调制与解调的原理
调制解调原理详细介绍
1
1000
解:已知: Sa(ωCt) ⇔ 已知:
设: f1(t) = f (t)cos1000t
π G2ωC (ω) ωC 1 1 ∴ Sa(2t) ⇔ G4 (ω) = F( jω) π 2
−1001
− 999
0
999
1001
ω
F ( jω) = 1 {F[ j(ω +1000)] + F[ j(ω −1000)] 1 2 = 1 [G4 (ω +1000) + G4 (ω −1000)] 4
解调
已调信号y 已调信号y (t)= f (t)cosω0t )cosω
g(t)
g(t) = y(t) ⋅ s(t) = f (t) ⋅ s2 (t) = f (t) cos2 ω0t = 1 [ f (t) + f (t) cos2ω0t] 2
2
−ωc 0 ωc
y(t)
s (t) = cosω0t
上式中,对于全部t,A选择得足够大,有,其频谱 选择得足够大, 上式中,对于全部t 为 Y( jω) = Aπ[δ (ω + ω0 ) + δ (ω − ω0 )] + 1 {F[ j(ω +ω0 )] + F[ j(ω −ω0 )]} 2 由上式可见, 由上式可见,除了由于载波分量而在处形成两个冲 激函数之外,这个频谱与抑制载波的AM的频谱相 激函数之外,这个频谱与抑制载波的AM的频谱相 同。
AM信号解调的特点 AM信号解调的特点
此信号的频谱通过理想低通滤波器,其截止频 此信号的频谱通过理想低通滤波器, 幅值为2 率 ωC ≥ B,幅值为2,就可取出 F( jω),把高频 分量滤除, 分量滤除,从而恢复原信号 f (t) 。 由图可见, 由图可见,接收端与发送端的载波信号是同频 率同相位的。 率同相位的。它要求调制器与解调器的载波信 号准确同步。 号准确同步。 下图是发射载波AM的解调方案 的解调方案。 下图是发射载波AM的解调方案。
(高频电子线路)第七章频率调制与解调
02
频率调制
定义与原理
定义
频率调制是一种使载波信号的频率随 调制信号线性变化的过程。
原理
通过改变振荡器的反馈电容或电感, 使其等效谐振频率随调制信号变化, 从而得到调频信号。
调频信号的特性
线性关系
调频信号的频率与调制信号成线性关系, 即f(t)=f0+m(t),其中f(t)是瞬时频率, f0是载波频率,m(t)是调制信号。
介绍了多种调频解调的方法,包括相 干解调和非相干解调,并比较了它们
的优缺点和应用场景。
调频信号的特性分析
详细分析了调频信号的频率、幅度和 相位特性,以及这些特性如何影响信 号的传播和接收。
频率调制与解调的应用
讨论了频率调制与解调在通信、雷达、 电子战等领域的应用,并给出了具体 的应用实例。
未来研究方向与挑战
带宽增加
调频指数
调频指数是调频信号的最大瞬时频率与 载波频率之差与调制信号幅度之比的绝 对值,表示调频信号的频率变化范围。
调频信号的带宽随着调制信号的增加 而增加,因此具有较好的抗干扰性能。
调频电路实现
01
02
03
直接调频电路
通过改变振荡器元件的物 理参数实现调频,具有电 路简单、调频范围较窄的 优点。
调频系统集成化 与小型化研究
随着电子技术的进步,未来 的研究将更加注重调频系统 的集成化和小型化。这涉及 到系统架构的设计、电路的 优化以及新型材料的应用等 多个方面。
调频技术的跨领 域应用探索
除了传统的通信和雷达领域 ,频率调制与解调技术还有 望在物联网、无人驾驶、生 物医疗等领域发挥重要作用 。未来的研究将探索这些新 的应用场景,并寻求技术与 具体领域的结合点。
电路基础原理数字信号的调制与解调
电路基础原理数字信号的调制与解调数字信号的调制与解调是电路基础原理中的重要概念。
调制是将数字信号转化为模拟信号的过程,解调则是将模拟信号还原为数字信号的过程。
本文将介绍数字信号的调制与解调原理及其应用。
一、调制的基本原理调制是为了将数字信号传输到远距离时,能够克服传输噪声、提高信号质量而进行的一种技术。
数字信号经过调制后,会转化为模拟信号,其特点是连续的波形。
1.频移键控调制(FSK)FSK是一种基本的数字信号调制方式,它通过改变信号的频率来表示不同的数字。
在FSK中,使用两个频率来分别代表二进制的0和1。
2.相移键控调制(PSK)PSK是一种通过改变信号的相位来表示不同的数字的调制方式。
在PSK中,使用不同的相位来表示二进制的0和1。
3.正交幅度调制(QAM)QAM是一种通过改变信号的振幅和相位来表示不同的数字的调制方式。
在QAM中,通过改变信号的振幅和相位的组合来表示多个二进制数字。
二、解调的基本原理解调是将模拟信号还原为数字信号的过程,其目的是还原接收到的信号,以便后续的数字信号处理。
1.频移解调频移解调是将经过FSK调制的信号还原回数字信号的过程。
解调器需要检测接收到的信号的频率,并根据频率的不同判断出二进制的0和1。
2.相移解调相移解调是将经过PSK调制的信号还原为数字信号的过程。
解调器需要检测接收到信号的相位,并根据相位的变化来判断出二进制的0和1。
3.幅度解调幅度解调是将经过QAM调制的信号还原为数字信号的过程。
解调器需要测量接收到信号的振幅和相位,并根据这些信息来判断出二进制的0和1。
三、调制与解调的应用调制与解调技术广泛应用于通信领域,特别是在无线通信中。
1.无线电广播无线电广播使用调制技术将音频信号转化为无线电信号,并通过无线电波传输到接收器中,然后通过解调技术将无线电信号还原为音频信号。
2.移动通信移动通信中的调制与解调技术被用于将数字信号通过无线电信道传输,以实现声音、图像和数据的无线传输。
叙述调制解调器概念及工作原理
叙述调制解调器概念及工作原理
调制解调器(Modem)是一个将数字信号转换为模拟信号(调制)传输到远程地点,并将接收到的模拟信号转换为数字信号(解调)的设备。
调制解调器主要用于将计算机或其他数字设备产生的数字数据信号传送到远程位置,例如通过电话线传输数据。
调制解调器的工作原理如下:
1. 调制(Modulation):调制器接收到来自数字设备的二进制数据信号,并将其转换为模拟信号。
这通常通过将数字信号与一个称为载波信号的高频调制信号相乘来实现。
这样可以使数字信号能够在模拟信道上传输。
2. 传输(Transmitting):调制器将调制后的模拟信号通过传输介质(如电话线)发送到远程设备。
传输介质可以是电线、光纤或无线电波等。
3. 解调(Demodulation):远程设备上的解调器接收到发送的模拟信号,并将其转换为数字信号。
解调器使用与发送端相同的载波信号和调制技术来反向操作。
解调器提取并恢复出原始的数字信号。
4. 接收(Receiving):解调后的数字信号传送到接收设备,如计算机或其他数字设备。
调制解调器的速度通常以位每秒(bps)来衡量。
调制解调器的速度取决于多个因素,包括调制技术、传输介质的带宽和信
号噪声等。
调制解调器在互联网和通信领域起着重要的作用,它们允许计算机之间进行数据交换,并连接到因特网。
调制与解调
ea
ec
O
f0 fn
O
f
f
O
t
t
ec
O
t
t
(b)频率电压特性曲线
传感器与测试技术
传感器与测试技术
O
t
调制与解调
调制是指利用被测缓变信号来控制或改变高频振荡波的某个参数(幅值、
e
频率或相位),使其按被测信号的规律变化,以利于信调号制的信放号 大与传输。
一般把控制高频振荡波的缓变信号称为O 调制波;载送缓变信号的高频t
振荡波称为载波;经过调制的高频振荡波称为已调波,根据调制原理不同,
x(t)
x A (t )
xm(t)
x 0(t )
A
O
tO
tO
tO
t )
x(t)
A
tO
tO
tO
tO
t
x A (t )
A tO
3.相敏检波
y(t)
相敏检波常用的有半波相敏检波和全
O
波相敏检波。图a所示为一开关式全波相
t
敏检波电路。输出信号x0(t)如图b所示。
u(t)
f0
O
f0
f
原来调制时的相同而使第二 次“搬移”后的频谱有一部 分“搬移”到原点处,所以 频谱中包含有与原调制信号 相同的频谱和附加的高频频
Y(f )
1 2
f0
O
X m( f )Y ( f )
1
2
f0
f
低通滤波
谱两部分,其结果如图所示。
2 f 0
fc
O
fc
fm fm
同步解调
2f0 f
2.包络检波
包络检波在时域内的流程如图所示。调幅波经过包络检波(整流、滤 波)就可以恢复偏置后的信号xA(t),最后再将所加直流分量去掉,就可以 恢复原调制信号x(t)。
第2讲 调制与解调
图3-45 GMSK信号的功率谱密度
表3-2给出了作为BbTb函数的GMSK 信号中包含给定功率百分比的射频带宽。
表3-2
Bb T b 0.2 0.25 0.5 ∞
GMSK信号中包含给定功率百分比的射频带宽
90% 0.52Rb 0.57Rb 0.69Rb 0.78Rb 99% 0.79Rb 0.86Rb 1.04Rb 1.20Rb 99.9% 0.99Rb 1.09Rb 1.33Rb 2.76Rb 99.99% 1.22Rb 1.37Rb 2.08Rb 6.00Rb
最小频差(最大频偏):
当ak 1 当ak 1
(k 1)Ts t kTs
1 f f 2 f 1 2Ts
即最小频差等于码元速率的一半 设1/Ts=fs,则调频指数
h
f 1 1 Ts f s 2Ts 2
h=0.5时,满足在码元交替点相位连续的条件,也是频移键控为保证良 好的误码率性能所允许的最小调制指数,且此时波形的相关系数为 0.5, 待传送的两个信号是正交的。
图3-22 MQAM信号相干解调原理图
3.1.3 数字频率调制
一、 二进制频移键控
用二进制数字基带信号去控制载波 频率称为二进制频移键控(2FSK)。
如图3-25所示,设输入到调制器的比 n ∞~ ∞ 。 特流为{ a n },an 1, 2FSK的输出信号形式为
图3-25 2FSK信号的产生
图3-35 MSK信号调制器原理框图
MSK信号属于数字频率调制信号,因 此一般可以采用鉴频器方式进行解调,其 原理图如图3-38所示。
图3-38 MSK鉴频器解调原理框图
相干解调的框图如图3-39所示。
图3-39 MSK信号相干解调器原理框图
信号调制解调
由上式可见,除了由于载波分量而在处形成两个冲激函数之外,这个频谱与抑制载波的AM的频谱相同。
2。幅度调制在中、短波广播和通信中使用甚多。幅度调制的不足是抗干扰能力差,因为各种工业干扰和天电干扰都会以调幅的形式叠加在载波上,成为干扰和杂波
四.解调的原理
解调是从携带消息的已调信号中恢复消息的过程。在各种信息传输或处理系统中,发送端用所欲传送的消息对载波进行调制,产生携带这一消息的信号。接收端必须恢复所传送的消息才能加以利用,这就是解调。解调是调制的逆过程。调制方式不同,解调方法也不一样。与调制的分类相对应,解调可分为正弦波解调(有时也称为连续波解调)和脉冲波解调。正弦波解调还可再分为幅度解调、频率解调和相位解调,此外还有一些变种如单边带信号解调、残留边带信号解调等。同样,脉冲波解调也可分为脉冲幅度解调、脉冲相位解调、脉冲宽度解调和脉冲编码解调等。对于多重调制需要配以多重解调。
过程:
输入信号经过乘法器与cos0t相乘,得到已调信号fS(t)=m(t)cos0t,其频谱为FS(j)=½{F[j(-0)]+F[j(+0)]}
而h(t)为一带阻滤波器,仅保留有效的频带。
输出得到频谱为 的信号
由此可见,原始信号的频谱被搬移到了频率较高的载频附近,达到了调制的目的。
已调信号的频谱表明原信号的频谱中心位于上,且关于对称。它是一个带通信号。
解调过程除了用于通信、广播、雷达等系统外还广泛用于各种测量和控制设备。例如,在锁相环和自动频率控制电路中采用鉴相器或鉴频器来检测相位或频率的变化,产生控制电压,然后利用负反馈电路实现相位或频率的自动控制。
五.调制解调的应用
调制在无线电发信机中应用最广。图1为发信机的原理框图。高频振荡器负责产生载波信号,把要传送的信号与高频振荡信号一起送入调制器后,高频振荡被调制,经放大后由天线以电磁波的形式辐射出去。其中调制器有两个输入端和一个输出端。这两个输入分别为被调制信号和调制信号。一个输出就是合成的已调制的载波信号。例如,最简单的调制就是把两个输入信号分别加到晶体管的基极和发射极,集电极输出的便是已调信号。
调制与解调的基本原理
调制与解调的基本原理
调制是将信号转化为适用于传输的波形的过程,而解调则是从传输信号中恢复原始信号的过程。
调制和解调是无线通信系统中的两个基本环节。
调制的基本原理是将原始信号(也称为基带信号)与一个高频信号(也称为载波信号)相乘,从而将基带信号的频谱移到载波信号的频带内。
通过调制,会改变原始信号的某些特征,如频率、幅度或相位。
常见的调制方式包括:
1. 幅度调制(AM):将原始信号的幅度变化转化为载波信号的幅度变化。
在AM 调制中,原始信号的幅度决定了载波信号的幅度的变化,从而实现信息传输。
2. 频率调制(FM):将原始信号的频率变化转化为载波信号的频率变化。
在FM 调制中,原始信号的频率决定了载波信号的频率的变化,从而实现信息传输。
3. 相位调制(PM):将原始信号的相位变化转化为载波信号的相位变化。
在PM 调制中,原始信号的相位决定了载波信号的相位的变化,从而实现信息传输。
解调的基本原理是将调制信号中的信息提取出来,恢复为原始信号。
解调方法与调制方式相对应。
常见的解调方式包括:
1. 幅度解调(AM):通过提取调制信号的幅度变化,恢复原始信号的波形。
2. 频率解调(FM):通过提取调制信号的频率变化,恢复原始信号的波形。
3. 相位解调(PM):通过提取调制信号的相位变化,恢复原始信号的波形。
需要注意的是,调制和解调过程中可能会出现噪声和失真现象,需要采取相应的技术手段来提高信号质量和还原效果。
ssb调制与解调原理
SSB(单边带)调制与解调的原理是基于AM(调幅)的进一步改进。
在AM中,载波信号与音频信号相混频,然后产生的信号通过一个低通滤波器进行过滤,得到的就是AM 信号。
然而,在SSB中,我们移除了下边带(LSB)和载波,只发送上边带(USB)。
这使得带宽减半,效率提高到近100%。
SSB调制原理:
1.基带信号m(t)和高频载波相乘实现DSB信号的调制。
2.DSB信号经过一个滤波器生成SSB。
3.为了实现这一过程,带通滤波器被添加到系统中移除额外的边带。
SSB解调原理:
1.SSB信号经过信道传输之后,再和载波相乘。
2.经过低通滤波器后恢复出原始基带信号。
3.在接收系统中,接收机有自己的载波信号(来自本地振荡器),用以还原单边带信号到原始调幅信号。
SSB的优势:
1.带宽减少了一半,使得在同一频带中可以放置双倍的频道数量(或电台)。
2.除非正在发送信息,否则没有传输载波,这有利于隐蔽信号并提高效率。
典型的AM系统传输存在两个相同边带的问题,为了防止解调时失真,其调制效率上限为33%。
而SSB系统中没有这个问题,其效率近100%。
总的来说,SSB调制与解调原理是基于AM的进一步优化,通过移除一个边带和载波,使得带宽减少了一半,同时提高了传输效率。
AM调制与解调
第一章 调制解调的基本原理第一节 调制的基本原理“调制”就是使信号f(t)控制载波的某一个或某些参数(如振幅、频率、相位等),是这些参数按照信号f(t)的规律变化的过程。
载波可以是正弦波或脉冲序列。
以正弦型信号作载波的调制叫做连续波调制。
调制后的载波就载有调制信号所包含的信息,称为已调波。
对于连续波调制,已调信号可以表示为())(cos )()t (t ot t A ϑωϕ+=它有振幅频率和相位三个参数构成。
改变三个参数中的任何一个都可以携带同样的信息。
因此连续波的调制可分为调幅、调相、和调频。
调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易以电磁波形势辐射的较高范围;此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。
按照被调制信号参数的不同,调制的方式也不同。
如果被控制的参数是高频振荡的幅度,则称这种调制方式为幅度调制,简称调幅;如果被控制的参数是高频振荡的频率或相位,则称这种调制方式为频率调制或相位调制,简称调频或调相(调频与调相又统称调角)。
振幅调制是一种实用很广的连续波调制方式。
幅度调制的特点是载波的频率始终保持不变,它的振幅却是变化的。
其幅度变化曲线与要传递的低频信号是相似的。
它的振幅变化曲线称之为包络线,代表了要传递的信息。
第二节解调的基本原理解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。
调制过程是一个频谱搬移的过程,它将低频信号的频谱搬移到载频位置。
如果要接收端回复信号,就要从已调信号的频谱中,将位于载频的信号频谱再搬回来。
解调分为相干解调和非相干解调。
相干解调是指为了不失真地恢复信号,要求本地载波和接收信号的载波必须保持同频同相。
非相干解调主要指利用包络检波器电路来解调的。
包络检波电路实际上是一个输出端并接一个电容的整流电路。
二极管的单向导电性和电容器的充放电特性和低通滤波器滤去高频分量,得到与包络线形状相同的音频信号,见图1.2.3 。
ask、psk、fsk的调制与解调原理
调制和解调是现代通信系统中至关重要的过程,它们可以实现信息的传输和接收。
在数字通信中,有三种常见的调制和解调技术,分别是ask、psk和fsk。
本文将详细讨论这三种调制和解调技术的原理和应用。
一、ASK调制与解调原理1. ASK调制ASK(Amplitude Shift Keying)调制是一种将数字信号转换为模拟信号的调制技术。
在ASK调制中,数字信号被用来控制载波的振幅,当输入信号为1时,振幅为A;当输入信号为0时,振幅为0。
ASK 调制一般用于光纤通信和无线电通信系统。
2. ASK解调ASK解调是将接收到的模拟信号转换为数字信号的过程。
它通常是通过比较接收到的信号的振幅与阈值来实现的。
当信号的振幅高于阈值时,输出为1;当信号的振幅低于阈值时,输出为0。
ASK解调在数字通信系统中有着广泛的应用。
二、PSK调制与解调原理1. PSK调制PSK(Phase Shift Keying)调制是一种将数字信号转换为模拟信号的调制技术。
在PSK调制中,不同的数字信号会使载波的相位发生变化。
常见的PSK调制方式有BPSK(Binary Phase Shift Keying)和QPSK(Quadrature Phase Shift Keying)。
PSK调制在数字通信系统中具有较高的频谱效率和抗噪声性能。
2. PSK解调PSK解调是将接收到的模拟信号转换为数字信号的过程。
它通常是通过比较接收到的信号的相位与已知的相位来实现的。
PSK解调需要根据已知的相位来判断传输的是哪个数字信号。
PSK调制技术在数字通信系统中被广泛应用,特别是在高速数据传输中。
三、FSK调制与解调原理1. FSK调制FSK(Frequency Shift Keying)调制是一种将数字信号转换为模拟信号的调制技术。
在FSK调制中,不同的数字信号对应着不同的载波频率。
当输入信号为1时,载波频率为f1;当输入信号为0时,载波频率为f2。
FSK调制常用于调制通联方式线路和调制调制解调器。
调制 解调 原理
调制解调原理调制和解调是一种通信中常用的技术,用于将信息信号转换成适合传输的信号,并在接收端将其还原为原始的信息信号。
下面简要介绍调制和解调的原理。
调制是指将待传输的信息信号(通常是较低频率的基带信号)与一个高频信号(载波)进行合成,形成一个调制信号,使其频谱范围发生变化并适应传输介质的特性。
调制的方法包括频率调制、相位调制和幅度调制等。
频率调制是通过改变载波的频率来实现的。
常见的频率调制方式有调频(FM)和调频(AM)频率调制。
在调频中,待传输的信息信号改变载波的频率;在调幅中,待传输的信息信号改变载波的幅度。
调频和调幅都能够将信息信号编码在不同的频率分量上,然后通过传输媒介传输。
相位调制是通过改变载波的相位来实现的。
常见的相位调制方式有二进制相移键控(BPSK)和四进制相移键控(QPSK)等。
相位调制将信息信号编码在不同的相位上,然后通过传输媒介传输。
相位调制的优点是信号带宽利用率高,适用于抗干扰能力较强的通信系统。
幅度调制是通过改变载波的幅度来实现的。
常见的幅度调制方式有调幅(AM)和振幅键控(ASK)等。
幅度调制将信息信号编码在载波的幅度上,然后通过传输媒介传输。
幅度调制的特点是实现简单,适用于简单的通信系统。
解调是调制的逆过程,将接收到的调制信号还原为原始的信息信号。
解调的过程与调制的过程相反,根据调制信号的特点,提取出信息信号并进行恢复。
解调的方法包括频率解调、相位解调和幅度解调等,与调制方式相对应。
总之,调制和解调技术是实现信息信号传输的基础。
通过调制,能够将信息信号编码在能够适应传输介质的信号中,从而实现远距离传输;通过解调,能够将接收到的调制信号还原为原始的信息信号,以便进行后续处理和应用。
正交调制与解调的基本原理
正交调制与解调的基本原理
正交调制与解调是一种常用的通信方式,它通过将原始信号分为两个正交的子信号进行调制和解调,以提高信号传输的可靠性和抗干扰性。
正交调制的基本原理是将原始信号分解为两个正交的基带信号,分别称为I(Inphase)信号和Q(Quadrature)信号。
其中,I信号与原始信号的相位相同,Q信号与原始信号的相位相差90度。
这种正交的关系使得I和Q信号可以独立地进行调制和解调。
正交调制的常用方法有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
其中,幅度调制是通过改变I、Q信号的幅度来调制信号;频率调制是通过改变I、Q信号的相位来调制信号;相位调制是通过改变I、Q信号的相位差来调制信号。
解调的过程是正交调制的逆过程,即将接收到的调制信号还原为原始信号。
解调的基本原理是通过与调制信号正交的信号进行乘法运算,再进行低通滤波器处理,将高频分量滤除,得到还原的原始信号。
具体的解调方法与调制方法相对应,如幅度调制使用的解调方法是幅度解调(AM)、频率调制使用的解调方法是频率解调(FM)、相位调制使用的解调方法是相位解调(PM)。
调制与解调的名词解释
调制与解调的名词解释调制与解调是通信领域中常用的两个术语,它们在现代通信系统中起着至关重要的作用。
调制(Modulation)是将信号通过某种方式转换成适合传输的波形或电信号的过程,而解调(Demodulation)则是将接收到的信号恢复成原始信息的过程。
本文将详细解释调制与解调的概念、原理和应用。
一、调制的概念和原理在通信中,我们通常需要通过某种载体来传输信息,如电磁波、电信号等。
而原始的信息通常是以低频的模拟信号形式存在,无法直接传输。
因此,调制就是将这种模拟信号转换成适合传输的高频信号或数字信号的过程。
调制的过程中,一方面需要对原始信号进行特定的变换,以便与载体进行合理的组合。
另一方面,我们也需要确定合适的调制方式,包括调制信号频率、调制波形的选择等。
常见的调制方式包括:幅度调制(AM)、频率调制(FM)、相位调制(PM)等。
以AM调制为例,信号的幅度变化与载波进行叠加,形成调制后的信号。
而FM调制是通过调整信号频率的大小来实现。
PM调制则是通过调整信号的相位来实现。
二、调制的应用调制广泛应用于各个领域的通信系统中,我们可以从音频、视频、无线通信等方面看到其应用的重要性。
在音频领域,调幅广播(AM Broadcast)就是一种常见的调制应用。
通过将音频信号进行AM调制,可以将音频信息传播到远距离的收音机中,使得听众能够收听到特定的广播内容。
在视频领域,调制也扮演着重要角色。
例如,将电视信号调制成相应的频段,并经过天线传输到电视机中,实现电视节目的传递和播放。
无线通信中的调制也是不可或缺的。
通过将原始数据信号进行数字调制,然后用高频载波进行传输,以实现无线数据的传输和接收。
再如,手机中的蜂窝网络通信,也是通过调制方式将音频和数据信号传输到基站,然后转发给目标设备。
三、解调的概念和原理解调是调制的逆过程,即将调制后的信号恢复成原始信息的过程。
解调器是实现解调的关键设备。
解调的过程中,首先需要将接收到的信号经过滤波去除噪声和干扰。
电磁波的调制与解调技术
电磁波的调制与解调技术电磁波的调制与解调技术是现代通信系统中至关重要的一部分。
通过调制,我们可以将信息信号转换为适合传输的电磁波信号,而解调则是将接收到的电磁波信号转换回原始的信息信号。
本文将探讨电磁波的调制与解调技术,介绍常见的调制方式以及其原理。
一、调制的概念与原理调制是指将信息信号与载波信号相结合,通过改变载波信号的某些特性,将信息信号转换为适合传输的信号形式。
通常情况下,信息信号是低频信号,而载波信号是高频信号。
调制的主要目的是将低频信号转换为高频信号,以便能够进行远距离传输。
常见的调制方式包括调幅(AM)、调频(FM)和调相(PM)三种。
调幅是通过改变载波信号的振幅来携带信息信号,调频是通过改变载波信号的频率来传输信息信号,而调相则是通过改变载波信号的相位来传递信息信号。
在调制的过程中,需要使用调制器来实现信号的转换。
调制器可以分为模拟调制器和数字调制器两种类型。
模拟调制器利用模拟电路来改变载波信号的某些特性,而数字调制器则利用数字信号处理技术来进行信号的处理和转换。
二、调制技术的应用调制技术在现代通信系统中有着广泛的应用。
无线通信、广播电视、移动通信等领域都离不开调制技术的支持。
1. 无线通信:无线通信系统中,调制技术用于将语音、图像等信息转换为电磁波信号进行传输。
常见的调制方式是调幅和调频。
调幅在调制过程中改变载波信号的振幅来传输信息信号,而调频则通过改变载波信号的频率来传递信息信号。
2. 广播电视:广播电视系统利用调制技术将音频和视频信号转换为电磁波信号进行传播。
调幅是广播电视系统中常用的调制方式。
在调幅过程中,音频信号被用于改变载波信号的振幅,从而携带音频信息。
3. 移动通信:移动通信系统中,调制技术用于将语音、数据等信息转换为电磁波信号进行传输。
调频和调相是常见的调制方式。
调频通过改变载波信号的频率,将语音和数据信号转换为适合无线传输的信号形式。
调相则是通过改变载波信号的相位来传递信息信号。
通信原理实验二
通信原理实验二实验二:调制与解调一、实验目的1. 理解调制与解调的基本概念;2. 掌握调幅(AM)、调频(FM)以及解调的原理;3. 实现AM、FM的信号调制与解调。
二、实验原理1. 调制原理调制是指在通信过程中将信息信号调制到载波上,以便传输的过程。
调制是将信息信号的某些特征参数随时间变化的过程。
1.1 调幅(AM)调制调幅是指通过改变载波的振幅来传输信息的一种调制方式。
调幅信号能够改变载波的背景亮度,使其随着信息信号的变化而变化。
1.2 调频(FM)调制调频是通过改变载波的频率来传输信息的一种调制方式。
调频信号能够改变载波的频率,使其频率随着信息信号的变化而变化。
2. 解调原理解调是指将调制信号中的信息还原出来的过程。
解调过程是调制的逆过程。
2.1 调幅(AM)解调调幅解调是从调幅信号中还原出原始信号的过程。
调幅信号在传输过程中会叠加一定的噪声,因此解调时需要采取一定的处理方法,如包络检波、同步检波等。
2.2 调频(FM)解调调频解调是从调频信号中还原出原始信号的过程。
调频信号在传输过程中对噪声具有较好的抵抗能力,因此解调过程较为简单,常采用频率鉴别解调等方法。
三、实验内容1. 实现AM调制与解调2. 实现FM调制与解调四、实验步骤1. 搭建AM调制电路,将音频信号与载波信号进行调制;2. 实现AM解调,将调制后的信号还原为音频信号;3. 搭建FM调制电路,将音频信号与载波信号进行调制;4. 实现FM解调,将调制后的信号还原为音频信号;5. 测试与观测调制与解调过程中的信号波形变化。
五、实验数据记录与分析(根据实际实验情况填写数据并进行相应的分析)六、实验总结通过本次实验,我们学习了调制与解调的原理,并实际搭建电路进行了AM和FM的调制与解调。
通过观测信号波形变化,我们加深了对调制与解调过程的理解,并掌握了相关的实验操作技巧。
本次实验对我们理解通信原理中的调制与解调起到了很好的辅助作用。
调制与解调的原理
调制与解调的原理
调制和解调是无线通信中的关键技术,用于将数字信号转换为模拟信号进行传输,以及将模拟信号转换为数字信号进行接收和处理。
调制(Modulation)是将待传输的数字信号通过调制
技术转化为模拟信号的过程,解调(Demodulation)则是将接
收到的模拟信号再转化回数字信号的过程。
调制的原理是通过改变模拟载波的某些特性来传输数字信息。
常用的调制方式有幅度调制(AM)、频率调制(FM)和相
位调制(PM)。
在幅度调制中,通过改变载波的振幅来携带
数字信息;在频率调制中,通过改变载波的频率来传输数字信息;在相位调制中,通过改变载波的相位来携带数字信息。
这样,数字信号与载波相结合,形成可传输的模拟信号,即调制信号。
解调的原理则是将接收到的调制信号还原为原始的数字信号。
解调过程与调制方式相对应,使用相同的技术逆向处理。
对于幅度调制,解调器通过测量信号的振幅来恢复原始的数字信号;对于频率调制,解调器测量信号的频率变化并转换为对应的数字信息;对于相位调制,解调器则测量信号的相位变化以还原数字信号。
通过解调过程,根据特定的调制方式,将接收到的模拟信号还原为数字信号,以便进一步处理和解码。
调制和解调技术在无线通信中起着重要的作用,它们通过将数字信号转换为模拟信号来适应无线传输的特性,并在接收端将模拟信号转换为数字信号,实现无线传输中的信息传递和处理。
调制与解调的概念
调制与解调的概念调制与解调是通信技术中重要的概念,它们是实现信息传输的关键技术。
在通信系统中,调制与解调的作用是将信息信号转换成一定的形式,以便能够在传输媒介中传输。
本文将从调制与解调的基本概念、调制与解调的分类、调制与解调的实现原理以及调制解调器的应用等方面进行介绍。
一、调制与解调的基本概念调制是指把信息信号(如语音、图像等)按照一定的规律转换成调制信号,使得信息信号能够适应传输媒介的特性,以便能够在传输媒介中传输。
调制的过程就是在信号中加入一定的高频载波信号,使得信息信号的频率被调制到高频载波信号的频率范围内,从而形成调制信号。
解调是指在接收端将调制信号还原成原始信息信号的过程。
解调的过程就是将接收到的调制信号中的高频载波信号去除,从而得到原始的信息信号。
解调是调制的逆过程,也是通信系统中非常重要的一个环节。
二、调制与解调的分类调制和解调可以根据不同的分类方式进行划分。
1. 按照信号的调制方式分类调制和解调可以按照信号的调制方式进行分类,常见的调制方式有模拟调制和数字调制。
模拟调制是指将模拟信号进行调制,将其转换成模拟调制信号。
模拟调制分为调幅、调频和调相三种方式。
调幅是指将模拟信号的幅度加到载波信号上,形成调幅信号;调频是指将模拟信号的频率加到载波信号上,形成调频信号;调相是指将模拟信号的相位加到载波信号上,形成调相信号。
数字调制是指将数字信号进行调制,将其转换成数字调制信号。
数字调制分为ASK、FSK、PSK、QAM等多种方式。
ASK是指将数字信号转换成调幅信号;FSK是指将数字信号转换成调频信号;PSK是指将数字信号转换成调相信号;QAM是指将数字信号同时转换成调幅和调相信号。
2. 按照载波信号的性质分类调制和解调可以按照载波信号的性质进行分类,常见的载波信号有连续波和脉冲波。
连续波调制是指将信息信号加到连续的正弦波或余弦波上,形成连续波调制信号。
连续波调制主要包括调幅、调频和调相三种方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+1 , 以 P an = −1 , 以 1− P
cosωc t (发"+1"→"0"相) = − cosωc t (发"−1"→"π"相)
2009 Copyright 中国矿业大学 李世银
波形
5
Communication
Ch4 调制解调
受键控的载波相位按 “” 0 相位 → 1 基带脉冲而改变的数字调 如, “ 制方式。 制方式。 π 相位→ 0”
2009 Copyright
中国矿业大学 李世银
8
图
Communication
2PSK系统的原理 2PSK系统的原理
Ch4 调制解调
发送数据 1
0
0
1
1
1
0
2PSK 载波
相乘输出 低通输出
判决输出
1
0
0
1
1
1
9
0
载波反相
2009 Copyright
中国矿业大学 李世银
Communication
2PSK系统的原理 2PSK系统的原理
中国矿业大学 李世银
表达式
2009 Copyright
4
Communication
Ch4 调制解调
当基带数字信号采用幅度为1宽度为T 当基带数字信号采用幅度为1宽度为 TS的矩 形脉冲的双极性非归零码表示时, 形脉冲的双极性非归零码表示时,时域表示式为
S2PSK (t ) = ∑an g(t − nTs) cosωct n
利用前后相邻码元载波的相对相位表示数 字信息的调制方式。 字信息的调制方式。 即用载波相位相对变化传 送数字信息, 送数字信息,所以又称为相对调相。 相对调相。 令为当前码元初相与前一码元初相之差, 令为当前码元初相与前一码元初相之差 , DPSK调制的一种规则为 则2DPSK调制的一种规则为
"" π →数字信息 1 相位变化: 相位变化: = ∆Φ " 0 →数字信息 0"
t
ω t + K t m (τ )dτ S FM (t ) = cos c f ∫ −∞ 根据基带信号 m(t) 不同分为模拟相位调制 FM 和数字 频率调制( 如图所示。 频率调制(频移键控FSK),如图所示。 m(t) 1 1 0 1 数字 0
信号 t
SFM(t)
2FSK t t
载波反向时
2009 Copyright
中国矿业大学 李世银
Communication
2PSK系统的原理 2PSK系统的原理
Ch4 调制解调
发送数据 0
1
0
1
0
0
1
2DPSK 载波
相乘输出 低通输出
判决输出 差分输出
0 1
1
1 0
0 1
0 0
0 0
18
1 1
功率谱
2009 Copyright
中国矿业大学 李世银
Communication
S M (t ) = A (t ) cos [ω c t + ϕ (t )] 如果为φ(t)常数 A(t)随m(t)成比例变化 常数, 成比例变化, 如果为φ(t)常数,A(t)随m(t)成比例变化,则 称为幅度调制 幅度调制。 称为幅度调制。 根据基带信号不同分为模拟幅度调制和数字 幅度调制(振幅键控ASK) 如图4 所示。 幅度调制(振幅键控ASK),如图4-1所示。
0
2PSK t
(a) PM
2009 Copyright
(b) 2PSK
中国矿业大学 李世银
2
频率调制
Communication Ch4 调制解调 SM (t ) = A(t ) cos[ωct + ϕ(t )] 已调信号的瞬时频率偏移随基带信号比例变化时, 已调信号的瞬时频率偏移随基带信号比例变化时 , 我们称之为频率调制 频率调制。 我们称之为频率调制。即 dϕ(t ) = K f m(t ), 或ϕ(t ) = K f ∫ m(t )dt
Ch4 调制解调
0
0
1
1
1
0
相对码 载 波 0相位
0
0
0
1
0
1
1
2DPSK
π
0
对相对码按 0 2PSK规则进行调 π
2009 Copyright
1 相对码“ 相位 → 相对码“ ” 相对码“ 0 相位 → 相对码“ ”
14
调制方法
中国矿业大学 李世银
Communication
4.3.3 2PSK系统的原理 2PSK系统的原理
双极性 差分码 不归零
cosωC t
S22DPSK (tt ) S PSK
b’. 2PSK b. 2DPSK 键控调制 键控调制
0
S(t )
2009 Copyright
π
差分码变换 St
中国矿业大学 李世银
S2PSK (t ) (t ) S2DPSK
()
15
解调
Communication
2DPSK系统的原理 2DPSK系统的原理
这种现象通常称为2PSK的 这种现象通常称为2PSK的“倒π” 现象或 反向工作”现象。 现象或“反向工作”现象。
2009 Copyright
中国矿业大学 李世银
11
2DPSK
Communication
4.3.3 2PSK系统的原理 2PSK系统的原理
Ch4 调制解调
2)2DPSK(差分相移键控) DPSK(差分相移键控)
Communication
2PSK系统的原理 2PSK系统的原理
Ch4 调制解调
4)2PSK功率谱特性 PSK功率谱特性
1 , 以 P S2ASK (t ) = ∑an g(t − nTs) cosωc t an = 0 , 以 1− P n
+1 , 以 P S2PSK (t ) = ∑an g(t − nTs) cosωc t an = −1 , 以 1− P n
2PSK系统的原理 2PSK系统的原理
Ch4 调制解调
2PSK信号相干解调 PSK信号相干解调
由于绝对移相方式是以某一相位作为基准 的,因此解调时在接收端也必须有同样一个固 定基准相位作为参考。 定基准相位作为参考。即采用相干解调
S2PSK (t )
BPF
鉴相器 LPF 本地载波 判决 定时脉冲 数据 输出
2009 Copyright 中国矿业大学 李世银
19
FDM
(a) FM
2009 Copyright
(b) 2FSK
中国矿业大学 李世银
3
幅度调制
Communication
4.3.3 二进制相移键控
an =1 概 为 , 率 P
Ch4 调制解调
1)2PSK调制原理 PSK调制原理
1 , m(t ) = an g(t − nTs ) = 0,
S2PSK (t ) = cos ωct + K pm(t )
S PM (t ) = cos ω c t + K p m (t )
(
)
分为模拟相位调制PM 和数字相位调制 分为模拟相位调制 PM和数字相位调制 ( 相 和数字相位调制( 移键控PSK、DPSK) 如图4 所示。 移键控PSK、DPSK),如图4-2所示。
m(t)
t
SPM(t)
1 1 数字 信号
0 0 1 0
Ch4 调制解调
相对调相信号 首先对数字基带信号进行差分编码 的 产 生 过 程 即由绝对码变为相对码 , 然后再进 即由绝对码变为相对码,
行绝对调相。也可以直接采用模拟调制方法。 行绝对调相。也可以直接采用模拟调制方法。 a. 2PSK a’. 2DPSK S(t ) 差分 模拟调制 模拟调制 码变换 载波 移相
LPF
判决 定时脉冲
数据 输出
(b) 差分相干解调 差分相干解调
中国矿业大学 李世银
16
相干解调波形
Communication
2DPSK系统的原理 2DPSK系统的原理
Ch4 调制解调
发送数据 0
1
0
1
0
0
1
2DPSK 载波
相乘输出 低通输出
判决输出 差分输出
1 1
0 0
0
1 1
1 0
1 0
17
0 1
数学表达式形式上完全一样,只是a 的取值不同。 数学表达式形式上完全一样,只是an的取值不同。 因此,参照2ASK功率谱可得到 PSK信号功 因此,参照2ASK功率谱可得到2PSK信号功 功率谱可得到2 率谱也只是基带数字信号频谱的线性搬移。 率谱也只是基带数字信号频谱的线性搬移。
B2PSK = B2DPSK = 2 fs
1 t t t t 0 1 1 0
Ch4 调制解调
t t
模拟调制
2009 Copyright
数字调制
中国矿业大学 李世银
1
相位调制
Communication Ch4 调制解调 SM (t ) = A(t ) cos[ωct + ϕ(t )]
如果已调信号的瞬时相位偏移随基带信号比 例变化时,我们称之为相位调制 相位调制。 例变化时,我们称之为相位调制。即 ϕ (t ) = K p m (t )
(
an = 0, 概 为 − P 率 1
cos ωct + K p , an= 1,以概率 P = cos(ωct ) , an= 0,以概率 1− P
当相移常数K 时 当相移常数 p=π时,