压敏电阻的响应时间
压敏电阻参数说明书,压敏电阻都有哪些参数?
压敏电阻参数说明书,压敏电阻都有哪些参数?压敏电阻最重要的几个参数包括:压敏电压、通流容量、结电容、响应时间等,压敏电阻是一种限压型保护器件,利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。
压敏电阻参数说明(1)压敏电压(U1mA):当1mA的电流通过压敏电阻时所对应的电压,常用U1mA表示。
压敏电压的误差范围一般为±10%,在实验与实际操作过程中,也常用压敏电压从正常值下降10%以上来作为压敏电阻失效的判断依据。
(2)通流量(IP):也被称为最大冲击电流,指压敏电阻在8/20μs波下所能承受的最大冲击电流峰值。
在技术规格书中通常都给出了冲击一次的IP值。
注意:对压敏电阻进行冲击试验时,随着所要进行的冲击次数的增加,每次所施加的冲击电流要相应地减小。
(3)最大持续工作电压(Uac/Udc):指压敏电阻在正常工作下能够持续承受的最大交流电压(Uac)/最大直流电压(Udc)。
(4)漏电流(IL):指当施加给压敏电阻以最大直流电压(Udc)时,流过电阻的电流。
实际应用中,我们比较关心漏电流的稳定性。
在冲击试验或者高温条件下其变化率不超过一倍即认为其是稳定的。
(5)非线性指数(α):指电压的变化对电流的影响能力。
I=KUα或α=loglog由前式可见,α越大表明电压的变化对电流的影响能力越大,非线性特性越好。
由后式可见,α是伏安特性上各点斜率的倒数,特性越平坦的地方,α越大(漏电流区和饱和区α=1,又称低α区)。
用仪器测量时,一般设定I2=1mA,I1=0.1mA,所以αT=1/log(U1mA/U0.1mA) 。
(6)额定功率(Pm):指压敏电阻再输问下承受多次冲击,且歌词冲击之间间隔时间较短,因而又热累积效应的情况下,能够承受的最大平均功率。
尽管压敏电阻能承受很大的脉冲功率,但能承受的平均功率却很小。
怎么识别压敏电阻上的参数压敏电阻的参数识别问:我有一些压敏电阻,上面有这样的一些参数压敏电阻的识别问:LKD34S621KD&144上面的是压敏电阻上的参数 &是一个不认识...答:压敏电阻类型识别2压敏电阻的参数识别,反正样子都...答:VSR - 这颗是压敏电阻(Varistor) 如果是电容,产品名称估计是C 开头的。
压敏电阻的作用型号及其参数
压敏电阻的作用型号及其参数压敏电阻(Varistor)是一种用于电子电路保护的元器件,主要用于抵御过电压或过电流引起的损害。
它的主要作用是在过电压或过电流时,快速降低电路的电压,并将多余的能量转化为热能来保护电路。
压敏电阻的主要构造是由金属氧化物块堆积而成,因此也被称为氧化锌压敏电阻。
它的内部结构是由氧化锌颗粒之间的金属电极构成,当施加正向电压时,氧化锌颗粒之间的电导率较低,电流通过较小,当施加反向电压时,氧化锌颗粒之间存在高电导通道,电流通过较大,从而起到电压调节的作用。
1. 额定电压(Rated Voltage):压敏电阻可承受的最高电压,一般以DC电压表示。
2. 最大脉冲能量(Maximum Pulse Energy):压敏电阻能够吸收的最大脉冲能量,它与电压和时间的乘积有关。
3. 峰值电流(Peak Current):压敏电阻能够承受的最大峰值电流,一般以单位时间内电流的最大值表示。
4. 电压-电流特性曲线(Voltage-Current Characteristic Curve):用于表示压敏电阻在不同电压下的电流变化关系,一般呈非线性曲线。
5. 响应时间(Response Time):压敏电阻由正常工作状态转变为响应状态所需的时间。
6. 温度特性(Temperature Coefficient):压敏电阻在温度变化时电阻值的变化程度,一般以百分比或每度C表示。
1. MOV(Metal Oxide Varistor):是最常见的压敏电阻,广泛应用于电力设备、仪器仪表、通信设备等领域。
2. CTVS(Ceramic Transient Voltage Suppressor):采用陶瓷封装,具有高压响应能力和高能量吸收能力,常用于电网保护和电子设备保护。
3. SMD Varistor:表面贴装型压敏电阻,适用于集成电路和小型电子设备。
4. ZOV(Zinc Oxide Varistor):特点是响应速度快,常用于无线设备的保护。
压敏电阻参数知识大全
压敏电阻参数知识大全1.电阻值:压敏电阻的电阻值是指在无压力作用下的电阻大小。
根据应用的要求,压敏电阻的电阻值可以从几欧姆到几千欧姆不等。
2.公差:压敏电阻的公差是指制造过程中,所允许的电阻值与标准电阻值之间的偏差。
公差范围通常以百分比或绝对值来表示,常见的公差有±5%,±10%等。
3.电压系数:压敏电阻的电压系数是指在额定电压下,其电阻值与电压之间的变化关系。
一般来说,压敏电阻的电压系数越小越好,以保证电路的稳定性。
4.功率系数:压敏电阻的功率系数是指在额定功率下,其电阻值与功率之间的变化关系。
功率系数越小,压敏电阻的耐功率能力越好。
5.响应时间:压敏电阻的响应时间是指压力作用后,电阻值达到目标值所需的时间。
响应时间越短,压敏电阻的反应速度越快。
6.率定数据:压敏电阻的率定数据是指在特定条件下,压力与电阻值之间的关系曲线。
通过率定数据,可以了解不同压力下的电阻值。
7.工作温度范围:压敏电阻的工作温度范围是指可以正常工作的温度范围。
一般来说,压敏电阻的工作温度范围越宽,适应性越强。
8.温度系数:压敏电阻的温度系数是指在不同温度下,电阻值与温度之间的变化关系。
温度系数越小,压敏电阻的稳定性越好。
9.漏电流:压敏电阻的漏电流是指在额定电压下,电阻器终端流过的额外电流。
漏电流越小,压敏电阻的电流特性越好。
10.介电强度:压敏电阻的介电强度是指在给定电压、时间和温度条件下,电阻器两个终端之间可以承受的最大电场强度。
介电强度越高,压敏电阻的耐压能力越强。
11.绝缘电阻:压敏电阻的绝缘电阻是指在给定电压下,电阻器终端之间的绝缘电阻值。
绝缘电阻越大,压敏电阻的绝缘性能越好。
12.导通电压:压敏电阻的导通电压是指电阻阻值由高变低时,所需的最低电压。
导通电压越低,压敏电阻的敏感性越好。
13.稳定性:压敏电阻的稳定性是指在不同压力下,电阻值的稳定性能。
稳定性好的压敏电阻可以保证电路的稳定运行。
总结:压敏电阻的参数涉及电阻值、公差、电压系数、功率系数、响应时间、率定数据、工作温度范围、温度系数、漏电流、介电强度、绝缘电阻、导通电压以及稳定性等方面。
压敏电阻的选用要点及原则
压敏电阻的选用要点及原则压敏电阻是一种特殊的电阻器件,具有压力敏感的特性,能够根据外力的大小产生不同的电阻变化。
在实际应用中,正确选择和使用压敏电阻非常重要。
下面,我将介绍压敏电阻的选用要点及原则。
1.耐压能力:选择合适的压敏电阻需要根据实际应用场景的最大工作电压确定,一般要求压敏电阻的耐压能力要大于实际工作电压。
如果应用场景存在过电压现象,还需要考虑压敏电阻的耐受过电压能力。
2.响应时间:压敏电阻的响应时间是指它从受到外力到电阻变化的时间,响应时间越短越好。
因此,在应用中需要选择响应时间较短的压敏电阻,以保证实时性和准确性。
3.电阻值范围:压敏电阻的电阻值范围是指电阻在受到压力作用下能够变化的范围。
在选用时需要根据具体应用要求选择合适的电阻值范围。
一般来说,电阻值范围越大,应用范围越广。
4.精度:压敏电阻的精度是指它的电阻值与实际值之间的偏差。
不同应用场景对精度的要求不同,一般来说,要尽量选择精度较高的压敏电阻,以保证测量和控制的准确性。
5.稳定性:压敏电阻的稳定性是指在长时间使用过程中,其电阻值的稳定性程度。
稳定性好的压敏电阻在长时间使用后,电阻值的变化非常小。
因此,在选用压敏电阻时,需要考虑其稳定性,尽量选择稳定性好的产品。
6.温度特性:压敏电阻的温度特性是指在不同温度下其电阻值的变化。
不同种类的压敏电阻具有不同的温度特性。
在选用时,需要根据具体应用环境的温度要求选择合适的压敏电阻,以保证在不同温度下有稳定的电阻值。
7.环境要求:在特殊的环境条件下,如湿度、腐蚀性气体等,需要选择能够适应这些环境的特殊压敏电阻,以保证正常工作。
8.可靠性:压敏电阻的可靠性是指它在使用寿命内的可靠程度。
选择压敏电阻时,需要选择具有较高可靠性的产品,以保证其在长时间使用中不易损坏。
总的来说,正确选择和使用压敏电阻需要考虑其耐压能力、响应时间、电阻值范围、精度、稳定性、温度特性、环境要求和可靠性等多个因素。
根据具体应用需求,综合考虑这些要素,并选择符合要求的压敏电阻,才能保证系统的稳定性和可靠性。
压敏电阻器的伏安特性和电性能参数
压敏电阻器的伏安特性和电性能参数来源:电源谷作者:Blash 发布时间:2007-03-20 13:40:091 、与其他元件相比,压敏电阻器的电性能参数较多,若要很好地理解这些参数的意义,就要首先了解压敏电阻器的外加电压与流过压敏电阻器本体电流之间的关系,这个关系被称为伏安特性( V/I 特性)。
压敏电阻的典型伏安特性如图 1 所示。
图 1 压敏电阻的伏安特性( 24 ℃)由该图看出,V/I 曲线可明显地分为三个区域:预击穿区(J=0~10-5A/cm2) 、击穿区(J =10-5~10A/cm2)、回升区(J >10A/cm2)。
预击穿区的V/I 特性呈现 lg J ∝E 1/2 的关系,如图 2 所示。
击穿区的特性呈观 lg J ∝lgE 的关系,且可表示为:j=(E/K)α或I =(U/K) α( 1 )式中,K 为常数、α表示击穿区的非线性系数。
回升区的特性呈现J ∝E 的欧姆关系。
压敏电阻的伏安特性随温度的变化如图 3 所示。
图 3 不同温度下的伏安特性由该图可见预击穿区的V/I 特性随温度变化很大,即在外加电压相同的情况下,流过压敏电阻的电流会随着环境温度的提高而大幅度增加;击穿区的V/I 特性几乎不受温度的影响。
虽然每只压敏电阻都有它特定的V/I 特性曲线,但是同规格压敏电阻的V/I 特性曲线又是比较近似的,我们在产品说明书中只要给出每个规格产品的最典型V/I 特性曲线,一般就可以满足用户的需要。
从压敏电阻的典型伏安特性曲线(图 1 )我们可以很直观地理解压敏电阻的功能和大多数电性能参数的实际意义,及其它们的在应用中作用。
下面,我们详细介绍压敏电阻的电性能参数。
2 压敏电压U N( varistor voltage )和直流参考电流I 0从压敏电阻的典型伏安特性曲线(图 1 )我们可以明显地看出:压敏电阻在其V/I 特性曲线的预击穿区内有一个拐点,这个拐点对应着一个特定的拐点电压和一个特定的拐点电流;当外加电压高于这个拐点电压,压敏电阻就进入“导通”状态(电阻值变小);当外加电压低于这个拐点电压,压敏电阻就进入了“截止”状态(电阻值变大)。
压敏电阻与气体放电管的_配合问题
压敏电阻与气体放电管的配合使用一.基础知识介绍气体放电管和压敏电阻是防雷器主要组成元器件。
气体放电管用于开关型防雷器,压敏电阻用于限压型防雷器。
一、气体放电管的工作原理及特性气体放电管一般采用陶瓷作为封装外壳,放电管内充满电气性能稳定的惰性气体,放电管的电极一般有两个电极、三个电极和五个电极三种结构。
当在放电管的极间施加一定的电压时,便在极间产生不均匀的电场,在电场的作用下,气体开始游离,当外加电压达到极间场强并超过惰性气体的绝缘强度时,两极间就会产生电弧,电离气体,产生“负阻特性”,从而马上由绝缘状态转为导电状态。
即电场强度超过气体的击穿强度时,就引起间隙放电,从而限制了极间电压。
也就是说在无浪涌时,处于开路状态,浪涌到来时,放电管内的电极板关合导通。
浪涌消失时,极板恢复到原来的状态。
气体放电管是一种开关型的防雷保护器件,一般用于防雷工程的第一级或第二级的保护上;由于它的极间绝缘电阻大,因而寄生电容很小,所以用于对高频电子线路的保护有着明显的优势。
然而气体放电管由于其本身在放电时的时延性较大和动作灵敏性不够理想,因此它对于上升陡度较大的雷电波头也难以进行有效的抑制,所以气体放电管一般在防雷工程的应用上大多与限压型防雷器进行综合应用。
综上所述:气体放电管的优点是电流通容量大;寄生电容小;残压较低,一般900V左右;气体放电管的缺点是:1、放电时延性较大,动作灵敏度不够,响应时间较慢,为80ns左右。
2、有续流,不利于对交流或20V以上的线路进行保护,因而与火花间隙一样,存在续流的遮断问题。
3、无法进行劣化指示和实现故障遥信功能,安全系数不高。
二、压敏电阻的工作原理及特性压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性的限压型电阻。
压敏电阻的伏安特性是连续和递增的,因此它不存在续流的遮断问题。
它的工作原理为压敏电阻的氧化锌和添加剂在一定的条件下“烧结”,电阻就会受电压的强烈影响,其电流随着电压的升高而急剧上升,上升的曲线是一个非线性指数。
压敏电阻作用参数及选型
压敏电阻作用参数及选型压敏电阻(Varistor)是一种特殊的电阻器件,它的电阻值会随着电压变化而改变。
在正常工作电压范围内,压敏电阻的电阻值非常大,几百兆欧姆以上,对电路起到很小的影响。
但是当电压快速上升到特定的临界电压时,压敏电阻的电阻值会迅速降低,形成低电阻路径,从而将过电压的能量引流到地,保护其他电子器件不受过电压的损害。
因此,压敏电阻在电子设备中起到了重要的保护作用。
压敏电阻的作用参数主要包括:1. 额定电压(Rated Voltage):压敏电阻能够承受的最大工作电压,超过额定电压时可能发生击穿,失去保护作用。
2. 峰值电流(Peak Current):压敏电阻能够承受的最大峰值电流,超过峰值电流时可能损坏。
3. 能量耗散(Energy Dissipation):压敏电阻能够吸收的最大能量,超过能量耗散时可能损坏。
4. 响应时间(Response Time):压敏电阻从高电阻状态切换到低电阻状态所需时间。
5. 温度系数(Temperature Coefficient):压敏电阻电阻值随环境温度变化的程度,影响其稳定性。
选择合适的压敏电阻需要考虑以下几个因素:1.额定电压:根据电路的工作电压确定压敏电阻的额定电压,应使额定电压明显高于工作电压,以保证压敏电阻能够正常工作并提供足够的保护。
2.额定功率:根据电路的最大功率确定压敏电阻的额定功率,应使额定功率足够大,以保证压敏电阻能够正常工作,并吸收足够的能量。
3.响应时间:根据电路的需求确定压敏电阻的响应时间,应使响应时间足够短,以保证压敏电阻能够及时切换到低电阻状态,吸收过电压能量。
4.温度系数:根据电路的工作环境确定压敏电阻的温度系数,应使温度系数足够小,以保证在不同温度下电阻值变化较小。
在选型时,可以通过以下几个步骤进行:1.确定电路的工作电压和最大功率,以及对压敏电阻的额定电压和额定功率要求。
2.根据电路的过电压保护需求,确定压敏电阻的响应时间和温度系数要求。
压敏电阻的选用及原则要点
•
压敏电阻器与被保护的电器设备或元器件并联使用。当电路中出现雷电过电压或瞬态 操作过电压Vs时,压敏电阻器和被保护的设备及元器件同时承受Vs,由于压敏电阻器响 应速度很快,它以纳秒级时间迅速呈现优良非线性导电特性(见图3中击穿区),此时压 敏电阻器两端电压迅速下降,远远小于Vs,这样被保护的设备及元器件上实际承受的 电压就远低于过电压Vs,从而使设备及元器件免遭过电压的冲击。
通常产品给出的通流量是按产品标准给 定的波形、冲击次数和间隙时间进行脉 冲试验时产品所能承受的最大电流值。 而产品所能承受的冲击数是波形、幅值 和间隙时间的函数,当电流波形幅值降 低50%时冲击次数可增加一倍,所以在 实际应用中,压敏电阻所吸收的浪涌电 流应小于产品的最大通流量。
四、应用
• 图1所示是采用压敏电压器进行电路浪涌和瞬变防护时的电路连接图。对于 压敏电阻的应用连接,大致可分为四种类型:
作在图 3的预击穿区和击穿区,理论上是不会损 坏的。但由于压敏电阻器要长期承受电源电压,
电路中暂态过电压、超能量过电压随机的不断冲
击及吸收电路储能元件释放能量,因此,压敏电 阻器也是会损坏的,它的寿命根据所在电路经受 的过电压幅值和能量的不同而不同。
谢谢 大家
深 圳 新 晨 阳 电 子 有 限 公 司
水平上(小于设备的耐压水平),同时通过压敏电阻器的冲击电流很大,使压敏电阻器
性能劣化即将失效,这时通过熔断器的电流很大,熔断器断开,这样既可使电器设备 、元器件免受过电压冲击,也可避免由于压敏电阻器的劣化击穿造成线路L-N、L-PE 之间短路(推荐的熔断器规格见表1)。
压敏电阻器在电路的过电压防护中,如果正常工
•
第一种类型是电源线之间或电源线和大地之间的连接,如图1(a)所示。 作为压敏电阻器,最具有代表性的使用场合是在电源线及长距离传输的信号 线遇到雷击而使导线存在浪涌脉冲等情况下对电子产品起保护作用。一般在 线间接入压敏电阻器可对线间的感应脉冲有效,而在线与地间接入压敏电阻 则对传输线和大地间的感应脉冲有效。若进一步将线间连接与线地连接两种 形式组合起来,则可对浪涌脉冲有更好的吸收作用。
压敏电阻基础知识及应用详解
压敏电阻基础知识及应用详解目录一、压敏电阻概述 (3)1.1 压敏电阻定义 (3)1.2 压敏电阻工作原理 (4)1.3 压敏电阻结构特点 (5)二、压敏电阻主要参数 (6)2.1 电流-电压特性 (7)2.2 最大限制电压 (8)2.3 漏电流 (9)2.4 额定功率 (10)2.5 温度系数 (10)三、压敏电阻类型及选用 (11)3.1 固定型压敏电阻 (13)3.2 可变型压敏电阻 (14)3.3 瞬时型压敏电阻 (16)3.4 抗雷击压敏电阻 (17)四、压敏电阻应用电路设计 (18)4.1 保护电路 (20)4.2 限流电路 (22)4.3 滤波电路 (23)4.4 电压监测电路 (24)4.5 实际应用案例分析 (25)五、压敏电阻在电源管理中的应用 (26)5.1 电源开关保护 (27)5.2 电池保护电路 (29)5.3 电源滤波器 (29)5.4 电压调节器 (31)六、压敏电阻在信号处理中的应用 (32)6.1 信号放大器 (33)6.2 仪用放大器 (34)6.3 滤波器 (35)6.4 限幅器 (37)七、压敏电阻在通信系统中的应用 (39)7.1 电缆调制解调器 (39)7.2 无线通信系统 (40)7.3 卫星通信系统 (41)7.4 光纤通信系统 (42)八、压敏电阻在汽车电子中的应用 (43)8.1 发动机控制系统 (44)8.2 车辆照明系统 (46)8.3 安全气囊系统 (46)8.4 电子稳定程序 (48)九、压敏电阻的未来发展趋势 (49)9.1 新材料的研究与应用 (51)9.2 封装技术的进步 (52)9.3 智能化发展 (53)9.4 绿色环保要求 (54)一、压敏电阻概述压敏电阻是一种具有非线性特性的电阻器件,其特点是在一定电流范围内,当电压超过其阈值时,其阻值会急剧下降。
这种电阻在电子电路中常用于过电压保护、限流、阻尼、吸收等电路元件。
压敏电阻的主要参数包括最大限制电压(Vmax)、最大放电电流(Imax)以及响应时间等。
气体放电管压敏电阻tvs的区别 -回复
气体放电管压敏电阻tvs的区别-回复气体放电管(Gas Discharge Tube,简称GDT)和压敏电阻(Transient Voltage Suppressor,简称TVS)是电子领域中常用的保护元件,其中GDT主要用于对高压放电保护,而TVS则用于对瞬态电压保护。
本文将从原理、结构、特性和应用等方面,逐步回答气体放电管和压敏电阻的区别。
第一部分:原理及结构差异气体放电管:气体放电管是一种利用气体放电的原理,具有高击穿电压和快速响应特性的保护元件。
其内部结构通常由一个或多个电极、一个灌装有稀薄惰性气体的玻璃管和一个外壳组成。
当外部电场达到气体放电管的击穿电压时,气体将放电并导通,从而将大部分电流引导到地,有效保护设备免受过电流损坏。
压敏电阻:压敏电阻是一种非线性电阻器件,通过压电材料和导电颗粒杂化形成。
它的内部结构主要由压电陶瓷材料、导电颗粒和金属电极组成。
当施加在压敏电阻上的电压超过其正常工作电压时,导电颗粒之间的间隙会被压缩,从而使电阻值迅速下降,形成一条低阻路径,将电流引向地。
第二部分:特性对比1. 响应速度:气体放电管由于其内部气体放电的本质,可以在纳秒级的时间内响应过压。
而压敏电阻基于电阻值的响应,其响应时间在纳秒至微秒之间。
2. 瞬态电压容量:气体放电管在导电状态下,能够承受较大的瞬态电压,通常在数千伏至几十千伏之间。
压敏电阻则通常在数百伏至几千伏之间。
3. 能量容量:气体放电管由于其大电流能力,能够吸收较大的能量冲击。
而压敏电阻的能量容量相对较低。
4. 电压保护能力:气体放电管在导电状态下有较低的电压保护电阻,所以能较好地保护设备免受过电压损害。
压敏电阻在其正常工作电压范围内有较高的电阻值,因此对于低电压的过压保护较为有效。
第三部分:应用领域气体放电管:气体放电管广泛应用于通信领域、电力设备、工业控制和雷达等领域。
其中主要为防止雷击、过电流、过压等对设备造成损坏。
压敏电阻:压敏电阻主要应用于电子产品中,作为电压保护元件。
spd几个问题(响应时间+去耦计算)
电涌保护器应用中的几个问题的探讨发布时间:2011年02月24日【字体:大中小】/?thread-407-1.html#6d一、前言电涌保护器(SPD)是抑制由雷电、电气系统操作或静电等所产生的冲击电压,保护电子信息技术产品必不可少的器件。
随着各种电子信息技术产品越来越多地渗入到社会和家庭生活的各个领域,SPD的使用范围日益扩大,市场需求量日益增长。
总的来说,电子信息技术产品的过电压保护还是一个新的技术领域,两相关于SPD的国际标准IEC61643-1和IEC61643-21发表才几年,有关SPD应用中的许多问题还存在着争议,本文就其中的4个问题提出笔者个人的看法,以期引起讨论。
它们是:SPD的响应时间,多级SPD的动作顺序,不同波形冲击电流的等效变换以及SPD的残压与冲击电流峰值的关系。
最后对SPD应用中各个电压之间的相互关系作了说明。
二、SPD的响应时间不少人错误地认为,响应时间是衡量SPD保护性能的一个重要指标,制造厂也在其技术资料中列明了这一参数,但许多制造厂并不知道它的确切含义,也未进行过测量。
一个流行的观点是,在响应时间内,SPD对入侵的冲击无抑制作用,冲击电压是"原样透过"SPD而作用在下级的设备上。
这不符合SPD的是工作情况,是错误的。
SPD中对冲击过电压起抑制作用的非线性元件,按其工作机理可区分为"限压型"(如压敏电阻器、稳压二极管)和"开关型"(如气体放电管、可控硅)。
氧化锌压敏电阻器是一种化合物半导体器件,其中的电流对于加在它上面的电压的响应本质上是很快的。
图1位美国GE公司用不带引线的压敏电阻进行抑制冲击电压的实验所得到的示波图[1>。
图中的曲线1是不加压敏电阻时的冲击电压,曲线2是被压敏电阻抑制后的波形。
由图可以清楚地看出,氧化锌压敏电阻抑制冲击电压作用的延时小于1ns。
那么,以前的技术资料中所说的用压敏电阻构成的SPD响应时间r≤25ns是怎么回事呢?这是技术标准IEEEC62.33-1982[2>中定义的响应时间,它是一个用来表征"过冲"特性的物理量,与通常意义上的响应时间是完全不同的另外一个概念。
压敏电阻规格参数
压敏电阻规格参数
压敏电阻是一种电子元件,其电阻值会随着外部压力或应变的变化而发生变化。
以下是压敏电阻的常见规格参数:
1. 压敏电阻类型:包括金属氧化物压敏电阻(MOS)、聚合物压敏电阻(PPS)、有机聚合物压敏电阻(OPPS)等。
2. 额定电压:压敏电阻的最大工作电压,超过该电压值可能会导致器件损坏。
3. 压敏系数:单位电压变化引起的电阻值变化百分比,通常以ppm/V为单位。
4. 最大工作温度:压敏电阻可以正常工作的最高温度,超过该温度可能会导致电阻值发生变化或器件损坏。
5. 最小电阻值:压敏电阻在未受到压力或应变时的电阻值。
6. 响应时间:压敏电阻的输出信号从压力或应变发生变化到达稳定状态所需的时间。
7. 额定功率:压敏电阻可以承受的最大功率,超过该功率可能会导致器件损坏。
8. 封装形式:压敏电阻的外部封装形式,包括贴片式、插件式、表面贴装式等。
以上是压敏电阻的常见规格参数,不同类型的压敏电阻可能会有一些特定的参数要求。
压敏电阻器的主要参数
压敏电阻器的主要参数
1.电阻值:压敏电阻器的电阻值是其最重要的参数,通常以欧姆(Ω)为单位表示。
电阻值会随着外加电压的变化而变化,当外加电压在一定范
围内时,压敏电阻器的电阻值较大,达到正常工作状态。
但一旦外加电压
超过其额定电压(也称为击穿电压),电阻值会急剧下降,以消耗过电压
的能量来保护其他电子元件。
2.响应时间:响应时间是指压敏电阻器从正常状态到完全的电阻调整
状态所需要的时间。
响应时间越短,压敏电阻器保护电路的效果就越好。
一般而言,响应时间在纳秒级别的压敏电阻器对于对速度要求较高的电路
是最理想的选择。
3.最大功率:最大功率是指压敏电阻器所能耗散的最大功率。
当过电
压作用在压敏电阻器上时,它会吸收并消散过电压的能量,因此最大功率
是保证压敏电阻器能够正常工作的重要参数。
通常最大功率以瓦特(W)
为单位表示,较高的最大功率意味着压敏电阻器能够吸收更多的能量,从
而有效保护电路。
4. 温度系数:温度系数是指压敏电阻器电阻值随温度变化的情况。
温度变化会导致压敏电阻器电阻值的变化,因此温度系数是对其性能稳定
性的一种评估。
温度系数通常以每摄氏度的电阻变化率(ppm/°C)来表示,较低的温度系数表明压敏电阻器能够在不同的温度环境下保持相对稳
定的电阻值。
除了这些主要参数外,压敏电阻器还有其他附加参数,如耐压、电流
容量、频率响应等。
这些参数是根据压敏电阻器的具体应用需求和特性来
选择的。
总之,了解和理解这些主要参数可以帮助我们正确选型和使用压敏电阻器,以实现电路保护和稳定工作的目的。
压敏电阻 参数
压敏电阻参数压敏电阻是一种特殊的电子元件,它的电阻值随着外界环境的变化而变化。
压敏电阻主要由氧化锌、硅、锗等材料制成,通过加工成片或薄膜形式后,再采用特殊工艺加工成不同形状的电阻器件。
压敏电阻的参数是指它的电学性能指标,其中包括电阻值、功率、温度系数、耐压、响应时间等。
下面我们将分别介绍这些参数的含义和作用。
1. 电阻值压敏电阻的电阻值是指它在正常工作状态下的电阻大小。
一般来说,压敏电阻的电阻值较小,通常在几百欧姆至几千欧姆之间。
电阻值的大小直接影响到压敏电阻的应用范围和精度。
2. 功率功率是指压敏电阻在工作状态下所能承受的最大功率。
功率值的大小与电阻器件的尺寸、材料以及工作环境等因素有关。
在选用压敏电阻时必须考虑其所需承受的功率值,以免电阻器件过载而导致故障。
3. 温度系数温度系数是指压敏电阻的电阻值随温度变化而变化的程度。
一般来说,压敏电阻的温度系数应该尽可能小,以确保其在不同温度下的电阻值稳定性。
4. 耐压耐压是指压敏电阻在工作状态下所能承受的最大电压。
耐压值的大小与电阻器件的尺寸、材料以及工作环境等因素有关。
在选用压敏电阻时必须考虑其所需承受的耐压值,以免电阻器件过载而导致故障。
5. 响应时间响应时间是指压敏电阻在受到外界刺激后,电阻值开始发生变化的时间。
响应时间的大小与电阻器件的尺寸、材料以及工作环境等因素有关。
在实际应用中,响应时间的快慢影响到了压敏电阻的灵敏度和精度。
压敏电阻的参数是决定其性能特点的关键因素。
在选用压敏电阻时必须全面考虑其各项参数,以确保电阻器件在实际应用中满足要求,稳定可靠。
压敏电阻的响应时间
压敏电阻的响应时间压敏电阻的响应时间ZnO压敏电阻这种半导体材料,在电场下的导电过程,基本上是电子过程,因此,它对测量电压/电流的响应是很快的。
美国GE公司的测量结果表明,ZnO压敏电阻抑制冲击过电压的时间小于1ns。
按过冲定义计算的响应时间,对于ZnO-Bi2O3配方系统,大体在(20~25)nS。
但这种材料内部,还有一定程度的离子电导,这使得电阻体从一种电阻状态到另一种电阻状态的稳定时间,需要几时毫秒到10秒钟左右的时间。
这就是说ZnO压敏电阻从"截止"到"导通",或从"导通"到"截止",不是瞬时完成的,它需要一段稳定时间。
下述这些现象就是这一特性的表现。
压敏电阻冲击电流减额特性通流量指标给定了压敏电阻能承受的8/20电流波冲击一次和二次的最大电流值。
当电流波的时间宽度τ增大时,或冲击次数n增多试,允许的电流峰值Ip应随之减小。
曲线Ip=f(τ,n)称作冲击电流减额特性。
压敏电阻电容量电容量压敏电阻器的固有电容量Co,随着规格的不同,大体在几个PF到104PF左右,它与压敏电阻的电阻成分相并联,对测试过程产生影响。
测试信号刚一加上是首先对它充电,测试信号结束后,这个Co上存储的电荷要放电。
为此,在测试过程中应注意:(1)在相同的加压比下,压敏电阻器的工频交流漏电流比直流漏电大。
(2)施加在试样上的测量电压(电流),应保持足够的时间,使电容上的电荷状态稳定,然后才能读取测试结果。
(3)若试样电容量较大,且测试电压较高,则在测试信号结束后,应使试样充分放电,以免试样在测量过程中储存的电荷对人体造成电击。
压敏电阻极性现象极性现象极性是指压敏电阻两个方向的测试结果不一致,低压压敏电阻的这一现象尤为明显。
从前面几章的讨论可以知道,产生这一现象的原因有两个:一是电阻体内正方向的势垒与反方向的势垒本来就不是完全相同的,二是压敏电阻经电流电压作用后产生了劣化,使得两方向的势垒不对称,或电流路径上正反方向的有效势垒数目不等,因此在压敏电阻的测试中,要求对两个方向都进行测试。
压敏电阻271参数
压敏电阻271参数
压敏电阻271是一种常见的压敏电阻器件,它具有许多重要的
参数和特性。
首先,压敏电阻271的参数包括额定电压、额定功率、阻值范围、温度系数、响应时间等。
额定电压是指在正常工作条件下,压敏电阻能够承受的最大电压值,通常以伏特(V)为单位。
额
定功率是指在额定电压下,压敏电阻能够稳定工作的最大功率值,
通常以瓦特(W)为单位。
阻值范围是指压敏电阻的阻值变化范围,
通常以欧姆(Ω)为单位。
温度系数是指压敏电阻阻值随温度变化
的变化率,通常以ppm/℃(百万分之一/摄氏度)表示。
响应时间
是指压敏电阻在受到外部压力或电压变化时的响应速度,通常以毫
秒(ms)为单位。
此外,压敏电阻271还具有一些特性,例如高灵敏度、高稳定性、耐高温、耐腐蚀等。
这些特性使得压敏电阻271在电子电路中
具有广泛的应用,例如在电压稳定器、过压保护、测量和控制系统
等方面发挥着重要作用。
总的来说,压敏电阻271作为一种重要的电阻器件,具有多种
参数和特性,这些参数和特性决定了它在电子领域中的应用范围和
性能表现。
对于工程师和设计师来说,了解和掌握压敏电阻271的参数和特性对于正确选择和应用这种器件至关重要。
压敏电阻matlab -回复
压敏电阻matlab -回复压敏电阻的特性、工作原理及在MATLAB中的应用。
一、引言压敏电阻是一种具有特殊结构和材料的电阻器件,其特性在很多领域中都有广泛的应用。
本文将详细介绍压敏电阻的特性和工作原理,并以MATLAB作为工具,展示压敏电阻在不同应用场景中的应用。
二、压敏电阻的特性压敏电阻是一种能够根据外部物理压力大小而改变其电阻值的电子元件。
当压力作用于压敏电阻时,其电阻值会发生相应的变化。
这种特性使得压敏电阻在诸多领域中得到了广泛应用。
1.阻值变化范围大:压敏电阻的阻值范围通常在几欧姆到几千欧姆之间,对于某些特殊需求甚至可以达到百万欧姆级别。
2.高灵敏度:压敏电阻的灵敏度较高,即使在微小的压力作用下也能产生明显的电阻变化。
3.快速响应时间:压敏电阻能够在短时间内响应外部压力的变化,使得其在一些特殊应用中能够实时进行检测。
三、压敏电阻的工作原理压敏电阻的工作原理基于电阻材料的特点,主要有两种工作方式:焊接式和贴装式。
1.焊接式压敏电阻:焊接式压敏电阻通常由一种或多种金属氧化物组成,其材料中含有导电性变化的金属颗粒,并通过焊接的方式将电极连接在电阻材料的两端。
当外力作用于压敏电阻时,金属颗粒之间的接触电阻会发生变化,从而改变整个电阻器件的阻值。
2.贴装式压敏电阻:贴装式压敏电阻的工作原理与焊接式电阻类似,主要区别在于不同的连接方式。
贴装式压敏电阻的电阻材料被直接贴装在PCB (Printed Circuit Board)上,并通过焊盘与其他电子元件相连接。
当压力作用于电路板时,压敏电阻的电阻值会发生相应的变化。
四、压敏电阻的MATLAB应用案例压敏电阻广泛应用于各种传感器、开关和控制电路中,而MATLAB作为一种流行的科学计算和数据分析工具,为压敏电阻在相关领域中的应用提供了强大的支持。
以压敏电阻在压力传感器中的应用为例:假设已经通过实验得到了一组不同压力下压敏电阻的电阻值数据,我们可以通过MATLAB进行数据分析和建模。
102kd14压敏电阻参数
102kd14压敏电阻参数102kd14压敏电阻是一种常见的电子元器件,具有独特的参数和特性。
本文将从以下几个方面介绍102kd14压敏电阻的参数及其相关知识。
一、102kd14压敏电阻的基本参数102kd14压敏电阻的额定电压为102V,分别代表了其最大工作电压。
压敏电阻的最大工作电压是指在该电压下,电阻的特性能得到最佳发挥,不会发生破坏或失效。
此外,102kd14压敏电阻的额定功率为0.1W,表示它能够承受的最大功率。
二、102kd14压敏电阻的阻值范围102kd14压敏电阻的阻值范围为10Ω~10MΩ,阻值是电阻器的一个重要参数,用于描述电阻对电流的阻碍程度。
阻值越大,电流通过电阻的能力越小,反之亦然。
102kd14压敏电阻的阻值范围较广,适用于不同的电路和应用。
三、102kd14压敏电阻的响应时间102kd14压敏电阻的响应时间是指它对外界压力变化的反应速度。
压敏电阻的响应时间越短,表示它能够更快地感知外界的压力变化,并相应地改变电阻值。
102kd14压敏电阻的响应时间一般在纳秒级别,具有较快的响应速度。
四、102kd14压敏电阻的温度系数102kd14压敏电阻的温度系数是指它的阻值随温度变化的程度。
温度系数越小,表示电阻的阻值对温度的敏感度越低,稳定性越好。
102kd14压敏电阻的温度系数为±10% / ℃,在一定温度范围内,它的阻值变化范围不会超过其额定阻值的10%。
五、102kd14压敏电阻的应用领域102kd14压敏电阻广泛应用于电子设备和电路中,常见的应用领域包括电源管理、通信设备、计算机设备、家电产品等。
在这些应用中,102kd14压敏电阻可用于电路的过压保护、电源滤波、电流限制等功能。
其高阻值、快速响应和稳定性等特点使其在电子领域中扮演重要角色。
六、102kd14压敏电阻的注意事项在使用102kd14压敏电阻时,需要注意以下几点。
首先,应避免超过其最大工作电压,以免引起破坏。
浪涌压敏电阻
浪涌压敏电阻
浪涌压敏电阻是一种电子元器件,主要用于保护电路免受过电压的损害。
当电路中出现过电压时,浪涌压敏电阻会迅速响应,将过电压转化为热能或电能,从而保护电路中的其他元器件不受损坏。
浪涌压敏电阻的工作原理是基于压敏效应。
压敏效应是指在一定范围内,材料的电阻随着外加电压的增加而减小。
当外加电压超过一定阈值时,材料的电阻急剧下降,形成一个低阻通路,从而将过电压转化为热能或电能。
浪涌压敏电阻的主要特点是响应速度快、功耗低、体积小、重量轻、可靠性高。
它广泛应用于电力、通信、计算机、汽车、航空航天等领域,是保护电路安全的重要元器件。
浪涌压敏电阻的选型需要考虑以下几个因素:
1. 额定电压:浪涌压敏电阻的额定电压应该大于电路中最高的工作电压,以确保能够有效地保护电路。
2. 额定功率:浪涌压敏电阻的额定功率应该大于电路中最大的功率,以确保能够承受过电压时产生的热能。
3. 响应时间:浪涌压敏电阻的响应时间应该尽可能短,以确保能够及时响应过电压。
4. 温度系数:浪涌压敏电阻的温度系数应该尽可能小,以确保在不同温度下都能够保持稳定的电阻值。
总之,浪涌压敏电阻是一种重要的电子元器件,能够有效地保护电路免受过电压的损害。
在选型时需要考虑多个因素,以确保能够选择到适合的产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压敏电阻的响应时间
ZnO压敏电阻这种半导体材料,在电场下的导电过程,基本上是电子过程,因此,它对测量电压/电流的响应是很快的。
美国GE公司的测量结果表明,ZnO压敏电阻抑制冲击过电压的时间小于1ns。
按过冲定义计算的响应时间,对于 ZnO-Bi2O3配方系统,大体在(20~25)nS。
但这种材料内部,还有一定程度的离子电导,这使得电阻体从一种电阻状态到另一种电阻状态的稳定时间,需要几时毫秒到10秒钟左右的时间。
这就是说ZnO压敏电阻从"截止"到"导通",或从"导通"到"截止",不是瞬时完成的,它需要一段稳定时间。
下述这些现象就是这一特性的表现。
压敏电阻冲击电流减额特性
通流量指标给定了压敏电阻能承受的8/20电流波冲击一次和二次的最大电流值。
当电流波的时间宽度τ增大时,或冲击次数n增多试,允许的电流峰值Ip应随之减小。
曲线
Ip=f(τ,n)称作冲击电流减额特性。
压敏电阻电容量
电容量压敏电阻器的固有电容量Co,随着规格的不同,大体在几个PF到104PF左右,它与压敏电阻的电阻成分相并联,对测试过程产生影响。
测试信号刚一加上是首先对它充电,测试信号结束后,这个Co上存储的电荷要放电。
为此,在测试过程中应注意:(1)在相同的加压比下,压敏电阻器的工频交流漏电流比直流漏电大。
(2)施加在试样上的测量电压(电流),应保持足够的时间,使电容上的电荷状态稳定,然后才能读取测试结果。
(3)若试样电容量较大,且测试电压较高,则在测试信号结束后,应使试样充分放电,以免试样在测量过程中储存的电荷对人体造成电击。
压敏电阻极性现象
极性现象极性是指压敏电阻两个方向的测试结果不一致,低压压敏电阻的这一现象尤为明显。
从前面几章的讨论可以知道,产生这一现象的原因有两个:一是电阻体内正方向的势垒与反方向的势垒本来就不是完全相同的,二是压敏电阻经电流电压作用后产生了劣化,使得两
方向的势垒不对称,或电流路径上正反方向的有效势垒数目不等,因此在压敏电阻的测试中,要求对两个方向都进行测试。