以广泛应用焊接机器人技术。

例如,在桥梁焊接中,焊接机器人可以自主调整姿态,提高整体焊接精度,减少跨度错误,保证良好的焊接质量和稳定性。

三、未来发展趋势随着制造业技术的不断发展和升级,焊接机器人技术也将更为广泛地应用于各个领域。

未来,焊接机器人技术将继续与智能软件、视觉传感和人工智能等领域发生联系,进一步提高机器人的自主性和灵活性,以满足不同领域的需求。

焊接机器人技术现状与发展趋势

焊接机器人技术现状与发展趋势

焊接机器人技术现状与发展趋势摘要:近几十年来,随着自动控制理论、计算机技术、电子技术和通讯技术等的飞速发展,自动化焊接方法尤其是机器人焊接技术得到了迅速发展。

用自动化焊接方法代替人工焊接已经成为全球工业制造必然的发展趋势,在一些行业中将逐步替代传统的人工焊接。

自二十世纪以来,焊接自动化技术的应用在我国越来越普遍,当前在汽车工业、大型管道等产品的制造过程中,已用焊接机器人实现了大量焊接接头的连接,并且在某些具体的工业生产中尤其是汽车制造中已形成了一套高生产效率、高焊接质量的焊接自动生产线,大力推动了焊接在工业生产中的规模化、机械化和自动化。

机器人焊接技术在显著提高焊接生产效率的同时,还提升了产品焊接质量,改变了工人的操作环境,很大程度上降低了工人的劳动强度。

关键词:焊接机器人;控制技术;焊接技术;智能化截至目前,焊接智能机器人领域在经验方面已先后完成至少三次大规模技术更新升级,从一个仅能在原始教学和回放模式下独立操作的智能焊接机器人,到一个能够通过多传感器模式实时接收焊接信息数据的自动离线智能焊接机器人。

然后逐步发展和进化为能够超越我们通常所说的多传感器模式的智能机器人,双方已经能够通过自学习编程和其他方式快速实现焊接机器人的自适应焊接,该机器人能够自动适应复杂工作环境的功能要求。

1焊接机器人介绍早些年间,最开始出现的是火烙铁钎焊、锻接等简单的金属连接方法。

从上世纪三十年代以后才逐步形成电弧焊、电阻焊,到后来的埋弧焊,二氧化碳保护焊。

从上世纪八十年代开始,在焊接领域逐步使用机器人焊接技术,使得自动化焊接技术的步伐向前迈出了关键一步。

改革开放以后,焊接机器人的应用也较为普遍,各种用途的工业机器人在各自领域得到广泛的应用。

现已广泛应用于汽车零部件制造业中、重型机械结构部件、锅炉压力容器件、铁路车辆、国防兵器等方面。

当前,国外焊接机器人已经逐渐形成了欧美和日本这两大体系。

焊接机器人主要是指具有三个或者三个以上可自由编程的运动轴,依靠编写程序实现对机器人的控制,使机器人能够按照预先规定的作业路径及速度,把焊接工具送到指定位置的机器。

焊接机器人应用现状与发展趋势的研究

焊接机器人应用现状与发展趋势的研究

焊接机器人应用现状与发展趋势的研究焊接机器人是一种具有自主化功能的机械手臂,能够根据程序自动进行焊接作业。

它可以替代人工进行焊接工作,提高生产效率,减少生产成本,降低人工误差。

随着制造业自动化水平的不断提高,焊接机器人在各个行业中得到广泛的应用。

本文将对焊接机器人的应用现状与发展趋势进行研究,探讨其在未来的发展方向。

一、焊接机器人的应用现状1. 在汽车制造业中的应用汽车制造业是焊接机器人应用的主要领域之一,因为汽车的制造过程中需要大量的焊接作业。

焊接机器人可以取代工人完成焊接工作,提高工作效率,保证焊接质量。

目前,汽车制造业中的焊接机器人主要应用于车身焊接、底盘焊接和点焊等环节。

2. 在电子制造业中的应用电子制造业对焊接工艺要求较高,需要进行精细的焊接操作。

焊接机器人在电子制造业中得到广泛的应用。

它可以完成PCB板的焊接、导线的焊接等工作,提高工作效率,减少操作误差。

4. 在其他行业中的应用除了上述行业,焊接机器人还在冶金、建筑、管道、家电等行业中得到广泛的应用。

它可以完成各种材料的焊接工作,包括金属、塑料、陶瓷等材料,为各个行业提供高效的焊接解决方案。

二、焊接机器人的发展趋势1. 智能化随着人工智能技术的不断发展,焊接机器人将会越来越智能化。

它可以通过人工智能算法学习和优化焊接路径,实现自动调整焊接参数,提高焊接质量和效率。

智能化的焊接机器人还可以实现自主化的生产调配和协同工作,提高生产线的整体效率。

2. 精准化未来的焊接机器人将会具备更高精度和稳定性。

它可以通过高精度的感应器和控制系统,实现对焊接过程的精准控制,包括焊接速度、温度、压力等参数。

这将有助于提高焊接质量,减少焊接变形和裂纹,扩大焊接适用范围。

3. 柔性化未来的焊接机器人将会更加灵活多变,可以适应多样化的焊接需求。

它可以通过柔性的机械手臂、多轴联动和灵活的控制系统,实现多种焊接姿态和焊接路径,适应各种复杂的焊接场景。

这将为焊接工艺的优化和改进提供更多可能性。

焊接机器人发展现状及发展趋势!

焊接机器人发展现状及发展趋势!

焊接机器人发展现状及发展趋势!一、引言随着科技的进步,焊接机器人逐渐成为制造业中的新星,其高效、精准和一致性的特点为企业带来了革命性的变革。

本文将深入探讨焊接机器人的技术现状、市场需求、面临的挑战以及未来的发展趋势。

二、焊接机器人的技术现状技术进步:焊接机器人已经从简单的重复运动发展到能够进行复杂轨迹和精细操作的先进机器人。

智能化:借助先进的传感器和算法,现代焊接机器人能够自主识别和判断工作环境,并作出相应的调整。

遥控操作:借助远程通讯技术,工作人员可以在远离工厂的地方对机器人进行遥控操作。

材料处理:除了焊接技术,现代焊接机器人还能进行材料搬运、切割和预处理等作业。

多功能集成:最新的焊接机器人不仅限于单一的焊接功能,还可以集成多种工艺,如打磨、检测等。

三、市场需求与行业应用汽车制造业:焊接机器人在汽车制造业中应用最为广泛,尤其是在车身结构件的自动化生产线上。

航空与航天工业:高精度的焊接需求在航空和航天领域尤为突出,焊接机器人保证了复杂结构件的稳定生产。

造船与海洋工程:大型船只的制造需要大量的焊接工作,焊接机器人极大地提高了建造效率和质量。

重型机械制造:在大型机械部件的制造中,焊接机器人展现出高效、稳定的特性。

新兴行业应用:随着技术的普及,焊接机器人也开始在建筑、家具等行业中得到应用。

四、面临的挑战与问题技术难题:复杂环境和精细操作的焊接仍需要高精度的技术和设备支持。

成本压力:高昂的设备购置和维护成本对于中小企业来说是一个不小的负担。

操作与培训:随着技术的复杂性增加,对于操作和维护人员的技能要求也越来越高。

安全问题:在人机协作的环境中,如何确保安全操作是一大挑战。

法律法规与标准:行业标准和安全法规仍需进一步完善。

五、发展趋势与未来展望技术融合:随着AI、物联网等技术的发展,焊接机器人将更加智能化和自主化。

柔性制造:未来的焊接机器人将更加灵活,适应各种生产环境和工艺需求。

人机协作:提高人机协作的效率和安全性是未来的重要发展方向。

焊接自动化技术的现状与发展趋势

焊接自动化技术的现状与发展趋势

焊接自动化技术的现状与发展趋势1. 现状概述焊接自动化技术是指利用机器人、自动化设备和控制系统等先进技术实现焊接过程的自动化和智能化。

目前,焊接自动化技术已经在各个领域得到广泛应用,包括汽车创造、航空航天、电子设备等。

其主要优势包括提高生产效率、保证焊接质量、降低劳动强度和减少人为因素对焊接过程的影响。

2. 技术发展趋势(1)智能化发展:随着人工智能技术的不断发展,焊接自动化技术也将朝着智能化方向发展。

智能焊接设备将能够通过学习和优化算法,自动调整焊接参数,提高焊接质量和效率。

(2)柔性化生产:随着产品个性化需求的增加,焊接自动化技术也将朝着柔性化生产方向发展。

柔性焊接系统将能够根据不同产品的要求,自动调整焊接路径和参数,实现多品种、小批量生产。

(3)机器人技术的应用:机器人是焊接自动化技术的核心设备之一。

未来,机器人技术将更加智能化和灵便化,能够适应复杂的焊接任务,并与其他自动化设备实现协同工作,提高生产效率和质量。

(4)传感器技术的进步:传感器技术在焊接自动化中起着重要作用,能够实时监测焊接过程中的温度、压力和位移等参数。

未来,传感器技术将更加精确和可靠,为焊接自动化提供更多的数据支持和监控能力。

(5)虚拟现实技术的应用:虚拟现实技术可以提供真正的焊接环境摹拟,匡助操作人员进行培训和技能提升。

未来,虚拟现实技术将广泛应用于焊接自动化培训和仿真系统中,提高操作人员的技术水平和工作效率。

3. 应用案例(1)汽车创造行业:焊接自动化技术在汽车创造行业得到广泛应用。

通过机器人焊接系统,能够实现车身焊接的自动化,提高生产效率和焊接质量。

(2)航空航天行业:航空航天行业对焊接质量和可靠性要求较高。

焊接自动化技术能够实现复杂零部件的高精度焊接,提高产品质量和性能。

(3)电子设备行业:电子设备的焊接工艺要求高,对焊接质量和稳定性要求严格。

焊接自动化技术能够实现电子元器件的精确焊接,提高产品可靠性和一致性。

4. 发展前景焊接自动化技术将在未来得到更广泛的应用和发展。

焊接自动化技术的现状与发展趋势

焊接自动化技术的现状与发展趋势

焊接自动化技术的现状与发展趋势引言概述:焊接是一种常见的制造工艺,它在各个行业中都有广泛的应用。

然而,传统的手工焊接存在效率低、质量难以保证等问题。

为了解决这些问题,焊接自动化技术应运而生。

本文将介绍焊接自动化技术的现状以及未来的发展趋势。

一、焊接自动化技术的现状1.1 机器人焊接机器人焊接是目前最常见的焊接自动化技术之一。

它通过使用工业机器人来完成焊接任务,具有高效、精准、稳定的特点。

机器人焊接可以适应多种焊接工艺,包括气体保护焊、电弧焊等。

同时,机器人焊接还可以进行多道焊接、多角度焊接等复杂任务,提高了焊接的质量和效率。

1.2 自动化焊接设备除了机器人焊接,还有其他各种自动化焊接设备,如焊接机、焊接工作站等。

这些设备可以根据工件的形状和尺寸进行焊接,具有高度的灵活性和适应性。

同时,自动化焊接设备还可以集成其他功能,如焊缝检测、焊接参数调整等,进一步提高了焊接的质量和效率。

1.3 智能化控制系统随着人工智能技术的发展,智能化控制系统在焊接自动化技术中得到了广泛应用。

智能化控制系统可以实现焊接过程的自动监测和调整,提高了焊接的稳定性和一致性。

同时,智能化控制系统还可以进行数据分析和预测,为焊接工艺的优化提供支持。

二、焊接自动化技术的发展趋势2.1 精确度和稳定性的提高未来焊接自动化技术的发展趋势之一是提高焊接的精确度和稳定性。

通过引入更先进的传感器和控制算法,可以实现对焊接过程的更精细的控制和监测,进一步提高焊接的质量和效率。

2.2 灵活性和适应性的增强随着制造业的发展,焊接工件的形状和尺寸越来越多样化。

未来焊接自动化技术的发展趋势之二是提高焊接设备的灵活性和适应性。

通过引入更灵活的机器人和自动化设备,可以适应更多种类的焊接任务,提高生产线的灵活性和效率。

2.3 智能化和自主化的提升未来焊接自动化技术的发展趋势之三是提升智能化和自主化水平。

通过引入更智能的控制系统和算法,可以实现焊接过程的自动调整和优化,提高焊接的稳定性和一致性。

焊接机器人应用现状与技术发展探讨

焊接机器人应用现状与技术发展探讨

焊接机器人应用现状与技术发展探讨【摘要】焊接机器人是近年来发展迅速的自动化设备,广泛应用于制造业领域。

本文从焊接机器人的发展历史、应用现状、技术发展趋势入手,分析了其在生产中的重要作用。

同时也指出了焊接机器人存在的问题,并提出了解决问题的技术路线。

结论部分总结了目前的现状,展望了未来的发展趋势,并提出了技术发展建议。

通过本文的探讨,可以更深入地了解焊接机器人在制造业中的应用现状和未来发展方向,为相关领域的研究和实践提供参考和指导。

【关键词】焊接机器人,应用现状,技术发展,发展历史,问题,技术路线,总结,展望未来,建议。

1. 引言1.1 背景介绍焊接机器人是一种能够代替人工进行焊接操作的自动化设备,其应用广泛,包括汽车制造、航空航天、电子制造等领域。

随着制造业的发展和智能化程度的提高,焊接机器人的应用越来越广泛,对于提高生产效率、保证焊接质量、减少劳动强度都具有重要意义。

在过去,焊接一直是一个相对传统、需要高度技术和经验的工艺,而且需要面对高温、有害气体等危险因素,对焊接工人的身体和健康带来很大挑战。

而随着焊接机器人的出现和发展,可以有效解决这些问题,提高焊接的安全性和稳定性。

焊接机器人的出现,不仅提高了焊接效率和质量,还降低了生产成本,因此得到了广泛的应用。

随着科技的不断进步,焊接机器人的功能和性能也在不断提升,可以完成更加复杂和精细的焊接任务。

对焊接机器人的研究和应用具有重要的意义,也是制造业智能化发展的必然趋势。

1.2 研究目的焊接机器人应用现状与技术发展探讨的研究目的是为了深入了解焊接机器人的发展历史、应用现状,探讨其技术发展趋势并分析存在的问题,提出解决问题的技术路线。

通过这些研究,可以总结当前焊接机器人的发展现状,为未来的研究和发展提供参考。

展望未来,给出技术发展建议,推动焊接机器人技术的进步和应用的普及。

焊接机器人的应用已经在各个领域得到广泛应用,其发展对于提高焊接效率、质量和安全性具有重要意义。

焊接机器人发展现状及发展趋势!

焊接机器人发展现状及发展趋势!

焊接机器人发展现状及发展趋势!焊接机器人发展现状及发展趋势引言概述:焊接机器人是一种自动化设备,能够代替人工进行焊接作业,提高工作效率和产品质量。

本文将介绍焊接机器人的发展现状以及未来的发展趋势。

一、焊接机器人的发展现状1.1 自动化程度不断提高随着科技的进步和人工智能的发展,焊接机器人的自动化程度不断提高。

传统的焊接机器人需要人工进行编程和操作,而现在的焊接机器人已经能够通过学习和自主决策来完成焊接任务。

1.2 精准度和稳定性得到提升焊接机器人的精准度和稳定性是其发展的重要方向。

通过引入传感器和视觉系统,焊接机器人能够实时监测焊接过程中的温度、压力等参数,并进行相应的调整,从而提高焊接的精度和稳定性。

1.3 应用范围逐渐扩大焊接机器人的应用范围逐渐扩大,不仅仅局限于传统的焊接行业。

例如,汽车制造、航空航天、电子设备等行业都开始采用焊接机器人进行生产,提高了生产效率和产品质量。

二、焊接机器人的发展趋势2.1 智能化发展未来焊接机器人将更加智能化,能够通过学习和自主决策来完成复杂的焊接任务。

同时,焊接机器人还能够与其他设备进行联网,实现信息共享和协同工作。

2.2 人机协作人机协作是焊接机器人的另一个发展趋势。

焊接机器人将不再是单独工作的设备,而是与人类工作人员进行协作,共同完成焊接任务。

这种人机协作能够提高工作效率和人机安全性。

2.3 灵活适应性未来的焊接机器人将具有更高的灵活适应性。

它们能够根据不同的焊接任务和工件形状进行自动调整和适应,从而提高工作效率和焊接质量。

三、挑战与机遇3.1 技术挑战焊接机器人的发展还面临一些技术挑战,例如,如何提高焊接机器人的学习能力和自主决策能力,如何实现更高的精准度和稳定性等。

3.2 市场机遇随着制造业的发展和自动化需求的增加,焊接机器人市场将迎来更大的机遇。

同时,焊接机器人的应用范围不断扩大,也为市场提供了更多的机遇。

3.3 人才培养焊接机器人的发展需要专业的人才进行研发和应用。

焊接机器人发展现状及发展趋势!

焊接机器人发展现状及发展趋势!

焊接机器人发展现状及发展趋势!焊接机器人发展现状及发展趋势引言概述焊接机器人是一种自动化设备,可以替代人工进行焊接工作,具有高效、精准、稳定的特点。

随着工业自动化的发展,焊接机器人在制造业中的应用越来越广泛。

本文将探讨焊接机器人的发展现状及未来发展趋势。

一、发展现状1.1 焊接机器人在制造业中的应用焊接机器人在汽车制造、航空航天、电子电器等领域广泛应用,可以完成各种焊接工艺,提高生产效率和产品质量。

1.2 技术水平不断提升随着传感器、控制系统等技术的不断进步,焊接机器人的精度和稳定性得到提升,可以应对复杂的焊接任务。

1.3 人机协作焊接机器人的发展人机协作焊接机器人能够与人类工作人员共同工作,提高工作效率和安全性,是未来的发展趋势。

二、发展趋势2.1 智能化发展未来焊接机器人将更加智能化,具备学习和适应能力,可以根据不同的工件自动调整焊接参数,实现自动化生产。

2.2 灵活化应用焊接机器人将更加灵活多样,适应不同工件的焊接需求,可以实现快速换线、快速调整焊接姿态等功能,提高生产灵活性。

2.3 数据化管理未来焊接机器人将实现数据化管理,通过云端平台收集和分析焊接数据,实现生产过程的实时监控和优化,提高生产效率和质量。

三、发展挑战3.1 技术集成焊接机器人需要整合多种技术,如机械、电气、控制等,技术集成是一个挑战。

3.2 安全性人机协作焊接机器人需要保证工作安全,避免发生意外伤害,安全性是一个重要考量因素。

3.3 成本控制焊接机器人的成本相对较高,如何降低成本,提高性价比是一个挑战。

四、发展机遇4.1 产业需求随着制造业的发展,对焊接机器人的需求将会增加,市场潜力巨大。

4.2 技术进步随着科技的不断进步,焊接机器人的技术水平将不断提高,为其发展提供机遇。

4.3 政策支持政府对工业自动化的支持力度不断增加,为焊接机器人的发展提供政策支持和市场环境。

五、发展建议5.1 加强研发加大研发投入,提升焊接机器人的技术水平和竞争力。

焊接自动化技术的现状与发展趋势

焊接自动化技术的现状与发展趋势

焊接自动化技术的现状与发展趋势引言概述:焊接作为一种常见的创造工艺,在工业生产中扮演着重要的角色。

随着科技的发展和工业生产的需求不断增长,焊接自动化技术也逐渐成为焊接行业的发展趋势。

本文将探讨焊接自动化技术的现状与发展趋势。

一、现状分析1.1 自动化焊接设备的普及随着创造业的发展,自动化焊接设备在工业生产中得到广泛应用。

各种自动化焊接设备如焊接机器人、自动焊接工作站等已经成为工业生产线上不可或者缺的一部份。

1.2 焊接自动化技术的成熟度随着科技的不断进步,焊接自动化技术的成熟度也在不断提高。

自动化焊接设备的智能化程度越来越高,能够实现更加精准和高效的焊接操作。

1.3 自动化焊接技术的应用领域自动化焊接技术已经广泛应用于汽车创造、航空航天、电子电气、建造工程等领域,为工业生产提供了更加可靠和高效的焊接解决方案。

二、发展趋势展望2.1 智能化焊接技术的发展随着人工智能、大数据等技术的不断发展,智能化焊接技术将成为焊接自动化技术的重要发展方向。

智能化焊接设备将更加智能化、自适应,能够实现更加高效和精准的焊接操作。

2.2 柔性化生产需求的增加随着市场需求的不断变化,焊接自动化技术也将朝着柔性化生产方向发展。

自动化焊接设备将更加灵便、适应性强,能够满足不同规格、不同批量的焊接需求。

2.3 绿色环保焊接技术的推广随着环保意识的增强,绿色环保焊接技术将成为未来焊接自动化技术的重要发展方向。

绿色环保焊接技术将更加节能、环保,减少焊接过程中的废气、废渣排放,实现可持续发展。

三、技术挑战与解决方案3.1 自动化焊接设备的成本自动化焊接设备的成本较高,是制约其广泛应用的一个主要因素。

解决这一问题的关键在于提高自动化焊接设备的生产效率,降低生产成本。

3.2 技术人材短缺焊接自动化技术需要专业的技术人材进行研发和应用,而目前技术人材短缺是一个普遍存在的问题。

解决这一问题的关键在于加强焊接自动化技术的人材培养和引进。

3.3 安全性和稳定性问题自动化焊接设备在工业生产中需要保证其安全性和稳定性,以避免意外事故的发生。

焊接自动化技术的现状与发展趋势

焊接自动化技术的现状与发展趋势

焊接自动化技术的现状与发展趋势引言概述:焊接自动化技术是现代制造业中的重要组成部分,它能够提高焊接质量、效率和安全性。

本文将从现状和发展趋势两个方面探讨焊接自动化技术的最新进展。

一、现状1.1 自动化焊接设备的广泛应用自动化焊接设备在汽车、航空航天、电子、船舶等行业中得到广泛应用。

例如,汽车制造业中的车身焊接线,采用机器人实现高效、精确的焊接操作,大大提高了生产效率。

1.2 智能化焊接技术的发展智能化焊接技术是焊接自动化技术的重要发展方向。

通过引入传感器、视觉系统和人工智能等技术,实现焊接过程的自动监控和调整,提高焊接质量和稳定性。

例如,智能焊接机器人能够根据焊接材料和焊缝形状自动调整焊接参数,提高焊接效果。

1.3 焊接自动化技术的成本效益随着焊接自动化技术的发展,其成本逐渐降低,使得更多的企业能够承担自动化焊接设备的投资。

自动化焊接不仅可以提高生产效率,还可以减少人工操作的错误和劳动强度,从长远来看,可以降低企业的生产成本。

二、发展趋势2.1 机器人焊接的普及机器人焊接是焊接自动化技术的重要发展方向。

随着机器人技术的不断进步,机器人焊接设备的性能和精度得到大幅提升,能够适应更多复杂的焊接任务。

未来,机器人焊接将在更多行业中得到普及应用。

2.2 虚拟现实技术在焊接培训中的应用虚拟现实技术在焊接培训中的应用将成为焊接自动化技术的重要发展方向。

通过虚拟现实技术,焊接操作者可以在虚拟环境中进行实时模拟焊接操作,提前熟悉焊接过程和技巧,减少实际焊接中的错误和事故发生。

2.3 焊接自动化技术与大数据的结合焊接自动化技术与大数据的结合将成为未来的发展趋势。

通过收集和分析焊接过程中的数据,可以实现对焊接质量和效率的实时监控和优化。

同时,通过大数据分析,还可以提供给焊接工程师更多的决策支持和优化建议。

三、未来挑战与应对3.1 技术标准与规范的制定随着焊接自动化技术的发展,需要制定相应的技术标准和规范,以确保焊接设备和工艺的安全性和可靠性。

焊接机器人的发展现状和机器人焊接质量控制

焊接机器人的发展现状和机器人焊接质量控制

焊接机器人的发展现状和机器人焊接质量控制全文共四篇示例,供读者参考第一篇示例:焊接机器人作为现代制造业中不可或缺的重要设备,已经在生产线上发挥着重要作用。

随着科技的不断进步和人工智能的应用,焊接机器人的发展也呈现出日益壮大的趋势。

本文将从焊接机器人的发展现状和机器人焊接质量控制两个方面进行探讨。

一、焊接机器人的发展现状1.技术水平不断提升随着科技的不断发展,焊接机器人的技术水平也在不断提升。

传统的焊接机器人主要采用固定程序进行焊接,而现代的焊接机器人已经具备了自主学习和自主调整的能力,可以根据焊接件的形状和材质进行智能焊接,大大提高了焊接质量和效率。

2.应用领域不断拓展焊接机器人已经广泛应用于汽车制造、航空航天、电子设备等多个领域。

在汽车制造中,焊接机器人可以实现车身焊接、焊点检测等工作,大大提高了生产效率和产品质量。

在航空航天领域,焊接机器人可以实现对航天器具体部件的精准焊接,确保了飞行安全和性能。

3.发展趋势多样化随着市场需求的不断增加,焊接机器人的发展趋势也愈加多样化。

除了传统的气体保护焊、电弧焊等技术外,激光焊、等离子焊等新兴技术也正在逐渐应用于焊接机器人中,为焊接行业带来了更多的选择和可能性。

二、机器人焊接质量控制1.焊接参数实时监控在机器人焊接过程中,焊接参数的控制对焊接质量至关重要。

实时监控焊接电流、电压、速度等参数,可以及时发现焊接过程中的异常情况,并进行调整,保证焊接质量。

2.焊接质量检测机器人焊接完成后,需要对焊缝进行质量检测。

传统的方法是通过X射线检测、焊缝断面检测等方式对焊缝进行检测,但这些方法往往需要耗费大量的人力和时间。

现代技术可以利用机器视觉和人工智能技术,实现对焊缝的自动检测和分析,大大提高了检测效率和准确性。

3.质量控制标准化为了提高机器人焊接质量的稳定性和一致性,需要建立完善的质量控制体系。

制定标准化的焊接工艺和操作规程,对焊接机器人进行定期维护和检修,培训操作人员,建立焊接质量档案等措施都是保证焊接质量的重要手段。

焊接机器人应用现状与发展趋势的研究

焊接机器人应用现状与发展趋势的研究

焊接机器人应用现状与发展趋势的研究1. 引言1.1 研究背景随着各种新材料的出现和工件结构复杂度的增加,传统手工焊接已经无法满足高效、精准、稳定的生产需求。

而焊接机器人具有高度的灵活性和精准度,能够完成各种规格尺寸和特殊形状的焊接任务,大大提高了焊接质量和生产效率。

研究焊接机器人的应用现状和发展趋势,有助于更好地了解焊接机器人在工业生产中的优势和局限性,为未来的技术创新和发展提供重要参考。

1.2 研究目的研究目的是为了深入了解焊接机器人在工业生产中的应用现状和发展趋势,探讨其在不同行业中的具体应用案例,分析其技术特点以及优势和局限性。

通过对焊接机器人技术的研究与分析,进一步总结其未来发展方向,为相关行业提供参考和指导。

通过本研究还可以为相关行业的生产与制造提供更高效、更精准的焊接解决方案,推动焊接机器人技术在工业生产中的广泛应用,促进工业制造的智能化和信息化发展。

通过深入研究焊接机器人应用现状与发展趋势,为未来相关技术的创新和发展提供理论支持及实践指导,推动焊接机器人技术在工业制造中的广泛应用,促进工业自动化水平的不断提升。

1.3 研究意义焊接机器人是目前工业生产中的重要设备之一,其应用领域涵盖了汽车制造、航空航天、电子和电气、建筑等多个行业。

随着科技的不断发展,焊接机器人的应用范围和技术水平也在不断提升,为现代工业生产带来了巨大的便利和效益。

研究焊接机器人的应用现状和发展趋势具有重要的意义。

了解焊接机器人在不同行业中的应用情况,可以帮助我们更好地利用这一技术,提高生产效率和质量。

掌握焊接机器人的技术特点和发展趋势,可以指导相关企业和机构在技术研发和设备采购上的决策。

研究焊接机器人在工业生产中的优势和局限性,可以帮助我们更好地把握其在不同领域中的应用潜力和发展方向。

对焊接机器人应用现状与发展趋势进行研究具有重要的理论和实践意义,有助于推动工业自动化技术的发展,推动我国制造业向更高质量、更高效率、更加智能化的方向发展。

焊接机器人发展现状及发展趋势!

焊接机器人发展现状及发展趋势!

焊接机器人发展现状及发展趋势!焊接机器人发展现状及发展趋势引言概述:焊接机器人作为一种自动化设备,已经在工业领域中得到广泛应用。

本文将从焊接机器人的发展现状和发展趋势两个方面进行探讨,以期为读者了解焊接机器人的最新发展提供参考。

一、焊接机器人的发展现状1.1 焊接机器人应用范围扩大随着科技的不断进步,焊接机器人在各个领域的应用范围不断扩大。

除了传统的汽车、航空航天等行业,焊接机器人还逐渐应用于电子、家电、建筑等领域。

这些行业对焊接质量和效率的要求越来越高,焊接机器人的应用能够满足这些需求。

1.2 焊接机器人技术不断创新随着科技的进步,焊接机器人的技术也在不断创新。

例如,传统的焊接机器人主要采用固定的焊枪,而现在出现了可调节焊枪的机器人,可以根据不同的焊接任务进行调整。

此外,一些焊接机器人还具备自动识别焊缝的功能,能够根据焊缝的形状和位置自动调整焊接路径,提高焊接质量和效率。

1.3 焊接机器人的智能化程度提升随着人工智能技术的发展,焊接机器人的智能化程度也在不断提升。

智能化的焊接机器人能够通过传感器获取周围环境的信息,并根据这些信息做出相应的决策。

例如,当焊接机器人检测到焊缝位置偏移时,能够自动调整焊接路径,保证焊接质量。

这种智能化的焊接机器人能够提高生产效率和产品质量。

二、焊接机器人的发展趋势2.1 焊接机器人的柔性化发展随着工业生产的个性化和定制化需求的增加,焊接机器人的柔性化发展成为未来的趋势。

柔性化的焊接机器人能够适应不同的焊接任务和工件形状,提高生产效率和灵活性。

未来的焊接机器人将更加智能化和灵活化,能够根据不同的生产需求进行自主调整和优化。

2.2 焊接机器人与人工智能的结合人工智能技术的快速发展为焊接机器人的进一步发展提供了机遇。

未来的焊接机器人将更加智能化,能够通过学习和优化算法不断提升自身的焊接能力。

例如,焊接机器人可以通过学习不同焊接任务的经验,提高焊接质量和效率。

此外,焊接机器人还可以通过与其他智能设备的联网,实现更高效的生产和管理。

焊接机器人发展现状及发展趋势!

焊接机器人发展现状及发展趋势!

焊接机器人发展现状及发展趋势!引言概述:焊接机器人是一种自动化设备,广泛应用于工业生产中的焊接工艺。

随着技术的不断进步和应用的扩大,焊接机器人在现代创造业中发挥着越来越重要的作用。

本文将从五个大点探讨焊接机器人的发展现状及发展趋势。

正文内容:一、技术发展1.1 传统焊接技术的局限性-传统焊接技术存在人工操作难度大、效率低等问题。

1.2 焊接机器人的浮现-焊接机器人的浮现解决了传统焊接技术的问题,提高了焊接效率和质量。

1.3 焊接机器人的技术进步-焊接机器人的技术不断进步,实现了更高的精度和更广泛的应用。

二、应用领域2.1 汽车创造业-焊接机器人在汽车创造业中应用广泛,提高了生产效率和产品质量。

2.2 电子创造业-焊接机器人在电子创造业中的应用也越来越多,提高了生产效率和产品一致性。

2.3 航空航天创造业-焊接机器人在航空航天创造业中的应用能够提高焊接质量和安全性。

三、发展趋势3.1 智能化-焊接机器人将越来越智能化,能够自主学习和适应不同的焊接工艺。

3.2 多功能化-焊接机器人将具备更多的功能,能够完成更多种类的焊接任务。

3.3 柔性化-焊接机器人将越来越灵便,能够适应不同形状和尺寸的焊接工件。

四、挑战与问题4.1 安全性-焊接机器人的安全性是一个重要的问题,需要进一步加强研究和措施。

4.2 成本-焊接机器人的成本相对较高,需要进一步降低成本,提高性价比。

4.3 人机合作-焊接机器人与人的合作是一个挑战,需要研究如何更好地实现人机合作。

五、发展前景5.1 市场需求-随着创造业的发展,对焊接机器人的需求将会增加。

5.2 技术突破-焊接机器人的技术将会不断突破,实现更高的精度和更广泛的应用。

5.3 国际竞争-焊接机器人市场的竞争将会越来越激烈,需要加强技术创新和市场竞争力。

总结:综上所述,焊接机器人在现代创造业中发挥着重要作用。

通过技术发展、应用领域、发展趋势、挑战与问题以及发展前景的分析,我们可以看出焊接机器人具有广阔的发展前景。

焊接机器人发展现状及发展趋势!

焊接机器人发展现状及发展趋势!

焊接机器人发展现状及发展趋势!引言概述:焊接机器人是一种能够自主进行焊接工作的机器人,它在工业生产中起到了至关重要的作用。

本文将介绍焊接机器人的发展现状及未来的发展趋势。

一、焊接机器人的发展现状1.1 自动化程度不断提高随着科技的进步,焊接机器人的自动化程度不断提高。

传统的焊接机器人需要人工操作,而现在的焊接机器人已经具备了自主感知和决策的能力。

它们可以通过传感器感知周围环境,并根据环境的变化做出相应的调整,从而提高焊接的准确性和稳定性。

1.2 精度和速度的提升随着焊接机器人技术的不断发展,其焊接精度和速度也得到了大幅提升。

现在的焊接机器人能够在较短的时间内完成复杂的焊接任务,并且焊接的精度可以达到毫米级。

这使得焊接机器人在大规模工业生产中得到了广泛应用。

1.3 多种焊接方式的应用焊接机器人不仅可以进行传统的电弧焊接,还可以应用其他多种焊接方式,如激光焊接、等离子焊接等。

这些焊接方式具有高效、精确的特点,可以适应不同的焊接需求。

因此,焊接机器人的应用范围越来越广泛,不仅局限于传统的焊接行业。

二、焊接机器人的发展趋势2.1 智能化发展未来焊接机器人将更加智能化。

通过引入人工智能技术,焊接机器人可以学习和适应不同的焊接任务,提高自主决策能力。

同时,智能化的焊接机器人还可以通过与其他设备的联网,实现更高效的生产流程。

2.2 灵便性和适应性的提升未来的焊接机器人将更加灵便和适应不同的工作环境。

它们将具备更强的自主感知和定位能力,可以适应不同形状和材料的焊接任务。

同时,焊接机器人还可以通过更加精确的路径规划和动作控制,实现更高效的焊接过程。

2.3 安全性和可靠性的提高焊接机器人在工作过程中需要与人类进行密切合作。

因此,未来焊接机器人的安全性和可靠性将得到更高的重视。

通过引入先进的传感器和安全控制系统,焊接机器人可以及时发现和避免潜在的安全风险,确保工作场所的安全。

三、结论随着科技的不断进步,焊接机器人的发展前景十分广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊接机器人应用现状及发展趋势据不完全统计,全世界在役的工业机器人中大约有将近一半的工业机器人用于各种形式的焊接加工领域,焊接机器人应用中最普遍的主要有两种方式,即点焊和电弧焊。

图4所示是这两种焊接机器人在工业机器人中所占的大致比例。

我们所说的焊接机器人其实就是在焊接生产领域代替焊工从事焊接任务的工业机器人。

这些焊接机器人中有的是为某种焊接方式专门设计的,而大多数的焊接机器人其实就是通用的工业机器人装上某种焊接工具而构成的。

在多任务环境中,一台机器人甚至可以完成包括焊接在内的抓物、搬运、安装、焊接、卸料等多种任务,机器人可以根据程序要求和任务性质,自动更换机器人手腕上的工具,完成相应的任务。

因此,从某种意义上来说,工业机器人的发展历史就是焊接机器人的发展历史。

众所周知,焊接加工一方面要求焊工要有熟练的操作技能、丰富的实践经验、稳定的焊接水平;另一方面,焊接又是一种劳动条件差、烟尘多、热辐射大、危险性高的工作。

工业机器人的出现使人们自然而然首先想到用它代替人的手工焊接,减轻焊工的劳动强度,同时也可以保证焊接质量和提高焊接效率。

然而,焊接又与其它工业加工过程不一样,比如,电弧焊过程中,被焊工件由于局部加热熔化和冷却产生变形,焊缝的轨迹会因此而发生变化。

手工焊时有经验的焊工可以根据眼睛所观察到的实际焊缝位置适时地调整焊枪的位置、姿态和行走的速度,以适应焊缝轨迹的变化。

然而机器人要适应这种变化,必须首先像人一样要“看”到这种变化,然后采取相应的措施调整焊枪的位置和状态,实现对焊缝的实时跟踪。

由于电弧焊接过程中有强烈弧光、电弧噪音、烟尘、熔滴过渡不稳定引起的焊丝短路、大电流强磁场等复杂的环境因素的存在,机器人要检测和识别焊缝所需要的信号特征的提取并不像工业制造中其它加工过程的检测那么容易,因此,焊接机器人的应用并不是一开始就用于电弧焊过程的。

实际上,工业机器人在焊接领域的应用最早是从汽车装配生产线上的电阻点焊开始的。

原因在于电阻点焊的过程相对比较简单,控制方便,且不需要焊缝轨迹跟踪,对机器人的精度和重复精度的控制要求比较低。

图5所示为不同形式的机器人点焊钳。

点焊机器人在汽车装配生产线上的大量应用大大提高了汽车装配焊接的生产率和焊接质量,同时又具有柔性焊接的特点,即只要改变程序,就可在同一条生产线上对不同的车型进行装配焊接。

从机器人诞生到本世纪80年代初,机器人技术经历了一个长期缓慢的发展过程。

到了90年代,随着计算机技术、微电子技术、网络技术等的快速发展,机器人技术也得到了飞速发展。

工业机器人的制造水平、控制速度和控制精度、可靠性等不断提高,而机器人的制造成本和价格却不断下降。

在西方社会,和机器人价格相反的是,人的劳动力成本有不断增长的趋势。

图6所示是联合国欧洲经济委员会(UNECE)统计的从1990年至2000年的机器人价格指数和劳动力成本指数的变化曲线。

图中,把1990年的机器人价格指数和劳动力成本指数都作为参考值100,至2000年,劳动力成本指数为140,增长了40%;而机器人在考虑质量因素的情况下价格指数低于20,降低了80%,在不考虑质量因素的情况下,机器人的价格指数约为40,降低了60%.这里,不考虑质量因素的机器人价格是指现在的机器人实际价格与过去相比较;而考虑质量因素是指由于机器人制造工艺技术水平的提高,机器人的制造质量和性能即使在同等价格的条件下也要比以前高,因此,如果按过去的机器人同等质量和性能考虑,机器人的价格指数应该更低。

由此可以看出,在西方国家,由于劳动力成本的提高为企业带来了不小的压力,而机器人价格指数的降低又恰巧为其进一步推广应用带来了契机。

减少员工与增加机器人的设备投资,在两者费用达到某一平衡点的时候,采用机器人的利显然要比采用人工所带来的利大,它一方面可大大提高生产设备的自动化水平,从而提高劳动生产率,同时又可提升企业的产品质量,提高企业的整体竞争力。

虽然机器人一次性投资比较大,但它的日常维护和消耗相对于它的产出远比完成同样任务所消耗的人工费用小。

因此,从长远看,产品的生产成本还会大大降低。

而机器人价格的降低使一些中小企业投资购买机器人变得轻而易举。

因此,工业机器人的应用在各行各业得到飞速发展。

根据UNECE的统计,2001年全世界有75万台工业机器人用于工业制造领域,其中38.9万在日本、19.8万在欧盟、9万在北美,7.3万在其余国家。

至2004年底全世界在役的工业机器人至少有约100万。

由于机器人控制速度和精度的提高,尤其是电弧传感器的开发并在机器人焊接中得到应用,使机器人电弧焊的焊缝轨迹跟踪和控制问题在一定程度上得到很好解决,机器人焊接在汽车制造中的应用从原来比较单一的汽车装配点焊很快发展为汽车零部件和装配过程中的电弧焊。

机器人电弧焊的最大的特点是柔性,即可通过编程随时改变焊接轨迹和焊接顺序,因此最适用于被焊工件品种变化大、焊缝短而多、形状复杂的产品。

这正好又符合汽车制造的特点。

尤其是现代社会汽车款式的更新速度非常快,采用机器人装备的汽车生产线能够很好地适应这种变化。

图7所示为机器人电弧焊用于焊接汽车底盘。

另外,机器人电弧焊不仅用于汽车制造业,更可以用于涉及电弧焊的其它制造业,如造船、机车车辆、锅炉、重型机械等等。

因此,机器人电弧焊的应用范围日趋广泛,在数量上大有超过机器人点焊之势。

随着汽车轻量化制造技术的推广,一些高强合金材料和轻合金材料(如铝合金、镁合金等)在汽车结构材料中得到应用。

这些材料的焊接往往无法用传统的焊接方法来解决,必须采用新的焊接方法和焊接工艺。

其中高功率激光焊和搅拌摩擦焊等最具发展潜力。

因此,机器人与高功率激光焊和搅拌摩擦焊的结合将成为必然趋势。

事实上,像上海大众等国内最具实力的汽车制造商在他们的新车型制造过程中已经大量使用机器人激光焊接。

图8所示为其汽车车顶的机器人激光焊接。

和机器人电弧焊相比,机器人激光焊的焊缝跟踪精度要求更高。

根据一般的要求,机器人电弧焊(包括GTAW和GMAW)的焊缝跟踪精度必须控制在电极或焊丝直径的1/2以内,在具有填充丝的条件下焊缝跟踪精度可适当放宽。

但对激光焊而言,焊接时激光照射在工件表面的光斑直径通常在0.6以内,远小于焊丝直径(通常大于1.0),而激光焊接时通常又不加填充焊丝,因此,激光焊接中若光斑位置稍有偏差,便会造成偏焊、漏焊。

因此,上海大众的汽车车顶机器人激光焊除了在工装夹具上采取措施防止焊接变形外,还在机器人激光焊枪前方安装了德国SCOUT公司的高精度激光传感器用于焊缝轨迹的跟踪。

工业机器人的结构形式很多,常用的有直角坐标式、柱面坐标式、球面坐标式、多关节坐标式、伸缩式、爬行式等等,根据不同的用途还在不断发展之中。

焊接机器人根据不同的应用场合可采取不同的结构形式,但目前用得最多的是模仿人的手臂功能的多关节式的机器人,这是因为多关节式机器人的手臂灵活性最大,可以使焊枪的空间位置和姿态调至任意状态,以满足焊接需要。

理论上讲,机器人的关节愈多,自由度也愈多,关节冗余度愈大,灵活性愈好;但同时也给机器人逆运动学的坐标变换和各关节位置的控制带来复杂性。

因为焊接过程中往往需要把以空间直角坐标表示的工件上的焊缝位置转换为焊枪端部的空间位置和姿态,再通过机器人逆运动学计算转换为对机器人每个关节角度位置的控制,而这一变换过程的解往往不是唯一的,冗余度愈大,解愈多。

如何选取最合适的解对机器人焊接过程中运动的平稳性很重要。

不同的机器人控制系统对这一问题的处理方式不尽相同。

一般来讲,具有6个关节的机器人基本上能满足焊枪的位置和空间姿态的控制要求,其中3个自由度(XYZ)用于控制焊枪端部的空间位置,另外3个自由度(ABC)用于控制焊枪的空间姿态。

因此,目前的焊接机器人多数为6关节式的。

对于有些焊接场合,工件由于过大或空间几何形状过于复杂,使焊接机器人的焊枪无法到达指定的焊缝位置或焊枪姿态,这时必须通过增加1~3个外部轴的办法增加机器人的自由度。

通常有两种做法:一是把机器人装于可以移动的轨道小车或龙门架上,扩大机器人本身的作业空间;二是让工件移动或转动,使工件上的焊接部位进入机器人的作业空间。

也有的同时采用上述两种办法,让工件的焊接部位和机器人都处于最佳焊接位置。

焊接机器人的编程方法目前还是以在线示教方式(Teach-in)为主,但编程器的界面比过去有了不少改进,尤其是液晶图形显示屏的采用使新的焊接机器人的编程界面更趋友好、操作更加易。

然而机器人编程时焊缝轨迹上的关键点坐标位置仍必须通过示教方式获取,然后存入程序的运动指令中。

这对于一些复杂形状的焊缝轨迹来说,必须花费大量的时间示教,从而降低了机器人的使用效率,也增加了编程人员的劳动强度。

目前解决的方法有2种:一是示教编程时只是粗略获取几个焊缝轨迹上的几个关键点,然后通过焊接机器人的视觉传感器(通常是电弧传感器或激光视觉传感器)自动跟踪实际的焊缝轨迹。

这种方式虽然仍离不开示教编程,但在一定程度上可以减轻示教编程的强度,提高编程效率。

但由于电弧焊本身的特点,机器人的视觉传感器并不是对所有焊缝形式都适用。

二是采取完全离线编程的办法,使机器人焊接程序的编制、焊缝轨迹坐标位置的获取、以及程序的调试均在一台计算机上独立完成,不需要机器人本身的参与。

机器人离线编程早在多年以前就有,只是由于当时受计算机性能的限制,离线编程软件以文本方式为主,编程员需要熟悉机器人的所有指令系统和语法,还要知道如何确定焊缝轨迹的空间位置坐标,因此,编程工作并不轻松省时。

随着计算机性能的提高和计算机三维图形技术的发展,如今的机器人离线编程系统多数可在三维图形环境下运行,编程界面友好、方便,而且,获取焊缝轨迹的坐标位置通常可以采用“虚拟示教”(virtual Teach-in)的办法,用鼠标轻松点击三维虚拟环境中工件的焊接部位即可获得该点的空间坐标;在有些系统中,可通过CAD图形文件中事先定义的焊缝位置直接生成焊缝轨迹,然后自动生成机器人程序并下载到机器人控制系统。

从而大大提高了机器人的编程效率,也减轻了编程员的劳动强度。

目前,国际市场上已有基于普通PC机的商用机器人离线编程软件。

如Workspace5、RobotStudio等。

图9所示为笔者自行开发的基于PC的三维可视化机器人离线编程系统。

该系统可针对ABB公司的IRB140机器人进行离线编程,程序中的焊缝轨迹通过虚拟示教获得,并在三维图形环境中可让机器人按程序中的轨迹作模拟运动,以此检验其准确性和合理性。

所编程序可通过网络直接下载给机器人控制器。

我国的工业机器人从80年代“七五”科技攻关开始起步,目前已基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;弧焊机器人已应用在汽车制造厂的焊装线上。

相关文档
最新文档