生化第二章核酸的结构与功能(医本)
核酸的结构与功能
目录
1979年 Rich提出了左手螺旋的Z DNA结构模型。 1979年,Rich提出了左手螺旋的Z-DNA结构模型。 提出了左手螺旋的 结构模型 左手螺旋Z-DNA只是右手螺旋结构模型的一个 左手螺旋Z DNA只是右手螺旋结构模型的一个 补充发展。 补充发展。 Z-DNA可能也是天然DNA存在的二级结构形式,其 DNA可能也是天然DNA存在的二级结构形式, 可能也是天然DNA存在的二级结构形式 功能可能与基因突变、基因复制和表达调控有关。 功能可能与基因突变、基因复制和表达调控有关。 可能与基因突变
目录Biblioteka 四、核苷酸(nucleotide) 核苷酸(nucleotide)
核苷酸是核苷在戊糖羟基上的磷酸酯。 核苷酸是核苷在戊糖羟基上的磷酸酯。 是核苷在戊糖羟基上的磷酸酯 核糖核苷酸: 核糖核苷酸: AMP、GMP、CMP、UMP 、 、 、 脱氧核糖核苷酸: 脱氧核糖核苷酸: dAMP、dGMP、dCMP、dTMP 、 、 、
目录
有的核苷一磷酸能形成3ˊ,5ˊ-磷酸二酯键,构成环 , 有的核苷一磷酸能形成 -磷酸二酯键, 化核苷酸, 化核苷酸,如3ˊ,5ˊ-环腺苷酸(cyclic ademosine , -环腺苷酸( monophophate, cAMP)及3ˊ,5ˊ-环鸟苷酸 ) , - ( cyclic guanosine monophosphate,cGMP),是一些激 ) 素等信号分子的第二信使,在信号转导中起重要作用。 素等信号分子的第二信使,在信号转导中起重要作用。
目录
5ˊ-核苷酸还可在5ˊ的磷酸基上再连上一或
两个磷酸基形成核苷二磷酸或核苷三磷酸。 两个磷酸基形成核苷二磷酸或核苷三磷酸。
目录
多种核苷三磷酸,特别是腺苷三磷酸( ),在 多种核苷三磷酸,特别是腺苷三磷酸(ATP),在 腺苷三磷酸 ), 细胞的能量代谢中起重要作用, 细胞的能量代谢中起重要作用,ATP属于高能磷酸 属于高能磷酸 化合物,当它被水解为腺苷二磷酸时, 化合物,当它被水解为腺苷二磷酸时,能释放较多 的自由能,后者可被机体直接利用。 的自由能,后者可被机体直接利用。
核酸的结构和功能
核酸的结构和功能核酸是生命体中非常重要的一类化合物,它们呈现出多种不同的结构和功能,具有广泛的生理活性和重要的医学应用价值。
因此,本文将从核酸的结构和功能两个方面对其进行详细的探讨和分析。
一、核酸的结构核酸是由核苷酸构成的,其中核苷酸是由糖、碱基和磷酸组成的。
糖和碱基是核苷酸的主要结构单元,而磷酸则是连接各个核苷酸单元的桥梁。
糖的选择在DNA和RNA中有所不同,DNA中的糖是脱氧核糖,而RNA中的糖是核糖。
这种区别使得DNA和RNA结构上存在一些差别,比如在酸碱度条件下,DNA更容易形成稳定的结构,背景下我们来详细讨论DNA和RNA的结构特点。
1. DNA的结构DNA是双链结构,由两个聚合物互相结合而成,这些聚合物通过碱基间的氢键相互连接。
DNA的结构是基于鲍尔理论建立的,它是由两个不合位置条,其中的一条旋转了一定的角度,使得这两个链在三维空间中形成一个双螺旋结构。
这种双螺旋结构基本上是由两个不同形式的基对构成,互补的碱基间相互配对,即腺嘌呤和胸腺嘧啶之间存在两个氢键,而鸟嘌呤和胞嘧啶之间则存在三个氢键。
这种氢键结构赋予了DNA一定程度上的稳定性,保证了基因信息的稳定性和传递性。
2. RNA的结构RNA是单链结构,由一个核苷酸链构成,在链上存在一系列氨基酸残基、一个五碳糖和一个碱基,其中的碱基和DNA是相同的。
在RNA中,碱基的选择和排列方式是独立于它的糖和磷酸残基的。
这种构造决定了RNA的结构和功能具有很大的多样性,比如,一些RNA可以形成自身结构,同时也能与其他分子发生特异性的相互作用,这些相互作用可以形成多种不同的RNA-RNA、RNA-蛋白质和RNA-糖等复合物。
二、核酸的功能核酸具有多种复杂的生理和生化功能,其中一些主要功能如下:1. 遗传信息的存储和传递DNA是生物体内最重要的分子之一,它通过氢键和反选配的规则对碱基进行配对来存储和传递生物体的遗传信息。
由于这种针对性的选择性,碱基对之间的氢键是典型的尺度互补,这种互补性导致了新链的合成,比如,DNA复制过程中就是通过这种互补性黏连在新的链上的。
第二章 核酸的结构与功能
第二章核酸的分子结构与功能——复习测试题A型选择题1.核酸各基本单位之间的主要连接键为A.磷酸一酯键B.磷酸二酯键C.氢键D.离子键E.碱基堆积力2.游离核苷酸分子中,磷酸基最常位于A.核苷酸中戊糖的C-5’上B.核苷酸中戊糖的C-3’上C.核苷酸中戊糖的C-2’上D.核苷酸中戊糖的C-2’和C-3’上E.核苷酸中戊糖的C-2’和C-5’上3.DNA与RNA完全水解后的产物特点是A.核糖相同,碱基部分相同B.核糖不同,碱基相同C.核糖相同,碱基不同D.核糖不同,碱基部分相同E.以上均不对4.下列哪种碱基一般只存在于RNA而不存在于DNAA.腺嘌呤B.胞嘧啶C.胸腺嘧啶D.尿嘧啶E.鸟嘌呤5.有关DNA双螺旋结构,以下哪种说法不对A. 由两条多核苷酸链组成B. 碱基不同,相连的氢键数目不同C. 3’-OH与5’-磷酸基形成磷酸二酯键D. 磷酸与戊糖总是在双螺旋的内部E. 磷酸与戊糖组成了双螺旋的骨架6.下列有关DNA的二级结构,错误的是A.DNA二级结构是双螺旋结构B.DNA双螺旋结构是空间结构C.双螺旋结构中,两条链方向相同D.双螺旋结构中碱基之间互相配对E.二级结构中碱基之间一定有氢键相连7.有关tRNA的二级结构,正确的是A.tRNA没有氨基酸臂B.含DHU的是反密码环C.含TψC的是二氢尿嘧啶环D.可与mRNA密码子识别配对的是额外环E.tRNA分子中有部分碱基以氢键连接成对8.有关DNA分子中碱基组成,正确的是A.A=T,G=CB.A+T=G+CC.G=T,A=CD.2A=C+TE.以上均对9.对于tRNA的描述,错误的是A.细胞内有多种tRNAB.tRNA通常由70~80个单核苷酸组成C.参与蛋白质的生物合成D.遗传上具有保守性E.分子量比mRNA大10.对环核苷酸的叙述,错误的是A. 重要的环核苷酸有cAMP和cGMPB. cAMP为第二信使C. cAMP与cGMP的生物学作用相反D. cAMP是由AMP在腺苷酸环化酶的作用下生成E. cAMP分子内有环化的磷酸二酯键11.稀有核苷酸碱基主要是在下列哪类核酸中发现的A. rRNAB. mRNAC. tRNAD.核仁DNAE.线粒体DNA12.DNA双螺旋结构中,最常见的是A. A-DNA结构B. B-DNA结构C. X-DNA结构D. Y-DNA结构E. Z-DNA结构13.双链DNA的Tm值高,是由下列哪组碱基含量高引起的A. A+GB. C+TC. A+TD. C+GE. A+C14.下列曲线中的数字符号,代表Tm的是A. ①B.②C.③D.④E.⑤15.Watson-CrickDNA结构模型表示A.一个三链结构B.DNA双股链的走向是反向平行的C.碱基A和G配对D.碱基之间共价结合E.磷酸-戊糖主链位于DNA螺旋内侧16.核酸在260nm处有最大光吸收是由于A.磷酸二酯键的存在B.核苷酸中的N-糖苷键C.核糖和脱氧核糖的呋喃型环状结构D.碱基对之间形成氢键E.嘌呤和嘧啶环上有共轭双键17.组成核酸的基本化学成分A.碱基、磷酸、戊糖B.核苷C.单核苷酸D.氨基酸E.环单核苷酸18.有关多核苷酸链的叙述正确的是A.多核苷酸链中,嘌呤与嘧啶核苷酸有规律地交替排列B.多核苷酸链中,核苷酸借肽键连接而成C.有极性和方向性D.一侧末端为5’-OH,另一侧末端为3’-PiE.有2个末端,即N-末端和C-末端19.假尿苷(ψ)中的糖苷键是A.C-N连接B.C5-C1’连接C.N-N连接D.O-C连接E.O-N连接20.下列哪项可说明DNA是生物遗传信息的携带者A.不同生物的碱基组成应是相同的B.病毒感染是通过蛋白质侵入宿主细胞来完成的C.同一生物体不同组织的DNA通常具有相同的碱基组成D.生物体的DNA碱基组成应随年龄和营养状态的改变而改变E.DNA是以小的环状结构被发现的21.脱氧胸苷的缩写符号A. GdRB. AdRC. UdRD. CdRE. TdR22.下列哪种DNA的Tm较低A.含A-T15%B.含G-C25%C.含G-C40%D.含A-T80%E.含G-C35%23.Watson-Crick的DNA结构模型的特点是A.两条多核苷酸链的碱基顺序完全相同B.腺嘌呤必定与胞嘧啶配对,鸟嘌呤必定与胸腺嘧啶配对C.DNA分子由两条反平行的多核苷酸链围绕同一中心轴构成双螺旋D.碱基位于螺旋外侧,形成螺旋的骨架E.碱基对之间以共价键连接24.关于rRNA的叙述,下列哪项是错误的A.是细胞内含量最多的RNAB.能够与核糖体蛋白共同组成核糖体C.核糖体由易于解离的大、小两个亚基组成D.真核细胞的核糖体含5S、16S和23S三种rRNAE.能进行碱基配对形成局部的双螺旋结构25.核糖核苷中核糖与碱基的连接键是A. α-糖苷键B. β-糖苷键C. α-1,2糖苷键D. α-1,6糖苷键E. β-1,4糖苷键26.在下列哪种情况下,互补的两条DNA单链将结合形成双链A.在低于变性温度约25℃的条件下保温B.在高于变性温度约25℃的条件下保温C.在等于变性温度的条件下保温D.加入放射性同位素32PE.将吸附在硝酸纤维素膜上的DNA烘烤27.DNA热变性时具有下列哪种特征A.碱基之间的磷酸二酯键发生断裂B.形成三股螺旋C.顺序复杂度较低者具有较宽的变性范围D.变性温度的高低与G+C碱基含量相关E.在波长260nm处的光吸收降低28.常见的cAMP指的是A.1’,4’-环腺苷酸B.2’,5’-环腺苷酸C.3’,5’-环腺苷酸D.1’,3’-环腺苷酸E.2’,4’-环腺苷酸29.下列哪种情况可使两条互补的单链DNA结合成双链A.变性B.退火C.加连接酶D.加聚合酶E.所列都不是30.关于真核生物mRNA的结构特点,下列哪项是正确的A.其3’-端具有帽子结构B.由大、小两个亚基组成C.存在7-甲基鸟苷三磷酸的帽子结构D.其二级结构与DNA一样,整个分子均为双螺旋结构E.其5’-端为-CCA顺序B型选择题A.磷酸、核糖、尿嘧啶、胞嘧啶B.磷酸、脱氧核糖、尿嘧啶、胞嘧啶C.磷酸、核糖、尿嘧啶、胸腺嘧啶D.磷酸、脱氧核糖、胞嘧啶、胸腺嘧啶E.磷酸、核糖、胸腺嘧啶、胞嘧啶31.构成DNA的成分有32.构成RNA的成分有A.假尿苷B.核糖C.胞嘧啶D.次黄嘌呤E.脱氧核糖33.只存在于DNA分子中34.tRNA分子中的特征性组分35.DNA和RNA分子都有的组分A.mRNAB.tRNAC.rRNAD.DNAE.cAMP36.蛋白肽类激素的第二信使37.参与氨基酸转运的是A.磷酸二酯键B.肽键C.氢键D.离子键E.疏水键38.稳定DNA双螺旋结构的因素39.配对碱基间的连接键40.核苷酸之间的连接键X型选择题41.DNA分子中的碱基组成是A. A+C=G+TB. A=TC. C=GD. C+G=A+T42. tRNA分子中的稀有核苷酸包括A.假尿嘧啶核苷酸B.二氢尿嘧啶核苷酸C.胸腺嘧啶核苷酸D.嘌呤脱氧核苷酸43.DNA具有以下哪些功能A.携带遗传信息B.进行半保留复制C.有转运氨基酸的功能D.能转录合成RNA44. DNA存在于A.高尔基体B.线粒体C.粗面内质网D.染色体45.维持DNA双螺旋的力包括A.碱基对间的范德华氏力B.碱基之间的氢键C.磷酸残基的负电荷与介质中阳离子形成离子键D.磷酸二酯键46.有关A TP的叙述正确的是A.ATP含有三个磷酸酯键B.A TP含有两个高能磷酸酯键C.ATP可以游离存在D.ATP含有两个高能硫酯键47.有关tRNA的叙述哪些是正确的A.分子中含有较多稀有碱基B.tRNA通常由70-80个单核苷酸组成C.空间结构中含有反密码环D.是细胞内含量最多的一种RNA48.属于tRNA“三叶草”结构的是A.氨基酸臂B.DHU臂C.反密码臂D.TψC臂49.下列关于hnRNA叙述正确的是A.其生命期(几分钟)较细胞内大多数RNA为短B.其3’端可经修饰形成一个ployA长尾C.它们存在于细胞核的核仁外周部分D. 3’-脱氧腺苷抑制ployA长尾的生成50.原核生物遗传密码的研究揭示了A.三联体密码3’端核苷酸对氨基酸有最小的专一性B.一个密码子的末端与另一密码子开端之间没有标点符号C.只有三个三联体不代表任何氨基酸D. mRNA分子可指令一条以上的多肽链名词解释1. 增色效应(hyperchromic effect)2. Tm 值(melting temperature)3. 反密码环(anticoden loop)4. 核酶(ribozyme)5. 核酸分子杂交(hybridization)问答题1. 细胞内有哪几类主要的RNA ?其主要功能是什么?2. 简述DNA 双螺旋结构模式的要点及其与DNA 生物学功能的关系。
生化核酸结构与功能(共58张PPT)
测定两种核酸分子间的序列相似性 检测某些专一序列在待检样品中存在与否 是基因芯片技术的根底第Fra bibliotek节核酸酶
Nuclease
核酸酶是指所有可以水解核酸的酶 ➢依据底物不同分类
• DNA酶(DNase): 专一降解DNA。
• RNA酶 (RNase):
专一降解RNA。
➢依据切割部位不同
DNA纯品: OD260/OD280 = 1.8 RNA纯品: OD260/OD280 = 2.0
二、DNA的变性(denaturation)
定义:在某些理化因素作用下,DNA双链解开成两条
单链的过程。
理化因素:过量酸,碱,加热,变性试剂如尿素以及 某些有机溶剂如乙醇、丙酮等。
变性后其它理化性质变化:
比旋度下降
除侵浮入力密细度升胞高的外源性核酸
DNA复性时,其溶液OD260降低。
〔一W、aDtsNoAn,的C二ric级k,结19构在53〕消化液中降解食物中的核酸以利吸收
二、核酸的分类及分布
体外重组DNA技术中的重要工具酶
核酶
催化性RNA (ribozyme) 作为序列特异性的核酸 内切酶降解RNA。
参与细胞内DNA遗传信息的表 达。某些病毒RNA也可作为遗 传信息的载体。
第一节
核酸的化学组成及一级结构
The Chemical Component and Primary Structure of Nucleic Acid
一、核酸的化学组成
1. 元素组成
C、H、O、N、P
2. 分子组成 —— 碱基(base):嘌呤碱,嘧啶碱 —— 戊糖(ribose):核糖,脱氧核糖 —— 磷酸(phosphate)
第二章 核酸的结构与功能
核酸的结构与功能
❖ 1868年,瑞士外科医生Fridrich从外科手术绷带上的脓细胞的细 胞核中分离出一种溶于碱而不溶于酸的酸性有机化合物,其分子 中含磷2.5%、含氮14%,该物质被命名为核酸。
❖ 根据核酸分子中所含戊糖的差别: (一)脱氧核糖核酸(DNA):主要存在于细胞核中(真核细胞的 线粒体中也存在不少量的DNA),携带着决定个体基因型的遗传信 息,是遗传信息的贮存和携带者; (二)核糖核酸(RNA):主要存在于细胞核和细胞质中,参与细
比DNA复制得多,这与它的功能多样化密切相关。
一、mRNA是蛋白质合成中的模板
❖ 1960年,Jacob 和 Monod 等人用放射性核素示踪实验证实: 一类大小不同的RNA才是细胞内合成蛋白质的真正模板,于 1961年首先提出了信使RNA(mRNA)这个概念。
❖ 在各种RNA分子中,mRNA约占细胞内RNA总量的2~5%,种类 最多,分子大小相差很大;
N H
❖DN生称AN物为稀体有的D碱N基A8 N和79NH。RN45 AN36分12 子N 中NH2还含有一些65含1N4 3量2N 很O 少H的3C碱基65 1,N4 32
N
O
鸟嘌呤
RNA
胞嘧啶
胸腺嘧啶
5´
HOCH2
4´ H
OH O
H 1´
H
H
3´
2´
OH OH
β-D-核糖(构成RNA)
5´
HOCH2
遗传的相对稳定性,又可发生各种重组和突变,适应环境的 变迁,为自然选R型择细提菌供:无机毒会型。肺炎球菌
S型细菌:有毒型肺炎球菌
肺炎球菌转化实验
第三节
RNA 的结构与功能
❖ RNA和蛋白质共同担负着基因的表达和表达调控功能。 ❖ RNA通常以单链形式存在,但可通过链内的碱基配对形成
2核酸的结构和功能
第二章 核酸结构与功能学 习 目 标◆比较两类核酸的分子组成和基本单位㊂◆说出体内几种重要的游离核苷酸的组成和功能㊂◆叙述DNA 双螺旋结构特点㊂◆简述DNA ㊁mRNA ㊁tRNA 的结构特点㊂◆解释核酸的变性㊁复性㊁Tm 值和分子杂交的概念㊂1868年,瑞士的外科医生Friedrich Miescher 从包扎伤口的绷带上的脓细胞核中提取到一种富含磷元素的酸性化合物,此酸性物质即是现在所知的核酸(nucleic acid)㊂核酸是以核苷酸为基本组成单位的生物信息大分子,天然存在的核酸可以分成脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类㊂DNA 存在于细胞核和线粒体内,携带遗传信息,决定着细胞和个体遗传型;RNA 存在于细胞质㊁细胞核和线粒体内,参与遗传信息的复制与表达㊂第一节 核酸的分子组成一㊁核酸的元素组成核酸由C㊁H㊁O㊁N 和P 元素组成,其中P 元素在各种核酸中含量比较恒定,平均为9%~10%㊂因此,可以通过测定生物样品中核酸的P 元素含量,进一步推算出生物样品中核酸含量㊂二㊁核酸的基本成分核酸在核酸酶作用下水解为单核苷酸㊂核苷酸完全水解产物为含氮碱基㊁戊糖和磷酸㊂所以说,组成核酸的基本单位是单核苷酸,组成核酸的最基本化学成分是碱基㊁戊糖和磷酸(图2-1)㊂图2-1 核酸的组成(一)磷酸核酸分子中含有磷酸,所以成酸性㊂(二)戊糖核酸中的戊糖有两类:D-核糖(D-ribose)和D-2-脱氧核糖(D-2-deoxyribose)㊂核酸的分类就是根据所含戊糖种类不同而分为RNA 和DNA㊂戊糖中的碳原子编号加撇(如C-1′),以区别与碱基中的碳原子编号,其结构式见图2-2㊂图2-2 核糖的结构(三)碱基核酸中碱基是含氮杂环化合物,分两类,嘧啶碱和嘌呤碱㊂1.嘧啶碱 嘧啶碱是嘧啶衍生物,核酸中常见的嘧啶有三类:胞嘧啶(C)㊁尿嘧啶(U)和胸腺嘧啶(T),如图2-3所示㊂其中胞嘧啶为DNA 和RNA 两类核酸所共有㊂胸腺嘧啶只存在于DNA 中,但是tRNA 中也有少量存在;尿嘧啶只存在于RNA 中㊂2.嘌呤碱 嘌呤碱是嘌呤衍生而来的,核酸中常见的嘌呤碱有两类:腺嘌呤(A)及鸟嘌呤(G)㊂RNA 中的碱基有四种:腺嘌呤(A)㊁鸟嘌呤(G)㊁胞嘧啶(C)㊁尿嘧啶(U)㊂DNA 中的碱基有四种:腺嘌呤(A)㊁鸟嘌呤(G)㊁胞嘧啶(C)㊁胸腺嘧啶(T)㊂其结构式如下(图2-3):㊃42㊃ 生物化学基础图2-3 参与组成核酸的主要碱基 3.稀有碱基 核酸中除了这5种基本的碱基外,还有一些含量甚少的碱基,称为稀有碱基㊂稀有碱基种类极多,大多数都是甲基化碱基,tRNA 中含有较多的稀有碱基可高达10%(表2-1)㊂表2-1 核酸中的一些稀有碱基DNA RNA尿嘧啶(U)5,6-二氢尿嘧啶(DHU)5-羟甲基尿嘧啶(hm5U)5-甲基尿嘧啶,即胸腺嘧啶(T)5-甲基胞嘧啶(m5C)3-硫尿嘧啶(s3U)5-羟甲基胞嘧啶(hm5C)5-甲氧基尿嘧啶(mo5U)N 6-甲基腺嘌呤(m6A)N 3-乙酰基胞嘧啶(ac4C)2-硫胞嘧啶(s2C)1-甲基腺嘌呤(m1A)N 6,N 6-二甲基腺嘌呤(m6,6A)N 6-异戊烯基腺嘌呤(i A)1-甲基鸟嘌呤(m1G)N 1,N 2,N 7-三甲基鸟嘌呤(m1,2,7G)现将两类核酸的基本化学组成列于表2-2中㊂㊃52㊃第二章 核酸结构与功能 表2-2 DNA 和RNA 分子组成的区别组成成分DNARNA碱基嘌呤碱腺嘌呤(A)㊁鸟嘌呤(G)腺嘌呤(A)㊁鸟嘌呤(G)嘧啶碱胞嘧啶(C)㊁胸腺嘧啶(T)胞嘧啶(C)㊁尿嘧啶(U)戊糖D-2-脱氧核糖D-核糖三㊁组成核酸的基本单位 核苷酸1.核苷 核苷是碱基与戊糖以糖苷键相连接所形成的化合物㊂戊糖的第一位碳原子(C 1′)与嘧啶的第一位氮原子(N 1)或与嘌呤碱的第九位氮原子(N 9)相连接㊂根据核苷中所含戊糖的不同,将核苷分成两大类:核糖核苷和脱氧核糖核苷,如图2-4所示㊂图2-4 核苷的结构核苷的命名是在核苷的前面加上碱基的名字,如腺嘌呤核苷(简称腺苷)㊁胞嘧啶脱氧核苷(简称脱氧胞苷)等㊂各种常见核苷命名见表2-3㊂表2-3 各种常见核苷碱基核糖核苷脱氧核糖核苷A 腺嘌呤核苷(AR)腺嘌呤脱氧核苷(dAR)G 鸟嘌呤核苷(GR)鸟嘌呤脱氧核苷(dGR)C胞嘧啶核苷(CR)胞嘧啶脱氧核苷(dCR)U 尿嘧啶核苷(UR)-T -胸腺嘧啶脱氧核苷(dTR)2.核苷酸 核苷(脱氧核苷)中戊糖的自由羟基与磷酸通过酯键相连接构成核苷酸(脱氧核苷酸)㊂生物体内游离存在的核苷酸多是5′-核苷酸,即核苷酸的磷酸多是连接在核糖或脱氧核糖的C-5′上㊂RNA 的基本单位是核糖核苷酸;DNA 的基本单位是脱氧核糖核苷酸㊂组成DNA 和RNA 的碱基㊁核苷与相应核苷酸总结于表2-4㊂㊃62㊃ 生物化学基础表2-4 组成核酸的碱基、核苷与相应核苷酸碱基核苷5′-核苷一磷酸NMP RNA腺嘌呤(A)腺嘌呤核苷(AR)腺嘌呤核苷一磷酸(AMP)鸟嘌呤(G)鸟嘌呤核苷(GR)鸟嘌呤核苷一磷酸(GMP)胞嘧啶(C)胞嘧啶核苷(CR)胞嘧啶核苷一磷酸(CMP)尿嘧啶(U)尿嘧啶核苷(UR)尿嘧啶核苷一磷酸(UMP)DNA腺嘌呤(A)腺嘌呤脱氧核苷(dAR)腺嘌呤脱氧核苷一磷酸(dAMP)鸟嘌呤(G)鸟嘌呤脱氧核苷(dGR)鸟嘌呤脱氧核苷一磷酸(dGMP)胞嘧啶(C)胞嘧啶脱氧核苷(dCR)胞嘧啶脱氧核苷一磷酸(dCMP)胸腺嘧啶(T)胸腺嘧啶脱氧核苷(dTR)胸腺嘧啶脱氧核苷一磷酸(dTMP)现择几种核苷酸的结构式,如图2-5所示㊂图2-5 几种核苷酸的结构式㊃72㊃第二章 核酸结构与功能 四、几种重要的游离核苷酸体内游离存在的核苷酸,除构成核酸外,还可以参与其他物质或形成一定结构,具有许多重要生理功能㊂核苷酸的5′-磷酸基可再磷酸化,含有1个磷酸基团的称为核苷一磷酸(NMP或dNMP);有2个磷酸基团的核苷酸称为核苷二磷酸(NDP或dNDP);有3个磷酸基团的称为核苷三磷酸(NTP或dNTP)㊂常见的多磷酸核苷见表2-5㊂表2-5 常见的多磷酸核苷碱基核糖核苷酸NMP NDP NTP脱氧核糖核苷酸dNMP dNDP dNTPA AMP ADP ATP dAMP dADP dATP G GMP GDP GTP dGMP dGDP dGTP C CMP CDP CTP dCMP dCDP dCTP U UMP UDP UTP---T---dTMP dTDP dTTP核苷二磷酸和核苷三磷酸分子中含高能磷酸键,水解时可释放能量,是机体生命活动的重要能源,在代谢中GTP,UTP,CTP均可提供能量,可激活许多化合物生成代谢上活泼的物质㊂如UDP-葡萄糖(UDPG),CDP-二酯酰甘油,S-腺苷蛋氨酸等㊂ATP是体内最重要的三磷酸核苷,ATP中高能磷酸键水解释放能量是机体生命活动可直接利用的能源㊂ATP的分子结构如图2-6所示㊂体内某些核苷酸及其衍生物是重要调节因子,如3′,5′-环化腺苷酸(cAMP)与3′,5′-环化鸟苷酸(cGMP)在细胞内信号转导过程中作为激素第二信使,发挥信息分子作用(图2-7)㊂体内还有一些核苷酸参与物质代谢和能量代谢,例如腺苷酸是NAD+,NADP+,FAD,辅酶A等的组成成分㊂㊃82㊃ 生物化学基础图2-6 ATP的分子结构图2-7 cAMP 与cGMP第二节 核酸的分子结构核酸是一类生物大分子,DNA 和RNA 在分子的空间结构上有很大区别,现分别加以㊃92㊃第二章 核酸结构与功能 介绍㊂一、核酸的基本结构 1.核苷酸之间的连接 构成核酸大分子的基本单位是核苷酸㊂核苷酸之间通过3′,5′-磷酸二酯键相连接,它是每个核苷酸戊糖上的3′-羟基与相邻核苷酸的5′-磷酸缩合而成㊂多个核苷酸相连成多核苷酸链,多核苷酸链有两个端点,戊糖5′位带有游离磷酸基的称为5′末端,戊糖3′位带有游离羟基的一端称为3′末端,如图2-8所示㊂2.核酸的一级结构 各核苷酸残基沿多核苷酸链排列的顺序称为核酸的一级结构㊂一级结构是核酸的基本结构㊂核苷酸的种类虽不多,但可因核苷酸的数目㊁比例和序列的不同构成多种结构不同的核酸㊂核酸一级结构以3′,5′-磷酸二酯键连接,由相间排列的戊糖和磷酸构成核酸大分子主链,侧链碱基的有序排列体现了它的生物学特性㊂DNA 一级结构由四种脱氧核糖核苷酸(dNMP)按一定顺序连接形成;RNA 一级结构由四种核糖核苷酸(NMP)按一定顺序连接形成,一级结构是形成二级结构和三级结构的基础㊂核酸的一级结构常用简写式表示,读向是从左到右,表示的碱基序列是从5′到3′,即表示核苷酸链从5′末端磷酸基到3′末端羟基㊂如5′pApCpGpC 3′,可进一步省略为5′-ACGC-3′㊂图2-8 核苷酸之间的连接的基本结构㊃03㊃ 生物化学基础二、核酸的空间结构(一)DNA 的空间结构与功能1.DNA 的碱基组成特点 在20世纪50年代初,经Chargaff 等人的分析研究表明,DNA 的碱基组成有下列一些特点:(1)各种生物的DNA 分子中腺嘌呤与胸腺嘧啶的摩尔数相等,即A =T;鸟嘌呤与胞嘧啶的摩尔数相等,即G =C㊂因此,嘌呤碱的总数等于嘧啶碱的总数,即A+G =C+T㊂(2)DNA 的碱基组成具有种属特异性,即不同生物种属的DNA 具有各自特异的碱基组成,如人㊁牛和大肠杆菌的DNA 碱基组成比例是不一样的㊂(3)DNA 的碱基组成没有组织器官特异性,即同一生物体的各种不同器官或组织DNA 的碱基组成相似㊂比如牛的肝㊁胰㊁脾㊁肾和胸腺等器官的DNA 的碱基组成十分相近而无明显差别㊂(4)生物体内的碱基组成一般不受年龄㊁生长状况㊁营养状况和环境等条件的影响㊂这就是说,每种生物的DNA 具有各自特异的碱基组成,与生物的遗传特性有关㊂2.DNA 的二级结构 双螺旋结构模型 DNA 双螺旋结构模型是1953年由美国的Watson 和英国的Crick 两位科学家共同提出㊂X 射线衍射数据说明DNA 含有两条具有螺旋结构的多核苷酸链㊂其要点如下:(1)DNA 分子是两条反向平行的互补双链结构,一条链是5′→3′,另一条链是3′→5′㊂两条反向平行的多核苷酸链以右手螺旋方式围绕同一中心轴盘曲而形成双螺旋结构㊂(2)两条链的主链由戊糖 磷酸相间排列组成,在螺旋外侧;碱基在螺旋内侧㊂碱基中A 与T 配对形成两个氢键,C 与G 配对形成三个氢键㊂成对碱基大致处于同一平面,该平面与螺旋轴基本垂直,见图2-9㊂图2-9 双螺旋结构截面图(一)㊃13㊃第二章 核酸结构与功能 图2-9 双螺旋结构截面图(二) (3)DNA 双链所形成的螺旋直径为2nm;螺旋每旋转一周包含了10对碱基,每个碱基的旋转角度为36°;螺距为3.4nm,每个碱基平面之间的距离为0.34nm㊂从外观上,DNA 螺旋分子表面存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA 间的识别有关㊂(4)维系DNA 双螺旋结构稳定是氢键和疏水力,DNA 双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,相对来说,碱基堆积力对于双螺旋的稳定性更为重要㊂碱基对平面㊁DNA 双螺旋结构如图2-10所示㊂图2-10 碱基对平面与DNA 双螺旋结构㊃23㊃ 生物化学基础Watson和Crick提出的DNA模型是在相对湿度92%的条件下,从生理盐水溶液中提取的DNA纤维的构象,称B型构象㊂天然DNA的结构易受溶液的离子强度和相对湿度影响,DNA螺旋结构沟的深浅㊁螺距㊁旋转都会发生改变㊂当相对湿度是72%时为A型构象,两者的一些结构参数有很大差别㊂1979年Alexander Rich等人在研究人工合成的CGCGCG的晶体结构时,意外发现这种合成的DNA是左手螺旋㊂后来证明这种结构天然也有存在,人们称为Z-DNA㊂在生物体内,不同构象的DNA在功能上可能有所差别,与基因表达的调节和控制相适应㊂DNA双螺旋结构的发现是生物学发展的重要里程碑,是20世纪最伟大的科学成就㊂【知识链接】DNA双螺旋结构的发现对DNA双螺旋结构发现作出重大贡献的科学家有英国剑桥大学的克里克和沃森,英国皇家科学院的富兰克林(Franklin)和威尔金斯(Wilkins)㊂其中富兰克林的工作为DNA 双螺旋结构模型的提出奠定了基础㊂富兰克林不仅首先拍摄了一张可清楚显示出双螺旋结构的晶体X光衍射图,还指出了克里克和沃森早期提出的DNA结构是一个三螺旋结构模型的错误㊂后来克里克和沃森看到了这张X射线衍射图,在1953年提出了DNA双螺旋结构模型,并通过此结构解释了遗传的分子机制和基因自发突变的可能性㊂克里克和沃森因最先提出DNA双螺旋结构获得了1962年的生物和医学诺贝尔奖㊂DNA双螺旋结构的发现是生物学发展重要里程碑,正因为有了DNA双螺旋结构的发现,才会有今天的遗传工程和众多基因工程药物,如人重组胰岛素㊁白细胞介素㊁干扰素㊁人重组乙型肝炎疫苗等㊂3.DNA的超级结构 生物界的DNA是十分巨大的高分子,DNA的长度要求其必须形成紧密折叠扭转的方式才能够存在于很小的细胞核内,而且生物进化程度越高,其DNA的分子越大,所以细胞内的DNA在双螺旋式结构基础上,进一步折叠为超级结构㊂DNA双螺旋链再盘绕即形成超螺旋结构㊂盘绕方向与DNA双螺旋方向相同为正超螺旋;盘绕方向与DNA双螺旋方向相反则为负超螺旋㊂自然界的闭合双链DNA主要是以负超螺旋形式存在,如图2-11所示㊂在原核生物中,线粒体和叶绿体中的DNA是共价闭合的环状双螺旋,这种环状双螺旋结构还需再螺旋化形成超螺旋㊂图2-11 DNA超螺旋结构 真核生物染色体DNA是线性双螺旋结构,染色质的基本组成单位被称为核小体,由DNA和五种组蛋白共同构成㊂核小体中组蛋白分别称为H1㊁H2A㊁H2B㊁H3和H4㊂H2A㊁H2B㊁H3和H4各两分子构成八聚体的核心组蛋白,DNA双螺旋链缠绕在这一核心上形成核小体的核心颗粒㊂核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构,许多核小体形成的串珠样线性结构再进一步盘曲成直径为30nm的纤维结构,后者再经几次卷曲,形成染色体结构㊂核小体,染色质及染色体如图2-12所示㊂图2-12 染色体的结构4.DNA的功能 DNA的基本功能是以基因的形式荷载遗传信息,并作为基因复制和转录的模板,它是生命遗传的物质基础,也是个体生命活动的信息基础㊂基因是指DNA分子中的特定区段,其中的核苷酸排列顺序决定了基因的功能㊂DNA 利用四种碱基的不同排列,可以对生物体所有遗传信息进行编码,经过复制遗传给子代,并通过转录和翻译保证维持生命活动的各种RNA和蛋白质在细胞内有序合成㊂DNA的结构特点是具有高度的复杂性和稳定性,可以满足遗传多样性和稳定性的需要㊂(二)RNA的结构与功能RNA在生命活动中同样具有重要作用,RNA分子比DNA分子小得多,RNA通常以单链形式存在,但也有复杂的局部二级结构或三级结构,以完成一些特殊功能㊂RNA可分为多种类型,除信使RNA(mRNA)㊁核糖体RNA(rRNA)㊁转运RNA(tRNA)外,还有真核结构基因转录产生的mRNA前体分子,核内不均一RNA(hnRNA)㊁核内小RNA(snRNA)㊁反义RNA(asRNA)等㊂不同种类的RNA结构和功能各不相同㊂1.信使RNA DNA主要存在于细胞核内,而蛋白质的合成是在细胞质进行的㊂DNA 的遗传信息是通过特殊的RNA转移到细胞质,并在那里作为蛋白质合成的模板,决定其合成的蛋白质中氨基酸顺序㊂传递DNA遗传信息的RNA称为信使RNA㊂真核生物的mRNA结构特点是含有特殊5′-末端的帽子和3′-末端的多聚A尾结构㊂原核生物mRNA未发现类似结构㊂(1)mRNA的3′-末端有一段含30~200个核苷酸残基组成的多聚腺苷酸(polyA)㊂此段polyA不是直接从DNA转录而来,而是转录后逐个添加上去的㊂有人把polyA称为mRNA的 靴”㊂原核生物一般无polyA的结构㊂此结构与mRNA由胞核转运到胞质及维持mRNA的结构稳定有关,它的长度决定mRNA的半衰期㊂(2)mRNA的5′-末端有一个7-甲基鸟嘌呤核苷三磷酸的 帽”式结构㊂此结构在蛋白质的生物合成过程中可促进核蛋白体与mRNA的结合,加速翻译起始速度,并增强mRNA的稳定性,防止mRNA从头水解㊂mRNA的功能是把核内DNA的碱基顺序按照碱基互补原则,抄录并转移到细胞质,决定蛋白质合成过程中的氨基酸排列顺序㊂2.转运RNA tRNA含70~100个核苷酸残基,是相对分子质量最小的RNA,占RNA 总量的16%,现已发现有100多种㊂tRNA的主要生物学功能是转运活化了的氨基酸,参与蛋白质的生物合成㊂各种tRNA的一级结构互不相同,但它们的二级结构都呈三叶草形㊂这种三叶草形结构的主要特征是,含有四个螺旋区㊁三个环和一个附加叉㊂四个螺旋区构成四个臂,其中含有3′末端的螺旋区称为氨基酸臂,因为此臂的3′-末端都是C-C-A-OH序列,可与氨基酸连接㊂三个环分别用Ⅰ㊁Ⅱ㊁Ⅲ表示㊂环Ⅰ含有5,6二氢尿嘧啶,称为二氢尿嘧啶环(DHU环)㊂环Ⅱ顶端含有由三个碱基组成的反密码子,称为反密码环;反密码子可识别mRNA分子上的密码子,在蛋白质生物合成中起重要的翻译作用㊂环Ⅲ含有胸苷(T)㊁假尿苷(ψ)㊁胞苷(C),称为TψC环;此环可能与结合核糖体有关(图2-13)㊂tRNA分子中稀有碱基的数量是所有核酸分子中比例最高的,这些稀有碱基的来源是转录之后经过加工修饰形成的㊂tRNA在二级结构的基础上进一步折叠成为倒 L”字母形的三级结构,一端为反密码环,另一端为氨基酸臂,DHU环和TψC环在拐角处㊂此种结构与tRNA和核蛋白质及rRNA的相互作用相关㊂tRNA的二级结构和三级结构如图2-13所示㊂3.核糖体RNA rRNA是细胞中含量最多的RNA,约占RNA总量的82%㊂rRNA单独存在时不执行其功能,它与多种蛋白质结合成核糖体,作为蛋白质生物合成的 装配机”㊂rRNA的相对分子质量较大,结构相当复杂,目前虽已测出不少rRNA分子的一级结构,但对其二级㊁三级结构及其功能的研究还需进一步的深入㊂原核生物的rRNA分三类:5S rRNA㊁16S rRNA和23S rRNA㊂真核生物的rRNA分四类:5S rRNA㊁5.8S rRNA㊁图2-13 tRNA 的二级结构和三级结构18S rRNA 和28S rRNA㊂S 为大分子物质在超速离心沉降中的一个物理学单位,可间接反映相对分子质量的大小㊂原核生物和真核生物的核糖体均由大㊁小两种亚基组成㊂以大肠杆菌和小鼠肝为例,各亚基所含rRNA㊁蛋白质的种类和数目见表2-6㊂表2-6 核糖体中包含的rRNA 和蛋白质来源亚基rRNA 种类蛋白质种类数原核生物(大肠杆菌)大亚基(50S)小亚基(30S)5S㊁23S 16S 3121真核生物(小鼠肝)大亚基(60S)小亚基(40S)5S㊁5.8S㊁28S 18S 4933(三)核酶1982年Thomas Cech 在研究四膜虫rRNA 前体加工时发现,rRNA 前体本身具有自我催化作用,开创了RNA 具有酶功能的先河㊂提出了核酶的二级结构呈锤头状,即锤头核酶㊂1994年Breaker 发现人工合成DNA 的某些片段具有酶的活性而称为脱氧核酶㊂由于DNA 较RNA 稳定且成本低廉,脱氧核酶的应用已成为新药开发的热门课题㊂第三节 核酸的理化性质一㊁一般理化性质 核酸分子中有酸性基团和碱性基团,为两性电解质㊂DNA 是线性的大分子,具有大分子物质的一般特性㊂由于DNA 分子细长,其在溶液中的黏度很高㊂RNA 分子比DNA 短,在溶液中的黏度低于DNA㊂核酸分子中的碱基都含有共轭双键,故都有吸收紫外线的性质,其最大吸收峰在260nm 附近㊂这一重要的理化性质被广泛用来对核酸㊁核苷酸和碱基进行定性㊁定量分析㊂在同一浓度的核酸溶液中,单链DNA 的吸光度较双链DNA 大㊂二㊁DNA 的变性和复性(一)DNA 的变性在某些理化因素(温度㊁pH㊁离子强度等)作用下,DNA 双链的互补碱基之间的氢键断裂,使DNA 双螺旋结构松散,成为单链的现象即为DNA 变性㊂DNA 双螺旋结构的稳定性主要靠碱基平面间的疏水堆积力和互补碱基之间的氢键来维持㊂DNA 变性只改变其二级结构,不改变它的核苷酸排列㊂图2-14 DNA 的解链曲线在实验室内最常用的使DNA 分子变性的方法之一是加热㊂加热时,DNA 双链发生解离,在260nm 处的紫外线吸收值增高,此种现象称为增色效应㊂DNA的热变性是爆发性的,只在很狭窄的温度范围内进行㊂如果在连续加热DNA 的过程中以温度对紫外光吸收值作图,所得的曲线称为解链曲线,DNA 的变性从开始解链到完全解链,是在一个相当狭窄的温度内完成的,在这一范围内,紫外光吸收值达到最大值的50%时的温度称为DNA 的解链温度,由于这一现象和结晶的熔解过程类似,又称熔解温度(Tm)㊂在Tm时,核酸分子内50%的双链结构被解开㊂DNA 的Tm值一般在70~85℃之间,如图2-14所示㊂DNA 的Tm 值大小与DNA 分子中G㊁C 的含量有关,因为G ≡C 之间有三个氢键,而=A T 之间只有两个氢键,所以G㊁C 越多的DNA,其分子结构越稳定,Tm 值较高,这是因为G 与C 比A 与T 之间多一个氢键,解开G 与C 之间的氢键要消耗更多的能量㊂(二)DNA 的复性变性DNA 在适宜条件下,两条彼此分开的链经碱基互补可重新形成双螺旋结构,这一过程称为复性㊂热变性的DNA 经缓慢冷却即可复性,这一过程也称为退火㊂最适宜的复性温度比Tm约低25℃,这个温度叫做退火温度㊂DNA的复性速度受温度影响,只有温度缓慢下降才可使其重新配对复性㊂如加热后,将其迅速冷却至40℃以下,则几乎不能发生复性㊂这一特性被用来保持DNA的变性状态㊂一般认为比Tm低25℃的温度是DNA复性的最佳条件㊂【知识链接】DNA指纹技术每个人身上都拥有一套独一无二的遗传密码,这些密码记录着人体成长的所有信息,除了极少数外,几乎人身上的每一个细胞都含有这套完整的遗传密码㊂这些密码存在于细胞里的细胞核内,其中23对染色体就是用来储存这些密码的,而这些密码就是由DNA 分子所组成㊂生物个体间的差异本质上就是DNA分子序列的差异,人类不同个体(同卵双生除外)的DNA各不相同㊂将人基因组DNA经酶切㊁电泳㊁分子杂交及放射自显影等处理,可获得检测的杂交图谱,其杂交带数目和分子大小具有个体差异性,这如同一个人的指纹图形一样各不相同㊂因此,把这种杂交带图谱称为DNA指纹㊂DNA指纹技术已被广泛应用于法医学如物证检测㊁亲子鉴定㊁疾病诊断和肿瘤研究等领域㊂三㊁分子杂交DNA变性后可以复性,在此过程中,如果使不同DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在互补碱基,可以进行配对,在合适的条件下(温度及离子强度),可以形成杂化双链㊂杂化双链可以在DNA与DNA之间,也可以在DNA与RNA之间,或者在RNA与RNA分子之间形成,这就是核酸分子杂交㊂现代检测手段最新发展出来的基因芯片等最基本的原理就是核酸分子杂交㊂小 结核酸是生物大分子物质,包括DNA和RNA两大类㊂DNA主要分布于细胞核内,是遗传的物质基础;RNA主要分布于细胞质中,参与基因的表达和蛋白质的生物合成㊂组成核酸的主要元素中磷的含量相对稳定,因此可以用核酸样品中磷的含量代表核酸的含量㊂构成DNA的基本单位是脱氧核糖核苷酸,常用dNMP表示,其中N代表A㊁G㊁C㊁T㊂RNA则由核糖核苷酸构成,常用NMP表示,其中N代表A㊁G㊁C㊁U㊂许多核苷酸按一定排列顺序,通过磷酸二酯键连接成的多核苷酸链为核酸的一级结构㊂DNA的二级结构为双螺旋结构,由两条反向平行的互补脱氧多核苷酸链围绕分子长轴盘曲成螺旋结构,脱氧核糖基和磷酸基位于双螺旋的外侧,碱基位于双螺旋的内侧,两条链之间的碱基有固定的配对关系,即A和T配对,G和C配对,这种特征为DNA复制提供了结构基础㊂原核生物DNA的三级结构绝大多数是闭链环状的双螺旋分子,进一步螺旋化为麻花状结构,称为超螺旋结构,真核生物DNA的三级结构是在双螺旋基础上盘绕在组蛋白分子上形成的核小体结构,它是染色体的基本单位,可进一步多层次盘曲折。
第2章 核酸结构与功能习题
第二章核酸结构、功能复习测试(一)名词解释1.核苷2.核苷酸3.磷酸二酯键4.核酸一级结构5.DNA二级结构6.碱基互补规律7.增色效应8.Tm值9.核小体10.反密码子环 11.核酶 12.分子杂交(二)选择题A型题:1. 下列哪种碱基只存在于RNA而不存在于DNA:A.腺嘌呤 B.胞嘧啶 C.胸腺嘧啶 D.尿嘧啶 E.鸟嘌呤2. DNA和RNA共有的成分是:A.D-核糖 B.D-2-脱氧核糖 C.腺嘌呤 D.尿嘧啶E.胸腺嘧啶3. DNA与RNA两类核酸分类的主要依据是:A.所含碱基不同 B.所含戊糖不同C.核苷酸之间连接方式不同 D.空间结构不同E.在细胞中存在的部位不同4. 稀有碱基主要存在于:A.核糖体RNA B.信使RNA C.转运RNAD.核DNA E.线粒体DNA5. tRNA含有的核苷酸数目为:A.100~120 B.70~90 C.40~60 D.10~30 E.以上都不是6. 游离核苷酸中磷酸常常位于:A.核苷酸中戊糖的C3'上 B.核苷酸中戊糖的C5'上C.二核苷酸中戊糖的C2'上 D.核苷酸中戊糖的C3'和C2'上E.核苷酸中戊糖的C5'和C2'上7. 核酸中核苷酸之间的连接方式是:A.2',3'-磷酸二酯键 B.2',5'-磷酸二酯键C.3',5'-磷酸二酯键 D.肽键 E.糖苷键8. 核酸各基本组成单位之间的连接方式是:A.磷酸一酯键 B.磷酸二酯键C.氢键 D.离子键 E.碱基堆积力9. 下列对环核苷酸的叙述哪项是错误的:A.重要的环核苷酸有C AMP和C GMPB.C AMP与C GMP的生物学作用相反C.C AMP是一种第二信使D.C AMP是由AMP在腺苷酸环化酶的作用下生成的E.C AMP分子内有环化的磷酸二酯键10. 对Watson-Crick DNA模型的叙述正确的是:A.DNA为单股螺旋结构 B.DNA两条链的走向相反C.只在A与G之间形成氢键 D.碱基间形成共价键E.磷酸戊糖骨架位于DNA螺旋内部11. DNA碱基配对主要靠:A.范德华力 B.疏水作用 C.共价键 D.盐键 E.氢键12. 与片断pTAGA互补的片断为:A.pTAGA B.pAGAT C.pATCT D.pTCTA E.pUGUA13.在一个DNA分子中,若A所占摩尔比为32.8%,则G的摩尔比为:A.67.2% B.32.8% C.17.2% D.65.6% E.16.4%14. 根据Watson-Crick模型,求得每一微米DNA双螺旋含核苷酸对的平均数为: A.25 400 B.2 540 C.29 411 D.2 941 E.3 50515. 稳定DNA双螺旋的主要因素是:A.氢键和碱基堆积力 B.与Na+结合 C.DNA与组蛋白的结合D.与Mn2+、Mg2+的结合 E.与精胺、亚精胺的结合16. A型DNA和B型DNA产生差别的原因是:A.A型DNA是双链,B型DNA是单链B.A型DNA是右旋,B型DNA是左旋C.A型DNA与B型DNA碱基组成不同D.两者的结晶条件不同E.二者碱基平面倾斜角度不同17. 下列有关DNA二级结构的叙述哪种是错误的:A.DNA二级结构是双螺旋结构B.DNA二级结构是空间结构C.DNA二级结构中两条链方向相同D.DNA二级结构中碱基之间相互配对E.二级结构中碱基之间一定有氢键相连18. 有关DNA双螺旋结构下列哪种叙述不正确:A.DNA二级结构中都是由两条多核苷酸链组成B.DNA二级结构中碱基不同,相连的氢键数目也不同C.DNA二级结构中,核苷酸之间形成磷酸二酯键D.磷酸与戊糖总是在双螺旋结构的内部E.磷酸与戊糖组成了双螺旋的骨架19. 下列关于DNA分子组成的叙述哪项是正确的:A.A=T,G=C B.A+T=G+C C.G=T,A=CD.2A=C+T E.G=A,C=T20. 下列关于核酸二级结构的叙述哪项是错误的:A.在双螺旋中,碱基对形成一种近似平面的结构B.G和C之间是2个氢键相连而成C.双螺旋中每10对碱基对可使螺旋上升一圈D.双螺旋中大多数为右手螺旋,但也有左手螺旋E.双螺旋中碱基的连接是非共价的结合21. 双链DNA有较高的解链温度是由于它含有较多的:A.嘌呤 B.嘧啶 C.A和T D.C和G E.A和C22. 关于核小体下列哪项正确:A.核小体由DNA和非组蛋白共同构成B.核小体由RNA和组蛋白共同构成C.组蛋白的成分是H1,H2A,H2B,H3和H4D.核小体由DNA和H1,H2,H3,H4各二分子构成E.组蛋白是由组氨酸构成的23. DNA的热变性时:A.磷酸二酯键发生断裂B.形成三股螺旋C.在波长260nm处光吸收减少D.解链温度随A-T的含量增加而降低E.解链温度随A-T的含量增加而增加24. 核酸具有紫外吸收能力的原因是:A.嘌呤和嘧啶环中有共轭双键 B.嘌呤和嘧啶中有氮原子C.嘌呤和嘧啶中有氧原子 D.嘌呤和嘧啶连接了核糖E.嘌呤和嘧啶连接了磷酸基团25. 有关核酸的变性与复性的正确叙述为:A.热变性后DNA经缓慢冷却后可复性B.不同的单链DNA,在合适温度下都可复性C.热变性的DNA迅速降温过程也称作退火D.复性的最佳温度为250CE.热变性DNA迅速冷却后即可相互结合26. DNA的解链温度指的是:A.A260nm达到最大值时的温度B.A260nm达到最大变化值的50%时的温度C.DNA开始解链时所需要的温度D.DNA完全解链时所需要的温度E.A280nm达到最大值的50%时的温度27. 真核生物mRNA的帽子结构中,m7G与多核苷酸链通过三个磷酸基连接,连接方式是:A.2'-5' B.3'-5' C.3'-3' D.5'-5' E.3'-3'28. hnRNA是下列哪种RNA的前体:A.tRNA B.真核rRNA C.原核rRNA D.真核mRNA E.原核mRNA29. 下列关于假尿苷的结构描述哪项是正确的:A.假尿苷所含的碱基不是尿嘧啶 B.假尿苷中戊糖是D-2'-脱氧核糖C.碱基戊糖间以N1-C1相联 D.碱基戊糖间以N1-C5相联E.碱基戊糖间以C5-C1相联30. tRNA在发挥其“对号入座”功能时的两个重要部位是:A.反密码子臂和反密码子环 B.氨基酸臂和D环C.TΨC环与可变环 D.TΨC环与反密码子环E.氨基酸臂和反密码子环31. 下列核酸变性后的描述哪项是错误的:A.共价键断裂,分子量变小 B.紫外吸收值增加C.碱基对之间的氢键被破坏 D.粘度下降 E.比旋值减小32. (G+C)含量愈高Tm值愈高的原因是:A.G-C间形成了一个共价键 B.G-C间形成了两个氢键C.G-C间形成了三个氢键 D.G-C间形成了离子键E.G-C间可以结合更多的精胺、亚精胺33. 核小体珠状核心蛋白是:A.H2A、H2B、H3、H4各一个分子B.H2A、H2B、H3、H4各二个分子C.H1蛋白以及140—145碱基对DNAD.H2A、H2B、H3、H4各四个分子E.非组蛋白34. 下列有关tRNA的叙述哪项是错误的:A.tRNA二级结构是三叶草结构B.tRNA分子中含有稀有碱基C.tRNA的二级结构含有二氢尿嘧啶环D.tRNA分子中含有1个可变环E.反密码子环有CCA三个碱基组成的反密码子35. 下列对RNA一级结构的叙述哪项是正确的:A.几千至几千万个核糖核苷酸组成的多核苷酸链B.单核苷酸之间是通过磷酸一酯键相连C.RNA分子中A一定等于U,G一定等于CD.RNA分子中通常含有稀有碱基E.mRNA的一级结构决定了DNA的核苷酸顺序36. 下列有关RNA的叙述哪项是错误的:A.mRNA分子中含有遗传密码B.tRNA是分子量最小的一种RNAC.RNA可分为mRNA、tRNA、rRNA等D.胞浆中只有mRNA,而没有别的核酸E.rRNA可以组成合成蛋白质的场所37. 对于tRNA的叙述下列哪项是错误的:A.tRNA通常由70~80个核苷酸组成B.细胞内有多种tRNAC.参与蛋白质的生物合成D.分子量一般比mRNA小E.每种氨基酸都只有一种tRNA与之对应38. DNA变性的原因是:A.温度升高是惟一的原因 B.磷酸二酯键断裂C.多核苷酸链解聚 D.碱基的甲基化修饰E.互补碱基之间的氢键断裂39. DNA变性后下列哪项性质是正确的:A.是一个循序渐进的过程 B.260nm波长处的光吸收增加C.形成三股链螺旋 D.溶液粘度增大E.变性是不可逆的40.下列哪种碱基组成DNA分子的Tm高:A.A+T=15% B.G+C=25% C.G+C=40% D.A+T=80% E.G+C=35%41. 单链DNA:5'-pCpGpGpTpA-3'能与下列哪种RNA单链分子进行分子杂交:A.5'-pGpCpCpTpA-3' B.5'-pGpCpCpApU-3'C.5'-pUpApCpCpG-3' D.5'-pTpApGpGpC-3'E.5'-pTpUpCpCpG-3'42.下列关于RNA的论述哪项是错误的:A.主要有mRNA、tRNA、rRNA等种类B.原核生物没有hnRNA和snRNAC.tRNA是最小的一种RNAD.胞质中只有一种RNA,即tRNAE.组成核糖体的RNA是rRNA43. 关于真核生物的mRNA叙述正确的是:A.在胞质内合成并发挥其功能 B.帽子结构是一系列的腺苷酸C.有帽子结构和多聚A尾巴 D.在细胞内可长期存在E.前身是rRNA44. 有关mRNA的正确解释是:A.大多数真核生物的mRNA都有5'-末端的多聚腺苷酸结构B.所有生物的mRNA分子中都有较多的稀有碱基C.原核生物mRNA的3'末端是7-甲基鸟嘌呤D.大多数真核生物mRNA 5'-端为m7GpppN结构E.原核生物帽子结构是7-甲基腺嘌呤45. 真核生物mRNA多数在3'-末端有:A.起始密码子 B.PolyA尾巴 C.帽子结构D.终止密码子 E.CCA序列46. snRNA的功能是:A.作为mRNA的前身物 B.促进mRNA的产生成熟C.使RNA的碱基甲基化 D.催化RNA合成E.促进DNA合成47. tRNA连接氨基酸的部位是在:A.1'-OH B.2'-OH C.3'-OH D.3'-P E.5'-P48. tRNA分子3'末端的碱基序列是:A.CCA-3'B.AAA-3' C.CCC-3' D.AAC-3' E.ACA-3'49. 酪氨酸tRNA的反密码子是5'-GUA-3',它能辨认的mRNA上的相应密码子是: A.GUA B.AUG C.UAC D.GTA E.TAC50. 原核生物和真核生物核糖体上都有:A.18S rRNA B.5S rRNA C.5.8S rRNA D.30S rRNA E.28S rRNA51. 哺乳动物细胞核糖体的大亚基沉降系数为:A.30S B.40S C.60S D.70S E.80S52. 下列关于tRNA的叙述哪项是正确的:A.分子上的核苷酸序列全部是三联体密码B.是核糖体组成的一部分C.可贮存遗传信息D.由稀有碱基构成发卡结构E.其二级结构为三叶草形53. 下列关于tRNA的叙述哪项是错误的:A.由于各种tRNA3'末端结构不同,因而能结合各种不同的氨基酸B.含有二氢尿嘧啶核苷并形成环C.分子量较小,通常由70~90个核苷酸组成D.发卡结构是形成四个臂的基础E.3'末端往往有CCA-3'序列54. 关于核酶的叙述正确的是:A.专门水解RNA的酶 B.专门水解DNA的酶C.位于细胞核内的酶 D.具有催化活性的RNA分子E.由RNA和蛋白质组成的结合酶.55. 关于锤头核酶的叙述错误的是:A.碱基组成相同 B.一级结构没有共同的特点C.二级结构呈锤头状 D.有十三个保守碱基E.人工设计合成的核酶可能成为抗病毒的新药56. DNA合成需要的原料是:A.ATP,CTP,GTP,TTP B.ATP,CTP,GTP,UTP C.dATP,dGTP,dCTP,dUTP D.dATP,dGTP,dCTP,TTPE. 以上都不是57. 关于DNA双螺旋结构模型的描述哪项不正确:A.腺嘌呤的摩尔分数等于胸腺嘧啶的摩尔分数B.同种生物体不同组织中的DNA碱基组成相同C.DNA双螺旋中碱基对位于外侧D.二股多核苷酸链通过A与T或C与C之间的氢键连接E.维持双螺旋稳定的主要因素是氢键和碱基堆积力58. 参与hnRNA剪接的RNA是:A.snRNA B.tRNA C.hnRNA D.mRNA E.rRNA 59. 人的基因组的碱基数目为:A.2.9×109bp B.2.9×106bp C.4×109bpD.4×106bp E.4×108bpB型题:A.AMP B.ADP C.ATP D.dATP E.cAMP1. 含一个高能磷酸键:2. 含脱氧核糖基:3. 含分子内3',5'-磷酸二酯键:A.5sRNA B.28sRNA C.16sRNA D.snRNA E.hnRNA4. 原核生物和真核生物核糖体都有的是:5. 真核生物核糖体特有:6. 原核生物核糖体特有:A.tRNA B.mRNA C.rRNA D.hnRNA E.DNA7. 分子量最小的一类核酸:8. 细胞内含量最多的一类RNA:9. mRNA的前体:A.tRNA B.mRNA C.rRNA D.hnRNA E.DNA10. 有5'-帽子结构:11. 有3'-CCA-OH结构:12. 有较多的稀有碱基:13. 其中有些片段被剪切掉:A.变性 B.复性 C.杂交 D.重组 E.层析14. DNA的两股单链重新缔合成双链称为:15. 单链DNA与RNA形成局部双链称为:16. 不同DNA单链重新形成局部双链称为:A.超螺旋结构 B.三叶草形结构 C.双螺旋结构D.帽子结构 E.发夹样结构17. RNA二级结构的基本特点是:18. tRNA二级结构的基本特征是:19. DNA二级结构的特点是:20. mRNA5'端具有:A.腺嘌呤核苷酸 B.胸腺嘧啶核苷酸 C.假尿嘧啶核苷酸D.次黄嘌呤核苷酸 E.黄嘌呤21. 存在于tRNA中反密码子环:22. 只存在于DNA中:23. 通过C-C糖苷键相连:(三)问答题1. DNA与RNA一级结构和二级结构有何异同?2. 细胞内有哪几类主要的RNA?其主要功能是什么?3. 已知人类细胞基因组的大小约30亿bp,试计算一个二倍体细胞中DNA的总长度,这么长的DNA分子是如何装配到直径只有几微米的细胞核内的?4. 叙述DNA双螺旋结构模式的要点。
生物医学概论生化第2章生物大分子
嘧啶(pyrimidine)
O
5 4 3N 612
NH
NH2
N
NH
NH
O
尿嘧啶(uracil, U)
O
H 3C NH
NH
O
胞嘧啶(cytosine, C)
NH
O
胸腺嘧啶(thymine, T)
目录
(二)戊糖
H O CH 2
O H H O CH 2
OH
5´ O
O
4´
1´
3´ 2´
OH OH
核糖(ribose) (构成RNA)
目录
二级结构的定义
是指蛋白质分子中某一段肽链主链原子的局 部空间结构,常见有α-螺旋、β-折叠、β-转角和无 规卷曲。
主要的化学键: 氢键
目录
-螺旋
目录
-折叠
目录
-转角和无规卷曲
-转角
无规卷曲是用来阐述没有确定规律性的那部 分肽链结构。
目录
三级结构的定义
是指整条多肽链中全部氨基酸残基的相对空 间位置。它是在二级结构的基础上多肽链进一步 盘曲、折叠所形成的空间排布方式,包括主链和 侧链共同形成的构象。 主要的化学键
目录
一、核酸的基本单位和化学组成
核酸 (DNA和RNA) 核苷酸
磷酸 核苷和脱氧核苷
戊糖
碱基
核糖 脱氧核糖 嘌呤 嘧啶
目录
(一)碱基
嘌呤(purine)
N 7
5 6 1N
8 9 NH
43 2 N
NH2 N
N
NH
N
腺嘌呤(adenine, A)
O
N NH
NH
N
鸟嘌呤(guanine,
核酸的结构与功能
现代分子生物学的基础:1953年 Watson和 Crick发现DNA的双螺旋结构
P24
• 1968年 Nirenberg发现遗传密码 • 1973年美国斯坦福大学首次进行了体外基因重组 • 1975年 Temin和Baltimore发现逆转录酶 • 1981年 Gilbert和Sanger建立DNA测序方法 • 1985年 Mullis发明PCR技术 • 1990年 启动人类基因组计划(HGP) • 2003年 完成人类基因组计划 • 20世纪末 发现许多具有特殊功能的RNA
2003年4月14日,美、英、日、意、中同时宣布: 人类30亿碱基DNA序列已测定出来
P30
核酸分子大小的表示方法
碱基数目(单链): base或kilobase, kb 碱基对数目(双链): base pair, bp或kilobase pair, kb DNA和RNA的分子量呈多样性
<50bp常被称为寡核苷酸(oligonucleotide)
P32
0.34nm
3.4nm
1nm
3、两条核苷酸链通过碱 基间的氢键连接。遵从
T
A
碱基互补原则,即:
A-T配对,形成两个氢键 C
G
G-C配对,形成三个氢键
互补
P32
4、碱基堆积力(疏水力)和氢键 维系DNA双螺旋结构的稳定 力量
P32
Watson-Crick的DNA双螺旋
2.0 nm
DNA双螺旋结构存在多样性:
第三节 DNA的结构与功能 第四节 RNA的结构与功能 第五节 核酸的理化性质及应用
第四节 RNA的结构与功能
RNA的一级结构即核苷酸的排列顺序 RNA的基本组成单位是4种核糖核苷酸 AMP、GMP、CMP、UMP RNA的基本结构键是 3’,5’ – 磷酸二酯键 RNA的分子小,种类多,稀有碱基多
核酸的结构与功能
核酸的结构与功能核酸是生物体内重要的生物大分子之一,它不仅参与到遗传信息的传递和转录过程中,还在细胞生理活动中发挥着重要的功能。
本文将重点介绍核酸的结构和功能。
一、核酸的结构核酸主要由核苷酸组成,而核苷酸又由糖基、碱基和磷酸残基构成。
1. 糖基:核酸中的糖基有两种,即脱氧核糖和核糖。
脱氧核糖是构成DNA的糖基,而核糖则是RNA的糖基。
2. 碱基:碱基是核苷酸的重要组成部分,它可分为两类,嘌呤和嘧啶。
嘌呤包括腺嘌呤(A)和鸟嘌呤(G),而嘧啶则包括胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。
3. 磷酸残基:磷酸残基是核苷酸的磷酸部分,通过醣苷酸的骨架连接在一起,形成了核酸的链状结构。
二、核酸的功能1. 遗传信息的传递:核酸承载着生物体的遗传信息,其中DNA是生物体遗传信息的主要媒介。
DNA分子通过编码自身的碱基序列,传递给下一代,从而实现了生物遗传的连续性。
2. 转录过程中的模板:DNA作为模板参与到转录过程中,转录酶根据DNA的碱基序列合成RNA,这个过程被称为转录。
RNA承载着从DNA传递过来的信息,进一步参与到蛋白质的合成中。
3. 蛋白质的合成:核酸在蛋白质的合成过程中发挥着重要的功能。
由DNA转录形成的RNA分子将遗传信息带到细胞质中的核糖体,核糖体根据RNA的信息合成特定的氨基酸序列,最终形成特定的蛋白质。
4. 能量传递:核酸有能量转移的功能。
在细胞生理活动中,ATP(腺苷三磷酸)作为一种常见的核苷酸,通过释放相应的磷酸,将化学能转化为细胞内能量。
5. 调节基因表达:核酸还通过一系列的调控机制来调节基因的表达。
例如,RNA干扰技术能够通过干扰特定基因的转录过程,实现对基因表达的调控。
结语:通过对核酸的结构与功能进行了解,我们深刻认识到核酸在生物体内的重要性。
作为遗传信息的承载者和调控蛋白质合成的关键参与者,核酸在维持生物体的正常功能和生理过程中起着不可忽视的作用。
进一步研究核酸的结构和功能有助于揭示生命活动的本质,并为生物技术领域的发展提供新的思路和路径。
生化考试大纲
《生物化学》考试大纲课程名称:生物化学(biochemistry)课程性质:必修课学时分派:计划学时:144;其中理论课:90;实验课:54适用专业和层次:临床医学麻醉学医学影像学等本科层次第一章蛋白质的结构与功能学习目的和要求:掌握氨基酸的分类、蛋白质的4级结构及理化性质,熟悉肽键与肽链,医学上重要的多肽,了解血红蛋白与肌红蛋白的结构与功能、蛋白质的分离、纯化及结构分析。
考核知识要点1.蛋白质的重要生理功能。
2.蛋白质的大体组成单位氨基酸,。
肽键与肽链,医学上重要的多肽3.蛋白质的一、二、三、四级结构的概念,蛋白质理化性质。
4.胶原蛋白的结构及组成特点。
5.血红蛋白与肌红蛋白的结构与功能。
6.蛋白质的分离、纯化及结构分析。
考核要求一、识记:蛋白质一、二、三、四级结构的概念;结构域的概念;蛋白质的变性;等电点;二级结构类型及结构的要点。
二、理解:胶原蛋白的结构及组成特点。
.血红蛋白与肌红蛋白的结构与功能。
3、应用:分离纯化蛋白质的方式的大体原理。
4、超纲:蛋白质的序列分析第二章核酸的结构与功能学习目的和要求:掌握核苷酸的大体概念及其结构、DNA的双螺旋结构,熟悉RNA的结构与功能,了解DNA的理化性质及其应用。
考核知识要点1.核酸的分类、细胞散布及其生物学功能。
2.碱基、核苷和核苷酸的大体概念及其结构。
常见核苷酸的缩写符号。
两类核酸(DNA 与RNA)分子组成的异同。
核苷酸的连接,核酸的一级结构的概念。
3. DNA的双螺旋结构。
了解DNA的三级结构。
4. DNA的理化性质及其应用。
5. RNA的结构与功能考核要求一、识记:碱基、核苷和核苷酸的大体概念及其结构。
DNA的双螺旋结构、RNA的结构与功能、核苷酸的连接,核酸的一级结构的概念二、理解:常见核苷酸的缩写符号、两类核酸(DNA与RNA)分子组成的异同3、应用:DNA的理化性质及其应用。
4:超纲:核酸的杂交第三章酶学习目的和要求:掌握酶的大体概念;化学本质;酶促反映的特点酶的化学组成;酶的活性中心和必需基团;酶原和酶原的激活;同工酶。
生物化学讲义第二章核酸化学
核酸的结构与功能【目的和要求】1. 熟悉核酸的种类、分布和主要的生物学功能。
2.掌握核酸的化学组成、核苷酸的连接方式。
3.归纳区分两类核酸在化学组分上的异同点。
4.说出DNA二级结构的模型及其主要特点。
5.简述RNA分子组成和结构的特点。
6.简述三种RNA结构特点和主要功能。
7.了解核酸重要的理化特性及其在医学上的应用。
8.能说出生物体内重要的单核苷酸及其生化功能。
【本章重难点】1.核酸的种类、分布和生物学功能。
2.核酸的化学组成。
3.DNA和RNA的分子结构与功能。
4.核酸的变性、复性及杂交。
5.生物体内重要的单核苷酸。
学习内容第一节核酸的化学组成第二节 DNA的分子结构第三节 RNA的分子结构第四节核酸的理化性质第一节核酸的化学组成一、核酸(nucleic acid)的分类、分布与生物学功能分类分布生物学功能核糖核酸(RNA)细胞质参与蛋白质的生物合成5 % 蛋白质合成的直接模板tRNA 15 % 活化与转运AArRNA 80 % 充当装配机,提供场所脱氧核糖核酸(DNA ) 核内、染色质遗传的物质基础** 基因 —— DNA 分子中的功能片段(决定遗传特性的碱基序列)。
二、核酸的分子组成1.核酸的元素组成:C.H.O.N.和P ;代表元素P ,平均含量9~10%。
2.核酸的基本组成单位:核苷酸(nucleotide )1)核苷酸的组成戊糖、碱基:核苷、核苷酸:核苷酸链:3/,5/-磷酸二酯键;3/-羟基端,5/-磷酸基端水解 水解 磷酸 戊糖(戊糖、脱氧戊糖)核酸 核苷酸核苷 嘧啶(C.T.U )碱基嘌呤(A.G)2)核苷酸的结构与命名3)核苷酸的功用3.两类核酸在分子组成上的异同点第二节 DNA 的分子结构一、DNA 的一级结构组成DNA 分子的基本单位是四种脱氧核苷酸:dAMP 、dCMP 、dGMP 和dTMP1.DNA 的碱基组成规律:Chargaff 规则:①同一生物不同组织的DNA 样品,其碱基成分含量相同。
刘不言 2.生化第二章-核酸
A.单链DNA B.双链DNA C.单链RNA D.DNA-RNA杂交双链
努力成就梦想
更多惊喜关注微信公众号【最强考研】 考研人的精神家园!
DNA双螺旋结构: 1、DNA 反向平行互补 2、右手螺旋(A型、B型)
努力成就梦想
更多惊喜关注微信公众号【最强考研】 考研人的精神家园!
2011A-27.下列关于tRNA的叙述错误的是 B
A.分子中含稀有碱基较多 B.分子序列中含有遗传密码 C.tRNA分子呈三叶草二级结构 D.所有tRNA的3'末端均为CCA-OH
努力成就梦想
更多惊喜关注微信公众号【最强考研】 考研人的精神家园!
更多惊喜关注微信公众号【最强考研】 考研人的精神家园!
苷代表碱基(5种)
嘌呤 碱基
嘧啶
腺嘌呤 A 鸟嘌呤 G
DNA、RNA均有
胞嘧啶 C 胸腺嘧啶 T—DNA独有 尿嘧啶 U—RNA独有
努力成就梦想
更多惊喜关注微信公众号【最强考研】 考研人的精神家园!
磷酸 戊糖 碱基
DNA(双链) 磷酸
脱氧核糖
A.由两条完全相同的多核苷酸链绕同一中心轴盘旋成双螺旋 B.一条链是左手螺旋,另一条链为右手螺旋 C.A十G与C十T的比值为1 D.A十T与G十C的比值为1 E.两条链的碱基间以共价键相连
努力成就梦想
更多惊喜关注微信公众号【最强考研】 考研人的精神家园!
2010X-157改.下列关于DNA二级结构模型的叙述正 确的是 ACD
E.其功能是作为蛋白质合成的模板
努力成就梦想
生化第二章核酸的结构和功能
第二章核酸的结构与功能本章重点核酸前言:1.真核生物DNA存在于细胞核和线粒体内,携带遗传信息,并通过复制的方式将遗传信息进行传代;真核生物RNA存在于细胞质、细胞核和线粒体内。
2.在某些病毒中,RNA也可以作为遗传信息的载体。
一、核酸的化学组成以及一级结构(一)、核苷酸是构成核酸的基本组成单位1.DNA的基本组成单位是脱氧核苷酸,而RNA的基本组成单位是核糖核苷酸。
2.核苷酸中的碱基成分:含氮的杂环化合物。
①DNA中的碱基:A\T\C\G。
②RNA中的碱基:S\U\C\G。
★这五种碱基的酮基或氨基受所处环境的pH是影响可以形成酮-烯醇互变异构体或氨基-亚2.核糖①β-D-核糖:C-2’原子上有一个羟基。
②β-D-脱氧核糖:C-2’原子上没有羟基☆脱氧核糖的化学稳定性比核糖好,这使DNA成为了遗传信息的载体。
3.核苷①核苷②脱氧核苷③核糖的C-1’原子和嘌呤的N-9原子或者嘧啶的N-1原子通过缩合反应形成了β-N-糖苷键。
在天然条件下,由于空间位阻效应,核糖和碱基处在反式构象上。
3.核苷酸的结构与命名①核苷或脱氧核苷C-5’原子上的羟基可以与磷酸反应,脱水后形成磷酸键,生成核苷酸或脱氧核苷酸。
②根据连接的磷酸基团的数目不同,核苷酸可分为核苷一磷酸(NMP)、核苷二磷酸(NDP)、核苷三磷酸(NTP)。
③生物体内游离存在的多是5’核苷酸★细胞内一些参与物质代谢的酶分子的辅酶结构中都含有腺苷酸,如辅酶Ⅰ(NAD+),它们是生物氧化体系的重要成分,在传递质子或电子的过程中具有重要的作用。
(二)、DNA是脱氧核糖核苷酸通过3’,5’-磷酸二酯键连接形成的大分子1.脱氧核糖核苷三磷酸C-3’原子的羟基能够与另一个脱氧核糖核苷三磷酸的α-磷酸基团缩合,形成了一个含有3’,5’-磷酸二酯键的脱氧核苷酸分子。
2.脱氧核苷酸分子保留着C-5’原子的磷酸基团和C-3’原子的羟基。
3.多聚体核苷酸链的5’-端是磷酸基团,3’-端是羟基。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/9/23
7
(二)2种戊糖
核糖(ribose) 脱氧核糖(deoxyribose)
(RNA成分)
(DNA成分)
HO
CH
5´
2
O
OH
H O CH 2
OH
O
4´
1´
3´ 2´
OH OH
OH
2020/9/23
原子编号:1' 、2'
8
(三)核苷(ribonucleoside)
•核苷
碱基
嘌呤9位N/嘧啶1位N 核糖
与糖1'C形成糖苷键
NH2 N
•种类及名称:
…核苷 …脱氧核苷
HO CH2 O
1
NO
1´
2020/9/23
核糖核苷(RNA组成成分)
H
H
ห้องสมุดไป่ตู้
H
H
OH OH
9
(四) 核苷酸(ribonucleotide)
NH2
结构举例
O
N
HO P O CH2 O N O OH
核糖核苷酸(RNA组成成分)
OH OH
核苷酸的结构:磷酸酯键 核苷/脱氧核苷
H
H
H OH
H H
脱氧腺嘌呤核苷
脱氧腺嘌呤一磷酸 (dAMP)
脱氧腺嘌呤二磷酸 (dADP)
脱氧腺嘌呤三磷酸 (dATP)
2020/9/23
常用多磷酸核苷及符号
腺苷酸 鸟苷酸 胞苷酸 尿苷酸
脱氧腺苷酸 脱氧鸟苷酸 脱氧胞苷酸 脱氧胸苷酸
二磷酸
ADP GDP CDP UDP
dADP dGDP dCDP dTDP
以核苷酸为基本组成单位 生物大分子 储存、携带和传递遗传信息
2020/9/23
核酸研究的发展简史
1868年 Fridrich Miescher 从脓细胞中提取核素。 1944年 Avery等人证实DNA是遗传物质。 1953年 Watson和Crick发现DNA的双螺旋结构。 1968年 Nirenberg发现遗传密码。 1975年 Temin和Baltimore发现逆转录酶。 1981年 Gilbert和Sanger建立DNA测序方法。 1985年 Mullis发明PCR技术。 1990年 美国启动人类基因组计划(HGP)。 1994年 中国人类基因组计划启动。 2001年 美英等国完成人类基因组计划。
C
酯键构成了具有方向性的线性分 磷酸二酯键 A
子 , 称 为 多 聚 脱 氧 核 苷 酸 磷酸二酯键 G
(polydeoxynucleotide),即DNA链。 3´-末端
2020/9/23
15
三、RNA也是具有3’,5’-磷酸二酯键 的线性大分子
➢ RNA也是多个核苷酸分子通过酯化反应形 成的线性大分子,并且具有方向性;
磷酸
2020/9/23
10
核苷酸种类和名称:
根据三个 组成部分
常见碱基部分可为5种碱基的一种
核糖部分可为核糖或脱氧核糖
酸的部分可为一磷酸、二磷酸、三磷酸 或环磷酸中的一种
核糖核苷酸(RNA组成成分)
多磷酸核苷酸
5′-磷酯键
NH 2 N
N
O
O
O
N
N
-O P O-
OP O-
OPO O-
CH 2 O
➢ RNA的戊糖是核糖; ➢ RNA的嘧啶是胞嘧啶和尿嘧啶。
绚丽多彩的生物世界是怎么产生 的?成千上万种不同性状和习性生物间有 什么关系?这是自古以来,人们追问的问 题。
———— DNA
2020/9/23
1
第二章 核酸的结构和功能
Structure and Function of Nucleic Acid
2020/9/23
2
核酸(nucleic acid)
2020/9/23
5
一、核苷酸是构成核酸的基本组成单位
元素组成: C、H、O、N、P(9%~10%)
分子组成—三部分
核酸组成
核酸 (DNA和RNA)
核苷酸
磷酸
核苷和脱氧核苷
戊糖
核糖
脱氧核糖
碱基
嘌呤
嘧啶
碱基(base):嘌呤碱,嘧啶碱
戊糖(ribose):核糖,脱氧核糖
磷酸(phosphate)
2020/9/23
3
核酸的分类、分布及作用:
脱氧核糖核酸/DNA
核糖核酸/RNA
(deoxyribonucleic
(ribonucleic
acid,)
acid,)
细胞核、线粒体、叶绿体 胞液、胞核
质粒等
遗传信息、决定基因型
DNA遗传信息的表 达
2020/9/23
4
第一节 核酸的化学组成及其一级结构
The Chemical Component and Primary Structure of Nucleic Acid
➢ 碱基260mn的紫外吸收性质。
➢ 碱基酮式烯醇式、氨基亚氨基的互变。
➢ DNA中:A、G、C、T
➢ RNA中:A、G、C、U。 ➢ 还有稀有碱基。
稀有碱基
核酸中除了5类基本的碱基外,还有一些含 量甚少的碱基,称为稀有碱基。
O
NH2
N
N
NN
N —CH3 ON
次黄嘌呤I
m5C
O
HN
H2
H2
ON H
DHU
6
(一)碱 基
•嘌呤(purine)
2种
嘌呤环
6
1N 5
2
4
N
3
N7
8
N
9
NH2
N
N
O
HN
N
NN
A
H2N
NN
G
•嘧啶(pyrimidine) •对碱基的说明:
3种
NH2 N
O
C
N H
嘧啶环 4
3N 5
2N6
1
O
HN
O
N H
U
O CH3
HN
O
N H
T
•对碱基的说明:
➢ 碱基原子编号:1、2…通常嘌呤9位N、嘧啶1位 和戊糖的C-1ˊ形成N-C糖苷键。
2020/9/23
12
小结:两类核酸的基本成分区别
RNA
DNA
磷酸 磷酸
磷酸
戊糖 D-核糖
D -2 -脱氧核糖
嘌呤碱 腺 (A )、鸟 (G) 腺 (A )、鸟 (G)
嘧啶碱 胞 (C)、尿 (U) 胞 (C)、胸腺 (T)
2020/9/23
13
小结:两类核酸的基本组成单位
RNA
DNA
AMP GMP CMP UMP
dAMP dGMP dCMP dTMP
2020/9/23
14
二、DNA是脱氧核苷酸通过3’,5’-磷酸二酯键 连接形成的大分子
一个脱氧核苷酸3的羟基与另一个核苷酸5 的 α- 磷 酸 基 团 缩 合 形 成 磷 酸 二 酯 键 (phosphodiester bond)。
多个脱氧核苷酸通过磷酸二
5´-末端
三磷酸
ATP GTP CTP UTP dATP dGTP dCTP dTTP
核苷酸衍生物
环化核苷酸:cAMP、cGMP,是细胞信 号转导中的第二信使。
NH2
N
N
O CH2O N
N
cAMP
O P O OH
OH
11
核苷酸的主要功能:
➢核苷三磷酸——是合成核酸原料,又能提供能量。 ➢核苷二磷酸——活化中间代谢物,如UDP-葡萄糖等。 ➢核苷一磷酸——是核酸的组分,还是一些辅酶的成分。 ➢核苷环磷酸——在细胞信号转导中起重要作用。